# Mapping Toolbox 

For Use with MATLAB ${ }^{\circ}$

Computation

Visualization

Programming

User's Guide
Version 2

## How to Contact The MathWorks:


www. mathworks.com
comp.soft-sys.matlab
support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
Phone
Fax
The MathWorks, Inc.
Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

## Mapping Toolbox User's Guide

© COPYRIGHT 1997-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

| Printing History: | May 1997 | First printing | New for Version 1 |
| :--- | :--- | :--- | :--- |
| October 1998 | Second printing Revised for Version 1.1 |  |  |
|  | November 2000 | Third printing | Revised for Version 1.2 (Release 12) |
|  | July 2002 | Online only | Revised for Version 1.3 (Release 13) |
|  | September 2003 | Online only | Revised for Version 1.3.1 (Release 13SP1) |
|  | January 2004 | Online only | Revised for Version 2.0 (Release 13SP1+) |
|  | April 2004 | Online only | Revised for Version 2.0.1 (Release 13SP1+) |

## Getting Started

What is the Mapping Toolbox? ..... 1-2
Dedication and Acknowledgment ..... 1-3
Your First Maps ..... 1-4
See the World ..... 1-4
Explore Built-in Atlas Data ..... 1-7
Tour Boston with the Map Viewer ..... 1-9
Documentation Summary ..... 1-24
Getting More Help ..... 1-26
Mapping Toolbox Demos ..... 1-27
Understanding Map Data
2
Maps and Map Data ..... 3-2
What Is a Map? ..... 3-2
What Is Geospatial Data? ..... 3-2
Types of Map Data Handled by the Mapping Toolbox ..... 3-4
Vector Geodata ..... 3-4
Raster Geodata ..... 3-7
Combining Vector and Raster Geodata ..... 3-11
Understanding Vector Data ..... 3-13
Points, Lines, Polygons ..... 3-13
Segments Versus Polygons ..... 3-15
Mapping Toolbox Geographic Data Structures ..... 3-16
Understanding Raster Data ..... 3-27
Georeferencing Raster Data ..... 3-27
Regular Data Grids ..... 3-29
Geolocated Data Grids ..... 3-38
Reading and Writing Geospatial Data ..... 3-47
Understanding Geospatial Geometry
3
Spheres, Spheroids, and Geoids ..... 2-2
Geoid and Ellipsoid ..... 2-2
Latitude and Longitude ..... 2-8
Datums ..... 2-10
Map Projections ..... 2-11
Forward and Inverse Projection ..... 2-11
Projection Distortions ..... 2-11
Great Circles, Rhumb Lines, and Small Circles ..... 2-13
Great Circles ..... $2-13$
Rhumb Lines ..... 2-13
Small Circles ..... 2-14
Angles and Directions on the Sphere and Spheroid ..... 2-18
Reckoning - the Forward Problem ..... 2-18
Distance, Azimuth, and Back-azimuth (the Inverse Problem) ..... $2-20$
Planetary Almanac Data ..... 2-24
Measuring Area of Spherical Quadrangles ..... 2-26

## Creating and Viewing Maps

## 4

Introduction to Mapping Graphics ..... 4-2
Simple Map Displays Using worldmap and usamap ..... 4-3
Axes for Drawing Maps ..... 4-5
Using axesm ..... 4-6
Accessing and Manipulating Map Axes Properties ..... 4-6
Switching Between Projections ..... 4-11
Projected and Unprojected Graphic Objects ..... 4-14
The Map Frame ..... 4-18
Map and Frame Limits ..... 4-21
The Map Grid ..... 4-23
Displaying Vector Data with Mapping Toolbox Functions ..... 4-27
Displaying Vector Maps as Lines ..... 4-27
Displaying Vector Maps as Patches ..... 4-29
Displaying Data Grids ..... 4-34
Fitting Gridded Data to the Graticule ..... 4-35
Using Raster Data to Create 3-D Displays ..... 4-38
Interacting with Displayed Maps ..... 4-42
Defining Small Circles and Tracks Interactively ..... 4-43
Working with Objects by Name ..... 4-47
Making Three-Dimensional Maps
5
Sources of Terrain Data ..... 5-2
Digital Terrain Elevation Data from NIMA ..... 5-2
Digital Elevation Model Files from USGS ..... 5-3
Determining What Elevation Data Exists for a Region ..... 5-3
Reading Elevation Data Interactively ..... 5-11
Determining and Visualizing Visibility Across Terrain ..... 5-16
Shading and Lighting Terrain Maps ..... 5-19
Surface Relief Shading ..... 5-25
Colored Surface Shaded Relief ..... 5-29
Relief Mapping with Light Objects ..... 5-31
Draping Data on Elevation Maps ..... 5-35
Draping Data over Terrain with Different Gridding ..... 5-37
Working with the Globe Display ..... 5-43
Customizing and Printing Maps
6
Inset Maps ..... 6-2
Graphic Scales ..... 6-5
North Arrows ..... 6-7
Thematic Maps ..... 6-9
Choropleth Maps ..... 6-9
Special Thematic Mapping Functions ..... 6-13
Using Cartesian MATLAB Display Functions ..... 6-18
Using Colormaps and Colorbars ..... 6-23
Printing Maps to Scale ..... 6-30
Units and Notation ..... 7-2
Converting Latitude and Longitude Notations ..... 7-2
Converting Distance Units ..... 7-5
Converting Time Notations ..... 7-8
Manipulating Vector Data ..... 7-10
Repackaging Vector Objects ..... 7-11
Matching Line Segments ..... 7-12
Geographic Interpolation ..... 7-13
Vector Intersections ..... 7-19
Polygon Area ..... 7-21
Overlaying Polygons with Boolean Logic ..... 7-22
Cutting Polygons at the Date Line ..... 7-26
Building Buffer Zones ..... 7-28
Trimming Vector Data to a Rectangular Region ..... 7-30
Trimming Vector Data to an Arbitrary Region ..... 7-32
Simplifying Vector Coordinate Data ..... 7-33
Manipulating Raster Data ..... 7-38
Vector-to-Raster Data Conversion ..... 7-38
Data Grids as Logical Variables ..... 7-42
Data Grid Values Along a Path ..... 7-46
Data Grid Gradient, Slope, and Aspect ..... 7-47
Using Map Projections and Coordinate Systems
8
What Is a Map Projection? ..... 8-3
Quantitative Properties of Map Projections ..... 8-4
The Three Main Families of Map Projections ..... 8-6
Cylindrical Projections ..... 8-6
Conic Projections ..... 8-8
Azimuthal Projections ..... 8-9
Projection Aspect ..... 8-10
The Orientation Vector ..... 8-10
Projection Parameters ..... 8-18
Projection Characteristics Maps Can Have ..... 8-18
Visualizing and Quantifying Projection Distortions ..... 8-24
Displays of Spatial Error in Maps ..... 8-24
Quantifying Map Distortions at Point Locations ..... 8-28
Accessing, Computing, and Inverting Map Projection Data 8-31
Accessing Projected Coordinate Data ..... 8-31
Projecting Coordinates Without a Map Axes ..... 8-33
Inverse Map Projection ..... 8-35
Coordinate Transformations ..... 8-39
Working with the UTM System ..... 8-44
Summary and Guide to Projections ..... 8-53
Mapping Applications
9
Geographic Statistics ..... 9-2
Geographic Means ..... 9-2
Geographic Standard Deviation ..... 9-4
Equal-Areas in Geographic Statistics ..... 9-6
Geographically Filtering Datasets ..... 9-9
Navigation ..... 9-11
Conventions for Navigational Functions ..... 9-12
Fixing Position ..... 9-13
Planning ..... 9-25
Track Laydown - Displaying Navigational Tracks ..... 9-27
Dead Reckoning ..... 9-29
Drift Correction ..... 9-34
Time Notation ..... 9-36
Time Zones ..... 9-38
Reference
10
Guide to Reference Pages ..... 10-42
Functions - Categorical List ..... 10-43
Geospatial Data Import and Access ..... 10-46
Vector Map Data and Geographic Data Structures ..... 10-50
Georeferenced Images and Data Grids ..... 10-51
Map Projections and Coordinates ..... 10-53
Map Display and Interaction ..... 10-59
Geographic Calculations ..... 10-66
Utilities ..... 10-70
Functions - Alphabetical List ..... 10-74
Projections Reference
11
Map Projections - Alphabetical List ..... 11-2
GUI Reference
12
Graphical User Interface Functions - Categorical List ..... 12-2
Map Definition Tools ..... 12-2
Mapping Tools ..... 12-2
Object Projection Tools ..... 12-3
Display Manipulation Tools ..... 12-3
Thematic Map Tools ..... 12-4
Object Property Tools ..... 12-4
Track Tools ..... 12-5
Map Data Construction Tools ..... 12-5
Graphical User Interface Functions - Alphabetical List ..... 12-6
Atlas Data
A
Types of Data ..... A-2
World Vector Data ..... A-3
Coastlines ..... A-3
Low-Resolution World Atlas Data ..... A-5
High-Resolution World Atlas Data ..... A-15
World Matrix Data ..... A-22
Political ..... A-22
Terrain ..... A-25
Geoid ..... A-26
United States Vector Data ..... A-28
Low-Resolution Data ..... A-28
Medium Resolution State Outlines ..... A-33
United States Matrix Data ..... A-37
Political ..... A-37
Terrain ..... A-38
Astronomical Data ..... A-41

## Getting Started

Welcome to the Mapping Toolbox for MATLAB ${ }^{\circledR}$. The Mapping Toolbox is a collection of MATLAB functions, user interfaces, sample data sets, and demos that read, write, display, and manipulate geospatial data. With it you can make maps of your own geospatial data or use data provided with the Mapping Toolbox, such as world coastlines, political boundaries, and topography. The following sections get you started using the Mapping Toolbox, and then describe what information this documentation covers and where to find it.

What is the Mapping Toolbox? (p. 1-2) Executive summary
Dedication and Acknowledgment For the Mapping Toolbox
(p. 1-3)

Your First Maps (p. 1-4)

Documentation Summary (p. 1-24)
Getting More Help (p. 1-26)
Mapping Toolbox Demos (p. 1-27)

Plotting a map with a single command or very few commands

How the Mapping Toolbox User's Guide is organized Finding specific types of help
A set of scripts that apply toolbox functions to sample data

## What is the Mapping Toolbox?

The Mapping Toolbox provides a comprehensive set of functions and graphical user interfaces for building map displays and performing geospatial data analysis in MATLAB. You can create map displays that combine data from multiple modalities and display them in their correct spatial relationships. The toolbox supports standard analyses, such as line-of-sight calculations on terrain data or geographic computations that account for the curvature of the Earth's surface. Most of the functions in the Mapping Toolbox are written in the open MATLAB language. This means that you can inspect the algorithms, modify the source code, create your own custom functions, and automate frequently performed tasks.

The toolbox supports key mapping and geospatial data analysis, manipulation, and visualization tasks that are useful in applications such as earth and planetary scientific research, oil and gas exploration, environmental monitoring, insurance risk management, aerospace, defense, and security.

## Dedication and Acknowledgment

In memory of John P. Snyder, whose meticulous studies and systematic descriptions of map projections inspired and enabled the creation of the Mapping Toolbox.

The Mapping Toolbox was originally developed and maintained through version 1.3 by Systems Planning and Analysis, Inc. (SPA) of Alexandria, Virginia.

## Your First Maps

Spatial data is a general term that refers to data describing the location, shape, and spatial relationships of anything, from engineering drawings to maps of galaxies. Geospatial data is spatial data that is in some way georeferenced, or tied to specific locations on, under, or above the surface of a planet.

Geospatial data can be voluminous, complex, and difficult to work with unless displayed graphically. The Mapping Toolbox handles many of the details of loading and displaying data for you. Nevertheless, the more you understand about your data and the capabilities of the toolbox, the more interesting applications you will be able to pursue, and the more useful their results will be to you and others.

This section helps you exercise graphic user interfaces (GUIs) to explore atlas data provided with the Mapping Toolbox. It explores worldmap and other commands, and then explores geodata with the Map Viewer (mapview). You can then use the "Documentation Summary" on page 1-24 to identify where to find the capabilities of the Mapping Toolbox you want to learn more about.

## See the World

Getting started making world maps with the Mapping Toolbox is easy.

## 1 In the MATLAB Command Window, type <br> worldmap

This brings up a scrolling list of countries and continents from which you can select a region of interest, or the entire world.


2 If you choose a country or region, worldmap displays it with an appropriate map projection and as much detail as can be clearly rendered. If you prefer, you can include the region or country name in your command:
h = worldmap('south america')
The map below appears in a new figure window.


When you specify a return argument for worldmap and certain other mapping functions, a handle (e.g., h) to the figure's axes is returned. The axes object on which map data are displayed it called a map axes. In addition to the graphics properties common to any MATLAB axes object, a map axes object contains additional properties covering map projection type, projection parameters, map limits, etc. Various functions in the mapping toolbox (most importantly getm and setm) allow you to define, access, and modify these properties.

3 To inspect this data, first dereference the handle with the getm command (which is similar to the MATLAB get command, but returns map-specific data):

```
mstruct = getm(h);
```

4 Now you can inspect the sa struct array by listing it, using the property editor, or by accessing any field directly. For instance, to see the map projection selected for the South America map, type
mstruct.mapprojection
ans =
eqdconic
5 Finally, place a label at $10^{\circ} \mathrm{N}$ latitude, $60^{\circ} \mathrm{W}$ longitude to identify the map:

```
textm(10,-60,'South America')
```


## Explore Built-in Atlas Data

In mapping South America, worldmap used built-in atlas data, which includes

- Coastlines
- International boundaries
- Lakes
- Cities

The atlas data has two versions, low resolution and high resolution. In the above example, worldmap selected low-resolution atlas data because the continent occupies a large area, and at such a small scale the details of high-resolution data could not be discerned. In such cases, worldmap also omits details such as country names and cities. You can override worldmap's choices using optional arguments.

## A Patch Map of Pakistan

As you specify smaller regions, worldmap switches to higher resolution atlas data. Illustrate this by making a base map of Pakistan. This time, instead of drawing country boundaries as lines, use worldmap to render countries using patches (filled polygons). Countries are assigned colors at random. Also place another cartographic element, a graphic scale.

1 First, create a new figure window for the map:
figure
2 Use worldmap in patch (polygon) mode:

```
worldmap('pakistan','patch')
```

3 Add a graphic scale, using the default style and placement:

4 Use your mouse to move the scale ruler to a better position by clicking its baseline and dragging. See the reference documentation for scaleruler and setm for other properties of graphic scales that you can set.

5 Click different countries, place names, and axis labels. A description of each one appears in the lower left corner of the figure while the mouse button is down. To change the alignment or adjust the positions of city names, use the click and drag tools described in the Mapping Toolbox "GUI Reference" documentation. The map appears below.


6 You can also hide the axes border (a good idea when printing a map):

```
hidem(gca)
```


## An Alternative View

The map of Pakistan was drawn using the high-resolution data. Zoom in on Karachi to see the details of the shoreline and islands. Then recreate the map using low-resolution data to see the difference:

[^0]```
worldmap('lo','pakistan','patch')
```

Look at the reference documentation for worldmap and experiment with its options. To learn more about display properties for map axes and how to control them, see "Accessing and Manipulating Map Axes Properties" on page 4-6.

## Tour Boston with the Map Viewer

The Map Viewer is an interactive tool for browsing map data. With it you can assemble layers of vector and raster geodata and render them in 2-D. You can import, reorder, symbolize, hide, and delete data layers, identify coordinate locations, list data attributes, and display selected ones as "datatips" (signposts that identify attribute values, such as place names or route numbers). The following exercise shows how the Map Viewer works and what it can do.

## A Map Viewer Session

1 You start a Map Viewer session by typing
mapview
at the MATLAB prompt. The Map Viewer opens with a blank canvas (no data is present). The viewer and its tools are shown below.


Most of the tool buttons can also be activated from the Tools menu.
2 For ease in importing data that is furnished with the Mapping Toolbox, set your working directory as follows:

```
cd(fullfile(matlabroot,'toolbox','map','mapdemos'))
```

However, you can also navigate to this directory with the Map Viewer Import Data dialog if you prefer.

3 Select Import From File from the File menu and open the geoTIFF file boston. tif in the Map Viewer, as shown below:


The file opens in the Map Viewer. This is an georeferenced RGB composite image at 4 m resolution covering part of Boston, Massachusetts, USA. The image is a subset of an IKONOS-2 panchromatic/multispectral product created by Space Imaging LLC. For further information, type
type boston.txt
at the MATLAB prompt.
4 To see the map scale, set the map distance units. Use the drop-down Map units menu at the bottom center to select Meters.

5 Now set the scale to 1:25,000 by typing 1:25000 in the Scale box, which is above the Map units drop-down. The viewer now looks like this:


Note that the cursor is pointing at the front of the Massachusetts State House (capitol building). The map coordinates for this location are shown in the readout at the lower left as 235,935.25 meters easting (X), 900,923.13 meters northing ( $\mathbf{Y}$ ), in Massachusetts State Plane coordinates.

6 Next, import a vector data layer, the streets and highways in the central Boston area. For this you also use Import From File from the File menu, but this time you specify SHP as the type of file to import, and open the shapefile boston-roads.shp:


7 After the Map Viewer finishes importing the roads layer, it selects a random color and renders all the shapes with that color as solid lines. The view looks like this:


Being random, the color you see for the road layer can differ. How you can specify road colors is discussed below.

8 You can designate any layer to be the active layer (one that you can query); it does not need to be the topmost layer. By default no layer is active. Use the Active layer drop-down menu at the bottom left to select boston_roads.

Changing the active layer has no visual effect. Doing so allows you to query attributes of the layer you select.

9 One way to see the attributes for a vector layer is to use the Info tool, the button on the right end of the toolbar. Select the Info tool and click on the bridge across the Charles River near the lower left of the map. This opens a text window displaying the attribute/values for the selected object:


The selected road is Massachusetts Avenue (Route 2A). As the above figure shows, the boston_roads vectors have six attributes.

10 Get information about some other roads. Dismiss open Info windows by clicking their close boxes.

11 Choose an attribute for the Datatip tool to inspect. From the Layers menu, select boston_roads -> Set Layer Attributes. From the list in the list box of the Attribute Names dialog, select CLASS and click OK to dismiss it. The dialog looks like this:


12 Select the Datatip tool. The cursor assumes a crosshairs (+) shape.
13 Use the Datatip tool to identify the administrative class of any road displayed. When you click on a road segment, a datatip is left in that place to indicate the CLASS attribute of the active layer, as illustrated below.


To dismiss datatips, right-click on any of them and select Delete datatip or Delete all datatips from the pop-up context menu that appears.

14 You can change how the roads are rendered by identifying an attribute to which to key line symbolism. Color roads according to their CLASS attribute, which takes on the values $1: 6$. Do this by creating a symbolspec in the workspace. A symbolspec is a cell array that associates attribute names and values to graphic properties for a specified geometric class ('Point', 'MultiPoint', 'Line', 'Polygon', or 'Patch'). To create a symbolspec for line objects (in this case roads) that have a CLASS attribute, type

```
roadcolors = makesymbolspec('Line', ...
{'CLASS',1,'Color',[1 1 1]}, {'CLASS',2,'Color',[\begin{array}{lll}{1}&{1}&{0}\end{array}]}, ...
{'CLASS',3,'Color',[0 1 0]}, {'CLASS',4,'Color',[\begin{array}{lll}{0}&{1}&{1]}, ...}\end{array}].\mp@code{l}
{'CLASS',5,'Color',[1 0 1]}, {'CLASS',6,'Color',[0 0 1]})
```

```
roadcolors =
    ShapeType: 'Line'
        Color: {6x3 cell}
```

15 The Map Viewer recognizes and imports symbolspecs from the workspace. To apply the one you just created, select boston_roads -> Set Symbol Spec from the Layers menu. From the Set Symbol Spec dialog, select the roadcolors symbolspec you just created and click OK. After mapview has read and applied the symbolspec, the map looks like this:


16 Add another layer, a set of points that identify thirteen Boston landmarks. From the File menu choose Import From File and select SHP Files as the file type. Then pick the file boston_placenames. shp and Click Open.

The points of interest are symbolized as small $x$ markers.
17 As the boston_placenames markers are difficult to see over the orthophoto, hide the other map layers temporarily. To do this, go to the Layers menu, select boston_roads, and then slide right and deselect Visible. Do the same to hide the boston image layer.

You can now see the thirteen markers showing points of interest.
18 To make the markers more visually prominent, create a symbolspec for them to represent them as red filled circles. At the MATLAB command line, type

```
places = makesymbolspec('Point',{'Default','Marker','o', ...
'MarkerEdgeColor','r','MarkerFaceColor','r'})
```

The Default keyword causes the specified symbol to be applied to all point objects in a given layer unless specifically overridden by an attribute-coded symbol in the same or a different symbolspec.

19 To activate this symbolspec, pull down the Layers menu, select boston_placenames, slide right, and select Set Symbol Spec. In the Layer Symbols dialog that appears, highlight places and click OK.

The Map Viewer reads the workspace variable places; the cross marks turn into red circles. Note that a layer need not be active in order for you to apply a symbolspec to it.

20 Now restore the other layers' visibility. In the Layers menu, select boston_roads, and then slide right and select Visible. Do the same to show the boston image layer. The boston_placenames marker layer, because it was read in most recently, is on top.

21 Use the Active layer drop-down menu to make boston_placenames the currently active layer, and then select the Datatip tool. Click on any red circle to see the name of the feature it marks. The map looks like this (depending on which data tips you show):


22 Zoom in on Beacon Hill, for a closer view of the Massachusetts State House and Boston Common. Select the Zoom in tool, move the (magnifier) cursor until the $\mathbf{X}$ readout is approximately $236,000 \mathrm{M}$ and the $\mathbf{Y}$ readout is roughly $900,900 \mathrm{M}$, then click once to enlarge the view. The scale changes to about 1:10,000 and the map appears as below:


23 Right-click any of the data tips and select Delete all datatips from the pop-up context menu. This clears the place names you added to the maps.

24 Select an area of interest to save as an image file. Click on the Select area tool, then hold the mouse button down as you draw a selection rectangle. If you do not like the selection, repeat the operation until you are satisfied. If you know what ground coordinates you want, you can use the coordinate readouts to make a precise selection. The selected area appears as a red rectangle.

25 Save your selection as an image file. From the File menu, select Save As Raster Map -> Selected Area to open a Save As dialog, as shown below:


In the Export to File dialog, navigate to a directory where you want to save the map image, and give it a name, such as boston_common. You can format the image as a TIFF, a PNG, or a JPG file. The result from the selection shown is shown in the following figure:


26 Experiment with other tools and menu items. For example, you can annotate the map with lines, arrows, and text, fit the map to the window, draw a bounding box for any layer, and print the current view. You can also spawn a new Map Viewer using New View from the File menu. A new view can duplicate the current view, cover the active layer's extent, cover all layer extents, or include only the selected area, if any.

When you are through with a viewing session, close the Map Viewer using the window's close box or select Close from the File menu.

## Documentation Summary

## Chapter 1: Getting Started

Begin here to explore the world with the Mapping Toolbox, using worldmap and mapview. Read this high-level summary of the topics, tools, data, and functions covered in the documentation.

## Chapter 3, "Understanding Geospatial Geometry"

Explains, at a high level, the principal concepts that underlie geometric computations on spherical surfaces; for example, spherical and spheroidal coordinates; the concept of a datum; computing distances, directions, and azimuths.

## Chapter 2, "Understanding Map Data"

Summary of capabilities; types and formats of geospatial data; base maps, attributes; map coordinate representations and transformations; functions and user interfaces for importing geospatial data files

## Chapter 4, "Creating and Viewing Maps"

Functions for displaying map data; using built-in atlas data; setting up map axes; map frames and map grids; symbolizing line data, patch data, and raster data; combining vector and raster data

## Chapter 5, "Making Three-Dimensional Maps"

Making perspective views of projected and unprojected data; manipulating digital elevation models; draping data on elevatino maps; shading and lighting terrain

## Chapter 6, "Customizing and Printing Maps"

Creating inset maps, north arrows, and graphic scales; types of thematic maps you can make; working with colormaps and colorbars; printing maps to scale

## Chapter 7, "Manipulating Geospatial Data"

Useful operations for selecting, thinning, resampling, and combining data sets

## Chapter 8, "Using Map Projections and Coordinate Systems"

Mapping 3-D worlds onto 2-D spaces; types, aspects, properties, and parameters of map projections; guidelines for selecting projections and parameters; forward and inverse projection

## Chapter 9, "Mapping Applications"

Using the Mapping Toolbox to compute spatial statistics on the plane and on the sphere; navigational functions and their applications

## Chapter 10, "Reference"

Descriptions of all Mapping Toolbox functions ordered alphabetically, also accessible by category; many descriptions include worked examples.

## Chapter 11, "Projections Reference"

Detailed descriptions of map projections that you can use with functions such as axesm, mfwdproj, minvproj, projfwd, and projinv

## Chapter 12, "GUI Reference"

Illustrated descriptions of the graphical user interfaces available in the Mapping Toolbox. Some of these appear by default when certain functions are typed without arguments, others are special commands, and a few are sub-dialogs of major GUIs.

## "Glossary"

Definitions of common geographic, geodetic, and cartographic terms

## "Bibliography"

Literature you can consult to learn more about mapping

## "Atlas Data"

An appendix documenting geospatial data sets that are packaged with the Mapping Toolbox, describing their source, coverage, and examples of use; these are intended to help you generate base maps and thematic maps. The Mapping Toolbox also contains other geodata for specific regions to illustrate aspects of its functionality.

## Getting More Help

The Mapping Toolbox documentation is available in electronic form as PDF and HTML files through the helpdesk command. You might want to print the reference chapters to browse through them. This is best done from the PDF version, available at the MathWorks Web site, http://www.mathworks.com/access/helpdesk/help/pdf_doc/map/map_ug.pdf.

You can find a classified list of functions in "Guide to Reference Pages" on page 10-42. Help is available for individual commands and classes of Mapping Toolbox commands:

- help map for computational functions
- help mapdemos for a list of Mapping Toolbox demos
- maps lists all Mapping Toolbox map projections by class, name and ID string
- maplist returns a structure describing all Mapping Toolbox map projections
- projlist to list map projections supported by projfwd and projinv
- help functionname for help on a specific function, often including examples
- helpwin functioname to see the output of help displayed in the help browser window instead of the command window
- doc functionname to read a function's reference page in the help browser, including examples and illustrations


## Mapping Toolbox Demos

You can run demonstrations of Mapping Toolbox functions to further acquaint you with their use. Most of the demos highlight and explain features added in the current version. To see the full list of demos in the Help browser, click on the Demos tab in the Help Navigator pane, and select Mapping under Toolboxes. Another way to obtain this list is to type

```
mapdemos
```

at the MATLAB prompt. This will bring the Help browser to the fore.
You also can execute any of the demos listed below by clicking its name:

- mapexenhance - Enhancing Multispectral GeoTIFF Images
- mapexfindcity - Interactive Global City Finder
- mapexgeo - Creating Maps using geoshow (for latitude, longitude data)
- mapexmap - Creating Maps using mapshow (for x, y data)
- mapexrefmat - Creating and Using Referencing Matrices
- mapexreg - Georeferencing an Image to an Orthotile Base Layer
- viewmaps - GUI Demonstrating Map Projections

Note that the above commands run the demo scripts to produce figures, whereas mapdemos describes and illustrates the demos in the Help Browser.

You can type
help mapdemos
to see this list of functions as well as detailed descriptions of the sample data provided.

1 Getting Started

## Understanding Map Data

This chapter describes how maps are digitally represented, and the range of data that the Mapping Toolbox can handle. Geodata is coded for computer storage and applications in two principal ways: vector and raster representations. It has been said that "raster is faster but vector is corrector." There is truth to this, but the situation is more complex. Sections that follow explore these two representations: how they differ, what data structures support them, why you would choose one over the other, and how they can work together in the Mapping Toolbox. It also summarizes the functions available for importing and exporting geodata formats.

Maps and Map Data (p. 2-2)
Types of Map Data Handled by the Mapping Toolbox (p. 2-4)

Understanding Vector Data (p. 2-13)
Understanding Raster Data (p. 2-27)
Reading and Writing Geospatial Data (p. 2-47)

What maps are and what makes digital map data special
Representing maps with vector, raster, and mixed data models

Object-oriented data that "connects the dots"
Image- and surface-oriented gridded data
Common data formats used for geospatial data that the Mapping Toolbox can read or write

## Maps and Map Data

The Mapping Toolbox manipulates electronic representations of geographic data. It lets you create, use, and present geographic data in a variety of forms and to a variety of ends. In the digital network era, it is easy to think of geospatial data as maps and maps as data, but you should take care to note the differences between these concepts.

## What Is a Map?

The simplest (although perhaps not the most general) definition of a map is $a$ representation of geographic data. Most people today generally think of maps as two-dimensional; to the ancient Egyptians, however, maps first took the form of lists of place names in the order they would be encountered when following a given road. Today such a list would be considered as map data rather than as a map. When most people hear the word "map" they tend to visualize two-dimensional renditions such as printed road, political, and topographic maps, but even classroom globes and computer graphic flight simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a set of geographic locations, properties of a region, or features on a planet's surface, regardless of how large or complex the data is, or how it is formatted. Such data can be rendered as maps in a variety of ways using the functions and user interfaces provided.

## What Is Geospatial Data?

Geospatial data comes in many forms and formats, and its structure is more complicated than tabular or even nongeographic geometric data. It is, in fact, a subset of spatial data, which is simply data that indicates where things are within a given coordinate system. Mileposts on a highway, an engineering drawing of an automobile part, and a rendering of a building elevation all have coordinate systems, and can be represented as spatial data when properly quantified (digitized). Such coordinate systems, however, are local and not explicitly tied or oriented to the Earth's surface; thus, most digital representations of mileposts, machine parts, and buildings do not qualify as geospatial data (also called geodata).
What sets geospatial data apart from other spatial data is that it is absolutely or relatively positioned on a planet, or georeferenced. That is, it has a terrestrial
coordinate system that can be shared by other geospatial data. There are many ways to define a terrestrial coordinate system and also to transform it to any number of local coordinate systems, for example, to create a map projection. However, most are based on a framework that represents a planet as a sphere or spheroid that spins on a north-south axis, and which is girded by an equator (an imaginary plane midway between the poles and perpendicular to the rotational axis).

## Types of Map Data Handled by the Mapping Toolbox

Vector data and raster data are different concepts and have been generally regarded as being incompatible representations for geospatial data for cartographic purposes. This section explains some of their differences and how the Mapping Toolbox bridges them.
"Vector Geodata" on
page 2-4
"Raster Geodata" on page 2-7
"Combining Vector and Raster Geodata" on page 2-11

Map data that codes shapes as points, lines, and polygons

Map data that dissects space into cells with values, including georeferenced imagery

Registering vector data on raster data for display

## Vector Geodata

Vector data (in the computer graphics sense rather than the physics sense) can represent a map. Such vectors take the form of sequences of latitude-longitude or projected coordinate pairs representing a point set, a linear map feature, or an areal map feature. For example, points delineating the boundary of the United States, the interstate highway system, the centers of major U.S. cities, or even all three sets taken together, can be used to make a map. In such representations, the geographic data is in vector format and displays of it are referred to as vector maps. Such data consists of lists of specific coordinate locations (which, if describing linear or areal features, are normally points of inflection where line direction changes), along with some indication of whether each is connected to the points adjacent to it in the list.

In the Mapping Toolbox, vector data consists of sequentially ordered pairs of geographic (latitude, longitude) or projected ( $\mathrm{x}, \mathrm{y}$ ) coordinate pairs (also called tuples). Successive pairs are assumed to be connected in sequence; breaks in connectivity must be delineated by the creation of separate vector variables or by inserting separators (such as NaNs) into the sets at each break point. For vector map data, the connectivity (topological structure) of the data is often only a concern during display, but it also affects the computation of statistics such as length and area.

## A Look at Vector Data

1 To inspect an example of vector map data, enter the following commands to MATLAB:
load coast
whos

| Name | Size | Bytes | Class |
| :--- | :--- | :--- | :--- |
| lat | $9589 \times 1$ | 76712 | double array |
| long | $9589 \times 1$ | 76712 | double array |

The variables lat and long are vectors in the coast MAT-file, which together form a vector map of the coastlines of the world.

2 To view a map of this data, enter these commands:
axesm mercator
framem
plotm(lat,long)


Inspect the first 20 coordinates of the coastline vector data:
[lat(1:20) long(1:20)]

| ans $=$ |  |  |
| ---: | :--- | :--- |
|  | -83.83 | -180 |
|  | -84.33 | -178 |
| -84.5 | -174 |  |
|  | -84.67 | -170 |
|  | -84.92 | -166 |
|  | -85.42 | -163 |
|  | -85.42 | -158 |
|  | -85.58 | -152 |
|  | -85.33 | -146 |
|  | -84.83 | -147 |
| -84.5 | -151 |  |
| -84 | -153.5 |  |
| -83.5 | -153 |  |
| -83 | -154 |  |
| -82.5 | -154 |  |
| -82 | -154 |  |
| -81.5 | -154.5 |  |
| -81.17 | -153 |  |
| -81 | -150 |  |
| -80.92 | -146.5 |  |

Does this give you any clue as to which continent's coastline these locations represent?

3 To see the coastline these vector points represent, type this command to display them in red:

```
plotm(lat(1:20), long(1:20),'r')
```

As you may have deduced by looking at the first column of the data, there is only one continent that lies below - $80^{\circ}$ latitude, Antarctica.

The above example presents the map in a Mercator projection. A map projection displays the surface of a sphere (or a spheroid) in a two-dimensional plane. As the word "plane" indicates, points on the sphere are geometrically projected to a plane surface. There are many possible ways to project a map, all of which introduce various type of distortions.

For further information on how the Mapping Toolbox handles map projections, see "Using Map Projections and Coordinate Systems" on page 8-1. For details on data structures that the Mapping Toolbox uses to represent vector geodata, see "Vector Geodata" on page 2-4.

## Raster Geodata

You can also map data represented as a matrix (a 2-D MATLAB array) in which each row-and-column element corresponds to a rectangular patch of a specific geographic area, with implied topological connectivity to adjacent patches. This is commonly referred to as raster data. Raster is actually a hardware term meaning a systematic scan of an image that encodes it into a regular grid of pixel values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a data grid, and the data is stored as an array or matrix. The Mapping Toolbox uses the powerful matrix manipulation capabilities of MATLAB to fully exploit this type of map data. This documentation uses the terms raster data and data grid interchangeably to talk about geodata stored in two-dimensional array form.

A raster can encode either an average value across a cell or a value sampled (posted) at the center of that cell. While geolocated data grids explicitly indicate which type of values are present (see "Geolocated Data Grids" on page 2-38), external metadata/user knowledge is required to be able to specify whether a regular data grid encodes averages or samples of values.

## Digital Elevation Data

When raster geodata consists of surface elevations, the map can also be referred to as a digital elevation model/matrix (DEM), and its display is a topographical map. The DEM is one of the most common forms of digital
terrain model (DTM), which can also be represented as contour lines, triangulated elevation points, quadtrees, octtrees, or otherwise.

The topo global terrain data is an example of a DEM. In this 180-by-360 matrix, each row represents one degree of latitude, and each column represents one degree of longitude. Each element of this matrix is the average elevation, in meters, for the one-degree-by-one-degree region of the Earth to which its row and column correspond.

## Remotely Sensed Image Data

Raster geodata also encompasses georeferenced imagery. Like data grids, images are organized into rows and columns. There are subtle distinctions, however, which are important in certain contexts. One distinction is that an image may contain RGB or multispectral channels in a single array, so that it has a third (color or spectral) dimension. In this case a 3-D MATLAB array is used rather than a 2-D (matrix) array. Another distinction is that while data grids are stored as class double in the Mapping Toolbox, images may use a range of MATLAB storage classes, with the most common being uint8, uint16, double, and logical. Finally, for grayscale and RGB image of class double, the values of individual array elements are constrained to the interval [01].

In terms of georeferencing---converting between column/row subscripts and 2-D map or geographic coordinates - images and data grids behave the same way (which is why we consider both to be a form of raster geodata). However, when performing operations that process the values raster elements themselves, including most display functions, it is important to be aware of whether you are working with an image or a data grid, and for images, how spectral data is encoded.

For further details concerning the structure of raster map data, see "Understanding Raster Data" on page 2-27.

## A Look at Raster Data

1 To view one possible display of the topo data grid, type the following:

```
clear all;
load topo
```

| whos |  |  |  |
| :--- | :---: | ---: | :--- |
| Name | Size | Bytes | Class |
|  |  |  |  |
| topo | $180 \times 360$ | 518400 | double array |
| topolegend | $1 \times 3$ | 24 | double array |
| topomap1 | $64 \times 3$ | 1536 | double array |
| topomap2 | $128 \times 3$ | 3072 | double array |
|  |  |  |  |
| Grand total is 65379 elements using 523032 bytes |  |  |  |

2 The raster elevation data is in the variable topo. Inspect it with the MATLAB Array Editor by double-clicking topo in the Workspace pane or by typing in the Command Window

```
openvar topo
```

You will see that topo is a 2-D array, and that its values near its upper left corner range from 2,500 to 3,000 meters of elevation. The first row represents land elevations near the South Pole. When georeferenced with a three-element referencing vector (the variable topolegend in this case), Mapping Toolbox raster data is stored from the bottom up.

3 Create an equal-area map projection to view the topographic data:
axesm sinusoid
A MATLAB figure window is created with map axes set to display a sinusoidal projection.

4 Generate a shaded relief map. You can do this in several ways. First use geoshow and apply a topographic colormap using demcmap:

```
geoshow(topo,topolegend,'DisplayType','texturemap')
demcmap(topo)
```

The geoshow function displays geodata in geographic (unprojected) coordinates. The geoshow output is shown below:


5 Now create a new figure using a Hammer projection (which, like the sinusoidal, is also equal-area), and display topo using meshlsrm, which enables control of lighting effects:

```
figure; axesm hammer
meshlsrm(topo,topolegend)
```

A colored relief map of the topo data set, illuminated from the east, is rendered in the second figure window:


For additional details on controlling the illumination of maps, see "Shading and Lighting Terrain Maps" on page 5-19.

Note that the content, symbolization, and the projection of the map are completely independent. The structure and content of the topo variable are the same no matter how you display it, although how it is projected and symbolized can affect its interpretation. The following example illustrates this.

## Combining Vector and Raster Geodata

Vector map variables and data grid variables are often used or displayed together. For example, continental coastlines in vector form might be displayed with a grid of temperature data to make the latter more useful. When several map variables are used together, regardless of type, they can be referred to as a single map. To do this, of course, the different data sets must use the same coordinate system (i.e., geographic coordinates on the same ellipsoid or an identical map projection). See "Understanding Geospatial Geometry" on page 3-1 for an introduction to these concepts.

## Viewing Raster and Vector Data on the Same Map

Using the coast and topo data from the previous examples, you can combine them in a single map and see how well the two types of data work together:

1 Clear the current map:
clma
2 Reload the coastline data:
load coast
3 If the topo data is not already in the workspace, load it as well:
load topo
4 Set up a Robinson projection:
axesm robinson
5 Plot the raster topographic data with an appropriate colormap:
geoshow(topo, topolegend, 'DisplayType', 'texturemap') demcmap(topo)

6 Plot the coastline data in white on top of the terrain map:
geoshow(lat,long,'Color','r')
Note that you can use geoshow to display both raster and vector data. Here is the resulting map:


For additional details on how the Mapping Toolbox handles raster geodata, see "Understanding Raster Data" on page 2-27.

The remainder of this chapter focuses on the fundamental principles of geographic measurement and data manipulation that are a prerequisite for creating map displays. "Reading and Writing Geospatial Data" on page 2-47 summarizes input functions for importing many formats of geospatial data into the toolbox. "Understanding Geospatial Geometry" on page 3-1 introduces geodetic concepts that underlie all geospatial data and its handling.

## Understanding Vector Data

Vector geospatial data is used to represent linear features such as rivers, coastlines, boundaries and highways. Vector data can also represent areal features such as water bodies, political units, and enumeration districts. This section familiarizes you with how vector data structures digitally encode geographic entities and how to use this form of data.
"Points, Lines, Polygons" on page 2-13
"Segments Versus Polygons" on page 2-15
"Mapping Toolbox
Geographic Data
Structures" on page 2-16

Representing entities of different dimensionality

Stringing along segments and coming to closure with polygons

Packaging coordinates, attributes and parameters of geospatial data

## Points, Lines, Polygons

In the context of geodata, vector data means "geometric descriptions of geographic objects" rather than its more general mathematical definition, "a quantity specified by a magnitude and a direction." In fact, some vector geodata is specified as points having neither magnitude nor direction. Other geodata such as postcodes, highway mileposts, or census statistics - only implies an underlying geometry, which vector 2-D coordinate data is required to map or spatially analyze.

In the MATLAB workspace, vector data is expressed as pairs of variables that represent the geographic or plane coordinates for a set of points of interest. For example, the following two variables can be mapped as a vector:

```
lat = [45.6 -23.47 78];
long = [13 -97.45 165];
```

Note that either row or column vectors can be used, but both variables should have the same shape. For example, lat and long could be defined as columns:

```
lat = [45.6 -23.47 78]';
long = [13 -97.45 165]';
```

These values could mean anything. They could represent three locations over which geosynchronous satellites are stationed, and can be communicated by
plotting a symbol for each point on a map of the Earth. Alternatively, they might represent a starting point, a mid course marker, and a finish point of an sailboat race, in which case they can be rendered by plotting two line segments. Or perhaps the values represent the vertices of a triangle bounding a region of interest, and thus constitute a simple polygon.

Note When polygons become graphic objects, they are called patches. In this documentation, the words patch and polygon are often used interchangeably.

The Mapping Toolbox provides functionality for each of these interpretations. For many purposes, the distinction is irrelevant; for others, the choice of a function implies one interpretation over the others. For example, the function plotm displays the data as a line, while fillm displays it as a filled polygon. While you can draw an unfilled polygon with fillm that looks like the output from plotm, the resulting object has a different graphic data type (patch versus line), hence different properties you can set.

A line must contain at least two coordinate elements for each coordinate dimension, and a polygon at least three (note that it is not necessary to duplicate the first point as the last point to define or render a polygon). The Mapping Toolbox places no limit (beyond available memory) on how large or how complex the shape of a line and polygon can be, other than the restriction that it should not cross itself.

Objects in the real world that vector geodata represents can have many parts, for example, the islands that make up the state of Hawaii. When encoding as vector variables the shapes of such compound entities, you must separate successive entities. To indicate that such a discontinuity exists, the Mapping Toolbox uses the convention of placing NaNs in identical positions in both vector variables. For example, if a second segment is to be added to the preceding map, the two objects can reside in the same pair of variables:

```
lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89];
lon = [13 -97.45 165 NaN 0 -114.2 -18 0];
```

Notice that the NaNs must appear in the same locations in both variables. Here is a segment of three points separated from a segment of four points. The NaNs perform two functions: they provide a means of identifying break points in the data, and they serve as pen-up commands when the Mapping Toolbox plots
vector maps. The NaNs are used to separate both distinct (but possibly connecting) lines and disconnected patch faces.

Note This convention departs from regular MATLAB graphics, in which NaN -separated polygons cannot be interpreted or displayed as patches.

## Segments Versus Polygons

Geographic objects represented by vector data might or might not be formatted as polygons. Imagine two variables, latcoast and loncoast, that correspond to a sequence of points that caricature the coast of the island of Great Britain. If this data returns to its starting point, then a polygon describing Great Britain exists. This data might be plotted as a patch or as a line, and it might be logically employed in calculations as either.

Now suppose you want to represent the Anglo-Scottish border, proceeding from the west coast at Solway Firth to the east coast at Berwick-upon-Tweed. This data can only be properly defined as a line, defined by two or more points, which you can represent with two more variables, latborder and lonborder. When plotted together, the two pairs of variables can form a map. The patch of Great Britain plus the line showing the Scottish border might look like two patches or regions, but there is no object that represents England and no object that represents Scotland, either in the workspace or on the map axes.

In order to represent both regions properly, the Great Britain polygon needs to be split at the two points where the border meets it, and a copy of latborder and lonborder concatenated to both lines (placing one in reverse order). The resulting two polygons can be represented separately (e.g., in four variables named latengland, lonengland, latscotland, and lonscotland) or in two variables that define two polygons each, delineated by NaNs (e.g., latuk, lonuk).


The distinction between line and polygon data might not appear to be important, but it can make a difference when you are performing geographic analysis and thematic mapping. For example, polygon data can be treated as line data, and displayed with functions such as linem, but line data cannot be handled as polygons unless it is restructured to make all objects close on themselves, as described in "Matching Line Segments" on page 7-12.

## Mapping Toolbox Geographic Data Structures

In examples provided in prior chapters, geodata was in the form of individual variables and had to be displayed using mapping functions specific to the type of available data (i.e., line, patch, matrix, text, etc.). The Mapping Toolbox also provides an easy means of displaying, extracting, and manipulating collections of all types of map objects that have been organized in a family of specially defined and formatted geographic data structures (in general, referred to as a geostruct). Note that these structures are different from the map projection structure (also called an mstruct), which defines a map projection along with its mapping properties (within the UserData element of a map axes structure).

The contents of mstructs are described in "Accessing and Manipulating Map Axes Properties" on page 4-6.

The following subsections describe two versions of Mapping Toolbox geographic data structures; the current version of the toolbox uses a form of geographic data structure which is more general than the type found in version 1.x of the toolbox. You can use the older type as well, in appropriate circumstances, and convert it to the newer type when the latter is called for. You should be cognizant of the differences between the two types of structures, because some functions that originate in different versions of the toolbox (for example, extractm from version 1 and extractfield from version 2) can handle only the type of geostruct introduced in that version of the toolbox.

## Version 2 Geographic Data Structures

Certain functions introduced in version 2 of the Mapping Toolbox read, create, or manipulate vector geodata using a geographic data structure format which this document notates as geostruct2. This data structure has the flexibility to store any kind and number of attributes, and handles either geographic (latitude and longitude) or plane ( $x$ and $y$ ) coordinates. In contrast, the version 1 geographic data structure is limited to a fixed set of fields and can contain geographic coordinates only.

The typical way to create a version 2 geographic data structure is to input vector geodata to the workspace from a shapefile. The function shaperead returns a geostruct2 that encapsulates some or all the data stored in a group of shapefiles (which store attributes and coordinates in separate files). To determine what kinds of data a group of shapefiles contain, you can use the shapeinfo function to query them. shapeinfo returns a structure similar to that which shaperead returns, but it cannot be used as a geostruct.

You can also transform a geostruct1 into a geostruct2. Use the function updategeostruct for this purpose. See "Version 1 Geographic Data Structures" on page 2-19 for a description of that format.

The fields in a geostruct2 depend on the type of geometry and the names and types of the attributes that have been read in. There will always be a text field called 'Geometry' which identifies the shape type. If the shape type is not 'Point' there will also be a field called 'BoundingBox' which contains [minX minY; maxX maxY].

Coordinate data are stored in fields called ' X ' or 'Lon' and ' Y ' or 'Lat', depending on what type of coordinates were read in. The names of these fields
are used by functions to determine if coordinates are projected or unprojected. However, the geostruct does not itself identify what map projection may be used or what its parameters are.
The remainder of the fields store attribute data. The fields are given appropriately mangled names by shaperead if the original attribute name could not be directly used as a field name. Unwanted attributes can be filtered out by shaperead.

Here is an example of an unfiltered geostruct returned by shaperead:

```
S = shaperead('concord_roads.shp')
S =
609x1 struct array with fields:
    Geometry
        BoundingBox
        X
        Y
        STREETNAME
        RT_NUMBER
        CLASS
        ADMIN_TYPE
        LENGTH
```

This indicates that the shapefile contains 609 features. Each one can contain any number of shape points, but will possess the same attribute fields (any of which can be empty). For example, the tenth element has nine coordinates:

```
S(10)
ans =
    Geometry: 'Line'
BoundingBox: [2x2 double]
                    X: [1x9 double]
            Y: [1x9 double]
    STREETNAME: 'WRIGHT FARM'
    RT_NUMBER: ''
            CLASS: 5
ADMIN_TYPE: O
    LENGTH: 79.0347
```

For additional information about geographic data structures, see the reference page for updategeostruct.

## Version 1 Geographic Data Structures

Map ping Toolbox version 1 geographic data structures, which are more fixed in their content, contain information required for the display of graphic objects within map axes. This document notates the older format as a geostruct1. The objects that a geostruct1 describes are for the most part MATLAB figure graphic objects. Coordinate data is always given in latitude and longitude. The following table lists the six object types a geostruct1 may contain, and indicates which fields of information are required for each:

| Field | Light | Line | Patch | Regular | Surface | Text |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| type | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| tag | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| lat | $\bullet$ | $\bullet$ | $\bullet$ |  | $\bullet$ | $\bullet$ |
| long | $\bullet$ | $\bullet$ | $\bullet$ |  | $\bullet$ | $\bullet$ |
| map |  |  |  | $\bullet$ | $\bullet$ |  |
| maplegend |  |  |  | $\bullet$ |  |  |
| meshgrat |  |  |  | $\bullet$ |  | $\bullet$ |
| string |  |  |  |  |  | $\bullet$ |
| altitude | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| otherproperty | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |

Some fields can contain empty entries, but each indicated field must exist for the object to be displayed correctly. For instance, the altitude field can be an empty matrix and the otherproperty field can be an empty cell array.

The type field must be one of the specified map object types: 'line', 'patch ', 'regular', 'surface', 'text', or 'light'.

The tag field must be a string different from the type field usually containing the name or kind of map object. Its contents must not be equal to the name of the object type (i.e., line, surface, text, etc.).

The lat, long, and altitude fields can be scalar values, vectors, or matrices, as appropriate for the map object type.

The map field is a data grid. If map is a regular data grid, refvec is its corresponding data grid legend, and meshgrat is a two-element vector specifying the graticule mesh size. If map is a geolocated data grid, lat and long are the matrices of latitude and longitude coordinates.

The otherproperty field is a cell array containing any additional display properties appropriate for the map object. Cell array entries can be a line specification string, such as ' $r+$ ', or property name/property value pairs, such as 'color', 'red'. If the otherproperty field is left as an empty cell array, default colors are used in the display of lines and patches based on the tag field.

Note Most of the Mapping Toolbox built-in atlas data, as well as data sets from public sources that are read by Mapping Toolbox external interface functions, enter the MATLAB workspace as geographic data structures. You can also format your own data as geographic data structures.

You can find additional details about version 1 geographic data structures in the references pages for displaym, extractm, and mlayers.

## Understanding the Version 1 Geographic Data Structure

Try the following exercise to help you understand what is in a geostruct1:
1 The usalo data set contains several variables in the geographic data structure format:

```
clear all; close all; load usalo
```

2 Type whos to identify what was loaded into the workspace:

| whos |  |  |  |
| :--- | ---: | ---: | :--- |
| Name | Size | Bytes | Class |
| conus | $1 \times 1$ | 70224 | struct array |
| greatlakes | $1 \times 3$ | 21612 | struct array |
| gtlakelat | $1229 \times 1$ | 9832 | double array |
| gtlakelon | $1229 \times 1$ | 9832 | double array |

```
    state 1x51
    stateborder 1x1
    statelat 2345x1
    statelon 2345x1
    uslat 4339x1
    uslon 4339x1
\begin{tabular}{rl}
246970 & struct array \\
38358 & struct array \\
18760 & double array \\
18760 & double array \\
34712 & double array \\
34712 & double array
\end{tabular}
Grand total is 61521 elements using 503772 bytes
```

3 Examine the conus variable:

```
conus
conus =
    lat: [4392x1 double]
    long: [4392x1 double]
    type: 'patch'
    tag: 'ContinentalUnitedStates'
    otherproperty: []
    altitude: []
```

This indicates that conus consists of one or more patches representing the continental U.S.

4 Examine the stateborder variable:

```
stateborder
stateborder =
            lat: [2345x1 double]
            long: [2345x1 double]
            type: 'line'
            tag: 'StateBorder'
    otherproperty: { 1x1 cell }
        altitude: []
```

The stateborder structure contains line data for the state boundaries. It contains one property in its otherproperty field.

5 Examine the greatlakes variable:

```
greatlakes
greatlakes =
1x3 struct array with fields:
```

```
type
tag
lat
long
altitude
otherproperty
```

The greatlakes structure consists of three patches representing the Great Lakes. Identify them:

```
greatlakes(:).tag
ans =
    SuperiorMichiganHuron
ans =
    Erie
ans =
    Ontario
```

The three larger lakes are represented as one polygon.
6 These vector objects can be displayed with the geoshow function. Define a map axes with a Lambert conic projection with limits appropriate for the U.S.:

```
axesm('MapProjection','lambert','MapParallels',[],...
    'MapLatLimit',[23 52],'MapLonLimit',[-130 -62])
```

7 Draw the U.S., then the Great Lakes, then the state boundaries:

```
geoshow(conus)
```

geoshow(greatlakes)
geoshow(stateborder)

The resulting map is virtually identical to that of the example given in "Displaying Vector Maps as Patches" on page 4-29, which used the vector variables uslat, uslon, gtlakelat, gtlakelon, statelat, and statelon:


8 Notice that the colors displayed for polygons in this map are specified by the otherproperty field of the patch data:

```
greatlakes.otherproperty
```

ans =
'FaceColor' 'cyan'
ans =
'FaceColor' 'cyan'
ans =
'FaceColor' 'cyan'
conus.otherproperty
ans $=$
[]

9 The otherproperty field of conus does not specify a FaceColor, and displaym sets it to green. You can easily change it to red, but you will need to display the map again to see the change:

```
conus.otherproperty = {'FaceColor','red'}
displaym(conus)
```

To use otherproperty for display, you must use displaym. While you can also display this data with geoshow, you will need to provide geoshow with a symbolspec to set FaceColor (or other graphic attributes).

10 Now set the greatlakes polygons representing lakes Superior, Huron and Michigan to blue and display again:

```
greatlakes(1).otherproperty={'FaceColor','blue'}
displaym(greatlakes)
```

The map now looks like this:


## Displaying Specific Vector Elements

You can access and display individual elements of a geostruct1 as well as entire arrays of elements. For example, the usalo data set contains a polygonal outline for each state in its state structure. Do the following:

1 Create a new map axes and display polygons for all 50 states and the District of Columbia represented in the workspace variable state:

```
figure
axesm trystan
displaym(state)
```

This creates a U.S. map in the Trystan Edwards Cylindrical projection. Patch colors are sequentially assigned by state index number, as the geostruct1 otherproperty elements that might have specified them are empty for state polygons:


2 Now create a new map figure using the same projection:
figure
axesm trystan
3 View the state of Connecticut by name (its tag attribute):
displaym(state,'conn')
4 Display the state of Massachusetts by its index number:
displaym(state(21))
5 Use the extractm function to copy coordinate data for Rhode Island from the state structure, and display it directly with patchm:
[rilat,rilong] = extractm(state,'rhode island'); patchm(rilat,rilong, 'm')

Notice that at each of the last three steps, which perform the same function, the map frame automatically readjusted to contain the polygons being displayed. Here is the final result.


You can also use the mlayers tool to query members of a geostruct1 and plot them in a map axes.

## Understanding Raster Data

As the section "Raster Geodata" on page 2-7 explains, raster geodata consists of georeferenced data grids and images that MATLAB stores internally as matrices. While raster geodata looks like any other matrix of real numbers, what sets it apart is that it is georeferenced, either to the globe or to a specified map projection, so that each pixel of data occupies a known patch of territory on the planet.
"Georeferencing Raster
Data" on page 2-27
"Regular Data Grids" on page 2-29
"Geolocated Data Grids" on page 2-38

Structure and application of referencing vectors and referencing matrices

Representing geospatial grids with implicit coordinates

## Georeferencing Raster Data

Whether a raster geodata set covers the entire planet or not, its placement and resolution must be specified. Raster geodata is georeferenced in the Mapping Toolbox through a companion data structure called a referencing matrix. This 3-by-2 matrix of doubles describes the scaling, orientation, and placement of the data grid on the globe. For a given referencing matrix, R, one of the following relations holds between rows and columns and coordinates (depending on whether the grid is based on map coordinates or geographic coordinates, respectively):

```
[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R
```

For additional details about and examples of using referencing matrices, see the reference page for makerefmat.

## Referencing Vectors

In many instances (when the data grid or image is based on latitude and longitude and is aligned with the geographic graticule), a referencing matrix has more degrees of freedom than the data requires. In such cases, you can use a more compact representation, a three-element referencing vector. A
referencing vector defines the pixel size and northwest origin for a regular, rectangular data grid:

```
refvec = [cells-per-degree north-lat west-lon]
```

In MAT-files, this variable is often called refvec or maplegend. The first element, cells-per-degree, describes the angular extent of each grid cell (e.g., if each cell covers five degrees of latitude and longitude, cells-per-degree would be specified as 0.2 ). Note that if the latitude extent of cells differs from their longitude extent you cannot use a referencing vector, and instead must specify a referencing matrix. The second element, north-lat, specifies the northern limit of the data grid (as a latitude), and the third element, west-lon, specifies the western extent of the data grid (as a longitude). In other words, north-lat, west-lon is the northwest corner of the data grid. Note, however, that cell $(1,1)$ is always in the southwest corner of the grid. This need not be the case for grids or images described by referencing matrices, as opposed to referencing vectors.

> Note Versions of the Mapping Toolbox prior to 2.0 did not use referencing matrices, and called referencing vectors map legend vectors or sometimes just map legends. The current version of the toolbox uses the term legend only to refer to keys to symbolism.

An example of such a grid is the geoid data set (a MAT-file), which represents the shape of the geoid. In the geoid matrix, each cells represents one degree, the entire northern edge occupies the north pole, the southern edge occupies the south pole, and the western edge runs down the prime meridian. Thus, the referencing vector for geoid is

```
geoidrefvec = [1 90 0]
```

This structure is stored in the geoid MAT-file (note that it is duplicated by the geoidlegend referencing vector for backward compatibility). Interpret this referencing vector as follows:

- Each data grid entry represents one degree of latitude and one degree of longitude.
- The northern edge of the map is at $90^{\circ} \mathrm{N}$ (the North Pole).
- The western edge of the map is at $0^{\circ}$ (the prime meridian).

All regular data grids require a a referencing matrix or vector, even if they cover the entire planet. Geolocated data grids do not, as they explicitly identify the geographic coordinates of all rows and columns. For details on geolocated grids, see "Geolocated Data Grids" on page 2-38. For additional information on referencing matrices and vectors, see the reference pages for makerefmat, limitm, and sizem.

## Regular Data Grids

Regular data grids are rectangular, not sparse, matrices that contain double values. MATLAB stores them in column order, with their southern edge as the first row and their northern edge as their last row.

## Constructing a Global Data Grid

Imagine an extremely coarse map of the world in which each cell represents $60^{\circ}$. Such a map matrix would be 3 -by- 6 , and its referencing vector would be defined as

```
refvec = [1/60 90 -180] = [0.0167 90 -180]
```

1 First create data for this, starting with the data grid itself:

```
minigrid=[11 2 3 4 5 6; 7 8 9 10 11 12; 13 14 15 16 17 18];
```

2 Now make a referencing vector, as described above:

```
minivec= [1/60 90 -180]
minivec =
    0.0167 90.0000-180.0000
```

As is often the case for global grids, the western edge is the international date line, at $180^{\circ} \mathrm{W}$ :

3 Set up an equidistant cylindrical map projection:

```
axesm('MapProjection', 'eqdcylin')
setm(gca, 'MapLatLimit',[-90 90],'MapLonLimit',[-180 180],...
'GLineStyle','-', 'Grid','on','Frame','on')
```

4 Draw a graticule with parallel and meridian labels at $60^{\circ}$ intervals:
setm(gca, 'MlabelLocation', 60, 'PlabelLocation',[-30 30],...
'MLabelParallel','north', 'MeridianLabel','on',...

```
'ParallelLabel','on',...
'MlineLocation',60, 'PlineLocation',[-30 30])
```

5 Map the data using meshm and display with a color ramp and legend:

```
meshm(minigrid, minivec); colormap('autumn'); colorbar
```



Note that the first row of the matrix is displayed as the bottom of the map, while the last row is displayed as the top. All regular data grids in the Mapping Toolbox, as well as regular surfaces in MATLAB, are displayed in this fashion.

## Computing Map Limits from Reference Vectors

Given a regular data grid and its reference vector, the full extent of the grid can be computed using the limitm function. To understand how this works for a data grid that does not encompass the entire world, do the following exercise:

1 Load the Cape Cod 30-arc-second elevation matrix using the loadcape script and inspect the reference vector, maplegend:

```
loadcape
maplegend
maplegend =
```

The maplegend referencing vector indicates that there are 120 cells per angular degree. This horizontal resolution is 120 times finer than that of the topo data grid, which was one cell per degree.

2 Use limitm to determine that the cape region extends from $41^{\circ} \mathrm{N}$ to $44^{\circ} \mathrm{N}$ and from $72^{\circ} \mathrm{W}$ to $69^{\circ} \mathrm{W}$ :

```
[latlimits,longlimits] = limitm(map,maplegend)
latlimits =
    41 44
longlimits =
    -72 -69
```

3 Verify this computation manually by getting the dimensions of the elevation matrix and computing the eastern and southern map limits from the reference vector:

```
[rows cols] = size(map)
rows =
    360
cols =
    360
southlat = maplegend(2) - rows/maplegend(1)
southlat =
    4 1
eastlon = maplegend(3) + cols/maplegend(1)
eastlon =
    -69
```

The results match latlimits(1) and longlimits(2). The two formulas use different signs because latitudes decrease southwards and longitudes increase eastward.

## Geographic Interpretation of Matrix Elements

You can access and manipulate gridded geodata and its associated referencing vector by either geographic or matrix coordinates. Use the russia data set to explore this. As was demonstrated above, the north, south, east, and west limits of the mapped area can be determined as follows:

```
clear; load russia
[latlim,longlim] = limitm(map,refvec)
latlim =
    35 80
longlim =
    15 190
```

The data grid in the russia MAT-file extends over the international date line ( $180^{\circ}$ longitude). You could use the previously described function npi2pi to rename the eastern limit to be -170 , or $170^{\circ} \mathrm{W}$.


The function setltln retrieves the geographic coordinates of a particular matrix element. The returned coordinates actually show the center of the geographic area represented by the matrix entry:

```
row = 23; col = 79;
[lat,long] = setltln(map,refvec,row,col)
lat =
    39.5
long =
    30.7
```

setpostn does the reverse of this, determining the row and column of the data grid element containing a given geographic point location:

```
[r,c] = setpostn(map,maplegend,lat,long)
r =
    23
C =
    7 9
```


## The Geography of Gridded Geodata

Each matrix element (analogous to a pixel) can be thought of as a spheroidal quadrangle, which includes its northern and eastern edges, but not its western edge or southern edge.


## An Element in a Data Grid

The exceptions to this are that the southernmost row (row 1) also contains its southern edge, and the westernmost column (column 1) contains its western edge, except when the map encompasses the entire $360^{\circ}$ of longitude. In that case, the westernmost edge of the first column is not included, because it is identical to the easternmost edge of the last column. These exceptions ensure that all points on the globe can be represented exactly once in a regular data grid.

Although each data grid element represents an area, not a point, it is often useful to assign singular coordinates to provide a point of reference. The setltln function does this. It geolocates an element by the point in the center of the area represented by the element. The following code references the center cell coordinate for the row 3, column 17 of the Russia map:

```
clear; load russia
row = 3; col = 17;
[lat,long] = setltln(map,refvec,row,col)
lat =
    35.5
long =
    18.3
```

Since the cells in the russia matrix represent $0.2^{\circ}$ squares ( 5 cells per degree), the cell in question extends from north of $35.4^{\circ} \mathrm{S}$ to exactly $35.6^{\circ} \mathrm{S}$, and from east of $18.2^{\circ} \mathrm{E}$ to exactly $18.4^{\circ} \mathrm{E}$.

## Accessing Data Grid Elements

The actual values contained within the map matrix entries are important as well. The Mapping Toolbox provides several functions for accessing and altering the values of data grid elements.

If the actual row and column of a desired entry are known, then a simple matrix index can return the appropriate value:

1 Use the row and column from the previous example (row 3, column 17) to determine the value of that cell simply by querying the matrix:

```
value = map(row,col)
value =
    2
```

2 More often, the geographic coordinates are known, and the value can be retrieved with ltln2val:

```
value = ltln2val(map,maplegend,lat,long)
value =
    2
```

3 The latitude-longitude coordinates associated with particular values in a data grid can be found with findm, analogous to the MATLAB function find. Here the coordinates of elements in the topo matrix have values greater than 5,500 meters:

```
load topo
[lats,longs] = findm(topo>5500,topolegend);
[lats longs]
ans =
    34.5000 79.5000
    34.5000 80.5000
    30.5000 84.5000
    28.5000 86.5000
```

4 To get the row and column indices instead, simply use the MATLAB find function:

```
[i,j]=find(topo>5500)
```

i $=$
125
125

121
119
j $=$
80
81
85 87

5 To recode a specific matrix value to some other value, use changem. Load or reload the russia MAT-file, and then change all instances of a given value in a data grid to a new value in one step:

```
oldcode = ltln2val(map,maplegend,37,79)
oldcode =
    4
newmap = changem(map,5,oldcode);
newcode = ltln2val(newmap,maplegend,37,79)
newcode =
    5
```

All entries in newmap corresponding to 4's in map now have the value 5.

## Using a Mask to Recode a Data Grid

You can also define a logical mask to identify the map entries to change. A mask is a matrix the same size as the map matrix, with 1's everywhere that values are to change. A mask is often generated by a logical operation on a map variable, a topic that is described in greater detail below:

1 The russia data grid contains 3 for each cell covering Russia. To set every non-Russia matrix entry to zero, use the following MATLAB commands:

```
clear; load russia
nonrussia = map;
nonrussia(map~=3) = 0;
```

2 Verify the data that results from these operations:

| whos |  |
| :--- | :--- |
| Name | Size |


| clrmap | $4 \times 3$ | 96 | double array |
| :--- | :---: | ---: | :--- |
| description | $5 \times 69$ | 690 | char array |
| map | $225 \times 875$ | 1575000 | double array |
| maplegend | $1 \times 3$ | 24 | double array |
| nonrussia | $225 \times 875$ | 1575000 | double array |
| refvec | $1 \times 3$ | 24 | double array |
| source | $1 \times 68$ | 136 | char array |
| Grand total is 394181 elements using 3150970 bytes |  |  |  |
|  |  |  |  |
| newcode $=$ ltln2val(nonrussia, refvec, 37,79) |  |  |  |
| newcode $=$ |  |  |  |
| 0 |  |  |  |

## Precomputing the Size of a Data Grid

Finally, if you know the latitude and longitude limits of a region, you can calculate the required matrix size and an appropriate referencing vector for any desired map resolution and scale. However, before making a large, memory-taxing data grid, you should first determine what its size will be. For a map of the continental U.S. at a scale of 10 cells per degree, do the following:

1 Compute the matrix dimensions using sizem, specifying latitude limits of $25^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$ and longitudes from $60^{\circ} \mathrm{W}$ to $130^{\circ} \mathrm{W}$ :
cellsperdeg = 10;
[r,c,maplegend] = sizem([25 50],[-130 -60],cellsperdeg)
$r=$
250
c =
700
maplegend =
$10 \quad 50-130$
msize = r * c * 8
msize =
1400000
This data grid would be 250 -by- 700 , and consume $1,400,000$ bytes .
2 Now determine what the storage requirements would be if the scale were reduced to 5 rows/columns per degree:

```
cellsperdeg2 = 5;
[r,c,maplegend] = sizem([25 50],[-130 -60],cellsperdeg2)
r =
    125
c =
    350
maplegend =
    5 50 -130
msize = r * c * 8
msize =
    3 5 0 0 0 0
```

A 125-by- 300 matrix that used 350,000 bytes might be more manageable, if it had sufficient resolution at its intended publication scale.

## Geolocated Data Grids

In addition to regular data grids, the Mapping Toolbox provides another format for geodata: geolocated data grids. These multivariate data sets can be displayed, and their values and coordinates can be queried, but unfortunately much of the functionality supporting regular data grids is not available for geolocated data grids.

The examples thus far have shown maps that covered simple, regular quadrangles, that is, geographically rectangular and aligned with parallels and meridians. Geolocated data grids, in addition to these rectangular orientations, can have other shapes as well.

## Geolocated Grid Format

To define a geolocated data grid, you must define three variables.

- A matrix of indices or values associated with the mapped region
- A matrix giving cell-by-cell latitude coordinates
- A matrix giving cell-by-cell longitude coordinates.

The following exercise demonstrates this data representation:
1 Load the MAT-file example of an irregularly shaped geolocated data grid called mapmtx:

| load mapmtx <br> whos |  |  |  |
| :--- | :--- | :--- | :--- |
| Name | Size | Bytes | Class |
| lg1 | $50 \times 50$ | 20000 | double array |
| lg2 | $50 \times 50$ | 20000 | double array |
| lt1 | $50 \times 50$ | 20000 | double array |
| lt2 | $50 \times 50$ | 20000 | double array |
| map1 | $50 \times 50$ | 20000 | double array |
| map2 | $50 \times 50$ | 20000 | double array |

Two geolocated data grids are in this data set, each requiring three variables. The values contained in map1 correspond to the latitude and longitude coordinates, respectively, in lt1 and lg1. Notice that all three matrices are the same size. Similarly, map2, lt2, and lg2 together form a second geolocated data grid. These data sets were extracted from the topo data grid shown in previous examples. Neither of these maps is regular, because their columns do not run north to south.

2 To see their geography, display the grids one after another:

```
close all
axesm mercator
gridm on
framem on
h1=surfm(lt1,lg1,map1);
h2=surfm(lt2,lg2,map2);
```

3 Showing coastlines will help to orient you to these skewed grids:

```
load coast
plotm(lat,long,'r')
```



Notice that neither topo matrix is a regular rectangle. One looks like a diamond geographically, the other like a trapezoid. The trapezoid is displayed in two pieces because it crosses the edge of the map. These shapes can be thought of as the geographic organization of the data, just as rectangles are for regular data grids. But, just as for regular data grids, this organizational logic does not mean that displays of these maps are necessarily a specific shape.

4 Now change the view to a polyconic projection with an origin at $0^{\circ} \mathrm{N}, 90^{\circ} \mathrm{E}$ :

```
setm(gca,'MapProjection','polyc', 'Origin',[0 90 0])
```



As the polyconic projection is limited to a $150^{\circ}$ range in longitude, those portions of the maps outside this region are automatically trimmed.

## Geographic Interpretations of Geolocated Grids

The Mapping Toolbox supports three different interpretations of geolocated data grids:

- First, a map matrix having the same number of rows and columns as the latitude and longitude coordinate matrices represents the values of the map data at the corresponding geographic points (centers of data cells).
- Next, a map matrix having one fewer row and one fewer column than the geographic coordinate matrices represents the values of the map data within the area formed by the four adjacent latitudes and longitudes.
- Finally, if the latitude and longitude matrices have smaller dimensions than the map matrix, you can interpret them as describing a coarser graticule, or mesh of latitude and longitude cells, into which the blocks of map data are warped.

This section discusses the first two interpretations of geolocated data grids. For more information on the use of graticules, see"The Map Grid" on page 4-23.

Type 1: Values associated with upper left grid coordinate. As an example of the first interpretation, consider a 4 -by- 4 map matrix whose cell size is 30 -by- 30 degrees, along with its corresponding 4 -by- 4 latitude and longitude matrices:

```
map = [ [ 1 1 2 3 4 4; ...
    5 6 7 8;...
    9 10 11 12;...
    3 14 15 16];
lat = [ [ 30 30 30 30;\ldots
    0 0 0 0;...
    -30 -30 -30-30;...
    -60 -60 -60 -60];
long = [0 30 60 90;...
    0 30 60 90;...
    0 30 60 90;...
    0 30 60 90];
```

This geolocated data grid is displayed with the values of map shown at the associated latitudes and longitudes.


Notice that only 9 of the 16 total cells are displayed. The value displayed for each cell is the value at the upper left corner of that cell, whose coordinates are given by the corresponding lat and long elements. By MATLAB convention, the last row and column of the map matrix are not displayed, although they exist in the CData property of the surface object.

Type 2: Values centered within four adjacent coordinates. For the second interpretation, consider a 3-by-3 map matrix with the same lat and long variables:

$$
\begin{aligned}
\operatorname{map}= & {\left[\begin{array}{lll}
1 & 2 & 3 ; \ldots \\
4 & 5 & 6 ; \ldots \\
7 & 8 & 9
\end{array}\right] }
\end{aligned}
$$

Here is a surface plot of the map matrix, with the values of map shown at the center of the associated cells:


All the map data is displayed for this geolocated data grid. The value of each cell is the value at the center of the cell, and the latitudes and longitudes in the coordinate matrices are the boundaries for the cells.

Ordering of Cells. You may have noticed that the first row of the matrix is displayed as the top of the map, whereas for a regular data grid, the opposite was true: the first row corresponded to the bottom of the map. This difference is entirely due to how the lat and long matrices are ordered. In a geolocated data grid, the order of values in the two coordinate matrices determines the arrangement of the displayed values.

Transforming Regular to Geolocated Grids. When required, a regular data grid can be transformed into a geolocated data grid. This simply requires that a pair of coordinates matrices be computed at the desired spatial resolution from the regular grid. Do this with the meshgrat function, as follows:

```
load topo
[lat,lon] = meshgrat(topo,topolegend);
whos
NameSizeBytesClass
lat 180x360518400double array
lon 180x360518400double array
topo 180x360518400double array
```

```
topolegend1x3 24double array
topomap164x31536double array
topomap2128x33072double array
```

Transforming Geolocated to Regular Grids. Conversely, a regular data grid can also be constructed from a geolocated data grid. The coordinates and values can be embedded in a new regular data grid. The resolution of the regular grid to be output should be somewhat coarser than that of the geolocated data grid to avoid missing values. The function that performs this conversion is imbedm; it takes a geolocated data grid, a referencing vector, and a logical grid as inputs. To see how this works, convert the diamond-shaped geolocated data grid from the mapmtx data set back to a regular data grid at a resolution of one row and column for every two degrees of latitude and longitude:

1 Clear the workspace and load the geolocated data grid:
close all; clear all; load mapmtx
2 Determine the extremes of latitude and longitude of the diamond-shaped section:

```
latlim = [min(lt1(:)) max(lt1(:))];
lonlim = [min(lg1(:)) max(lg1(:))];
```

3 Create a matrix of NaNs at the desired resolution (about twice as coarse as the original):

```
[regrid,regridref] = nanm(latlim,lonlim,1/2);
```

4 Embed the values of the geolocated data grid in the grid of NaNs:

```
regrid = imbedm(lt1,lg1,map1,regrid,regridref);
```

5 Map the resulting regular data grid and compare it to the plot of the geolocated data grid from the section "Geolocated Grid Format" on page 2-38:

```
axesm mercator
gridm on
framem on
meshm(map, maplegend)
```



Notice that the grid cells are now rectangular rather than diamond-shaped and that the display is more generalized due to having lower resolution.

Finally, note that should more than one value from the geolocated data grid be assigned to the same regular grid element, the last one to be assigned "wins." In other words, no control is provided over aliasing of data other than the choice of output resolution, and if it is chosen as too fine, many elements might end up being unassigned.

## Reading and Writing Geospatial Data

Many vector and raster data formats have been developed for storing geospatial data in computer files. Some are widely used, others are obscure. Some are simple, while others are elaborate. Some formats are government or international standards, others are simply popular. A format can be general-purpose, specific to a narrow class of data, or may be used just to publish a certain data set.

The Mapping Toolbox includes both general-purpose data files for the Earth and its major regions as well as some demo data files covering small areas. Some geodata files are provided in internal formats (e.g., MAT-files) usable only with MATLAB, while others are in external formats commonly used for geospatial data exchange (e.g., shapefiles and GeoTIF files).

The following table lists data formats that the Mapping Toolbox reads and writes, along with the functions that handle them. For further information, see the Mapping Toolbox reference pages.

| Function | Read | Write |
| :--- | :--- | :--- |
| arcgridread | X | Description <br> Read a gridded data set in Arc ASCII <br> Grid Format. |
| avhrrgoode | X | Read Very High Resolution Radiometer <br> (AVHRR) data stored in the Goode <br> projection. |
| avhrrlambert | X | Read AVHRR data stored in the Lambert <br> projection. |
| dcwdata | X | Read selected data from the Digital <br> Chart of the World. |
| dcwgaz | X | Search for entries in the Digital Chart of <br> the World gazette. |
| dcwrdx | X | Read the Digital Chart of the World <br> index file. |
| dcwread | X | Read a Digital Chart of the World file. |


| Function | Read | Write | Description |
| :---: | :---: | :---: | :---: |
| dcwrhead | X |  | Read a Digital Chart of the World file header. |
| demdataui | x |  | Activate Digital Elevation Map Data User Interface. |
| dted | x |  | Read U. S. Department of Defense Digital Terrain Elevation Data (DTED) data. |
| dteds |  |  | List DTED data grid filenames. |
| egm96geoid | x |  | Read 15-minute gridded geoid heights from the EGM96 geoid model. |
| etopo5 | X |  | Read data from the ETOPO5 data set. |
| fipsname | X |  | Read Topographically Integrated Geographic Encoding and Referencing (TIGER) thinned boundary file FIPS names. |
| geotiffinfo | X |  | Information about a GeoTIFF file. |
| geotiffread | x |  | Read a georeferenced image from GeoTIFF file |
| getworldfilenam e |  |  | Derive a worldfile name from an image filename. |
| globedem | x |  | Read Global Land One-km Base <br> Elevation (GLOBE) 30-arc-second ( 1 km ) <br> Digital Elevation Map. |
| globedems |  |  | Read GLOBE 30-arc-second (1 km) Digital Elevation Map filenames. |
| gshhs | x |  | Read Global Self-consistent Hierarchical High-resolution Shoreline data. |


| Function | Read | Write | Description |
| :---: | :---: | :---: | :---: |
| gtopo30 | X |  | Read GTOPO30 30-arc-second (1 km) global elevation data. |
| gtopo30s |  |  | List GTOPO30 30-arc-second ( 1 km ) global elevation data filenames. |
| readfk5 | x |  | Read data from the Fifth Fundamental Catalog of Stars. |
| satbath | x |  | Read Global 2-minute ( 4 km ) topography from satellite bathymetry. |
| sdtsdemread | X |  | Read data from a SDTS DEM data set. |
| sdtsinfo | X |  | Information about a SDTS data set. |
| shapeinfo | X |  | Information about shapefile. |
| shaperead | X |  | Read geospatial data and associated attributes from a shapefile. |
| tbase | X |  | Read data from the TerrainBase dataset. |
| tgrline | x |  | Read data from TIGER/Line files. |
| tigermif | x |  | Read TIGER MapInfo Interchange Format thinned boundary files. |
| tigerp | X |  | Read TIGER ArcInfo Format thinned boundary files. |
| usgs24kdem | x |  | Read USGS 1:24,000 (30 m) digital elevation maps. |
| usgsdem | X |  | Read USGS 1:250,000 (100 m) digital elevation maps. |
| usgsdems | x |  | Read USGS digital elevation map filenames. |
| vmapodata | X |  | Extract selected data from the Vector Map Level 0 CD-ROMs. |


| Function | Read | Write | Description |
| :--- | :--- | :--- | :--- |
| vmapphead |  |  | Parse Vector Map Level 0 header string. |
| vmapOrdx | X |  | Read the Vector Map Level 0 index file. |
| vmapOread | X | Read Vector Map Level 0 file. |  |
| vmapOrhead | X |  | Read Vector Map Level 0 file headers. |
| vmapOui |  |  | Activate Vector Map Level 0 User <br> Interface. |
| worldfileread | X |  | Read a worldfile and return a referencing <br> matrix. |
| worldfilewrite |  | X | Construct a worldfile from a referencing <br> matrix. |
| imread | X |  | Read nongeoreferenced image from a <br> graphics file (MATLAB function). |
| imwrite | X | Write nongeoreferenced image to a <br> graphics file (MATLAB function). |  |

## Understanding Geospatial Geometry

Working with geospatial data involves geographic concepts (e.g., geographic and plane coordinates, spherical geometry) and geodetic concepts (such as ellipsoids and datums). This section explains, at a high level, some of the concepts that underlie geometric computations on spherical surfaces.

Spheres, Spheroids, and Geoids (p. 3-2)

Latitude and Longitude (p. 3-8)
Datums (p. 3-10)
Map Projections (p. 3-11)
Great Circles, Rhumb Lines, and Small Circles (p. 3-13)
Angles and Directions on the Sphere and Spheroid (p. 3-18)
Planetary Almanac Data (p. 3-24)

Measuring Area of Spherical
Quadrangles (p. 3-26)

Geodetic approaches to modeling the shapes of planets

Locating positions on spheres and spheroids
Establishing a reference system for coordinate data
Flattening the Earth for display and analysis
Three important types of curves on the surface of the sphere or spheroid
What an azimuth is, and how its meaning can vary

Using the almanac function to set up spherical parameters for mapping calculations

Computing the intersection of a zone and a lune

See Chapter 2, "Understanding Map Data," for information on how geographic phenomena are encoded and represented numerically, and how geodata is structured.

## Spheres, Spheroids, and Geoids

Although the Earth is very round, it is an oblate spheroid rather than a perfect sphere. This difference is so small (only one part in 300) that modeling the Earth as spherical is sufficient for making small-scale (world or continental) maps. However, making accurate maps at larger scale demands that a spheroidal model be used. Such models are essential, for example, when you are mapping high-resolution satellite or aerial imagery, or when you are working with coordinates from the Global Positioning System (GPS). This section addresses how the Mapping Toolbox accurately models the shape, or figure, of the Earth and other planets.

## Geoid and Ellipsoid

Literally, geoid means Earth-shaped. The geoid is an empirical approximation of the figure of the Earth (minus topographic relief). Specifically, it is an equipotential surface with respect to gravity, more or less corresponding to mean sea level. It is approximately an oblate ellipsoid, but not exactly so because local variations in gravity create minor hills and dales (which range from -100 M to +60 M across the Earth).

Mapping the Geoid. The following figure, made using the geoid data set, maps the figure of the Earth. To execute these commands, select them all by dragging over the list in the Help Browser, then click the right mouse button and choose Evaluate Selection:

```
clear;
load geoid; load coast
figure; axesm robinson
meshm(geoid,geoidlegend)
colorbar('horiz')
plotm(lat,long,'k')
```



The shape of the geoid is important for some purposes, such as calculating satellite orbits, but need not be taken into account for every mapping application. However, knowledge of the geoid is sometimes necessary, for example when you compare elevations given as height above mean sea level (a geoidal concept) to elevations derived from GPS measurements. Geoid representations are also inherent in datum definitions. See "Datums" on page 3-10.
When you are computing geospatial coordinates (e.g., for map projection), the geoid is generally treated as an ellipsoid (an ellipse rotated around one axis). You can deine ellipsoids in several ways. They are usually specified by a semimajor and a semiminor axis, but are often expressed in terms of a semimajor axis and either inverse flattening (which for the Earth, as mentioned above, is one part in 300) or eccentricity. Whatever parameters are used, the ellipsoid is fully constrained and the other parameters are derivable. The components of an ellipsoid are shown in the following diagram:


The Mapping Toolbox is equipped with ellipsoidal models that represent the figures of the Sun, Moon, and planets, as well as a set of the most common ellipsoid models of the Earth.

## The Ellipsoid Vector

Ellipsoids in the Mapping Toolbox are most often represented as two-element vectors, called ellipsoid vectors in this guide. The ellipsoid vector has the form [semimajor_axis eccentricity]. The semimajor axis can be in any unit of distance; the choice of units typically drives the units used for distance outputs in the toolbox functions. Meters or kilometers are most frequently used. Bear in mind that some toolbox functions will calculate output based upon the semimajor axis units.

Eccentricity can range from 0 to 1 . When only one element is provided, a spherical (0) eccentricity is assumed. The lack of an eccentricity value results in a spherical Earth assumption.
The default ellipsoid for the Earth is the 1980 Geodetic Reference System ellipsoid:

```
almanac('earth','ellipsoid','kilometers')
ans =
```

```
1.0e+03 *
6.37813700000000 0.00008181919104
```

Compare this is to a spherical ellipsoid definition:

```
almanac('earth','sphere','kilometers')
ans =
    6371 0
```

The almanac function treats the keyword 'geoid' the same as 'ellipsoid'.
Standard values for the ellipsoid vector, along with several other kinds of planetary data for each of the planets and the Earth's moon, are provided by the almanac function in the Mapping Toolbox (see "Planetary Almanac Data" on page 3-24). For example, examine the parameters of the wgs72 (the 1972 World Geodetic System) ellipsoid, using the almanac function:

```
wgs72 = almanac('earth','wgs72')
wgs72 =
6378.135 0.0818188106627487
```

Compare this with Bessel's 1841 ellipsoid:

```
bessel = almanac('earth','bessel')
bessel =
    6377.397155 0.0816968329674029
```

The ellipsoid vector's values are the semimajor axis, in kilometers, and eccentricity. Both eccentricity and flattening are dimensionless ratios. The toolbox has functions to convert elliptical definitions from these forms to ellipsoid vector form. For example, the function axes2ecc returns an eccentricity when given semimajor and semiminor axes as arguments.

The ellipse in the previous diagram is highly exaggerated. For the Earth, the semimajor axis is about 21 kilometers longer than the semiminor axis. Use the almanac function to verify this:

```
grs80 = almanac('earth','ellipsoid','kilometers')
grs80 =
    6378.137 0.0818191910428158
semiminor = minaxis(grs80)
semiminor =
    6356.75231414036
semidiff = grs80(1) - semiminor
```

```
semidiff =
    21.3846858596444
```

When compared to the semimajor axis, which is almost 6400 kilometers, this difference seems insignificant and can be neglected for world and other small-scale maps. For example, the scale at which 21.38 km would be smaller than a 0.5 mm line on a map (which is a typical line weight in cartography) is

```
nodiff = semidiff * 1e6 / 0.5
nodiff =
    4.2769e+007
```

The factor 1 e6 simply converts the distance semidiff from kilometers into millimeters. This indicates that the earth's eccentricity cannot be portrayed at scales of less than $1: 40,000,000$, which is roughly the scale of a world map shown on a page of this document. For this reason, most functions in the Mapping Toolbox default to a spherical model of the Earth. However, you are free to specify any ellipsoid instead.

## What Is the "Correct" Ellipsoid Vector?

A variety of reference ellipsoids have been proposed through the years. They differ because of the surveying information upon which they are based, or because they are intended to approximate the ellipsoid only within a specific geographic region. The Mapping Toolbox default ellipsoid vector (after the sphere) is based on the 1980 Geodetic Reference System ellipsoid. This ellipsoid vector is returned by the statement almanac ('earth' , 'ellipsoid'). It is also the reference ellipsoid for the 1984 World Geodetic System (WGS84).

In mapping a given spot on the Earth's surface, the choice of ellipsoid will affect the latitude assigned to that spot. Thus measurements from maps compiled using different ellipsoids cannot be accurately compared without converting to a common frame of reference. This also requires knowledge of the datum being used for the maps, as explained in "Datums" on page 3-10.

The Mapping Toolbox supports several other ellipsoid vectors, for models ranging from Everest's 1830 ellipsoid (used for India) to the International Astronomical Union ellipsoid of 1965 (used for Australia). These can be referenced by the following statements:

```
ellipsoid1 = almanac('earth','ellipsoid',[],'everest');
ellipsoid2 = almanac('earth','ellipsoid',[],'iau65');
```

See the reference page for the almanac function for information on the ellipsoids that are built into the Mapping Toolbox. If you cannot find the ellipsoid vector you need, you can create it in the following form:

```
ellipsoidvec = [semimajor_axis eccentricity]
```

Note that the default units for the ellipsoid semimajor axis in the almanac function are kilometers, which you can use by simply passing in an empty matrix in place of the input units string (the third argument in the previous examples).

## Latitude and Longitude

Two angles, latitude and longitude, specify the position of a point on the surface of a planet. These angles can be in degrees or radians; however, degrees are far more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting the point in question to the planet's rotational axis. There are different ways to construct such lines, corresponding to different types of and resulting values for latitudes. Latitude is positive in the northern hemisphere, reaching a limit of $+90^{\circ}$ at the north pole, and negative in the southern hemisphere, reaching a limit of $-90^{\circ}$ at the south pole. Lines of constant latitude are called parallels. This system is depicted in the following figure.


Longitude is the angle at the center of the planet between two planes that align with and intersect along the axis of rotation, perpendicular to the plane of the equator. One plane passes through the surface point in question, and the other plane is the prime meridian ( $0^{\circ}$ longitude), which is defined by the location of the Royal Observatory in Greenwich, England. Lines of constant longitude are called meridians. All meridians converge at the north and south poles $\left(90^{\circ} \mathrm{N}\right.$ and $-90^{\circ} \mathrm{S}$ ), and consequently longitude is under-specified in those two places.

Longitudes typically range from $-180^{\circ}$ to $+180^{\circ}$, but can be represented otherwise, such as ranging from $0^{\circ}$ to $+360^{\circ}$. Longitudes can be specified in
other ways as well, such as from $0^{\circ}$ to $180^{\circ}$ east and $0^{\circ}$ to $180^{\circ}$ west. Adding or subtracting $360^{\circ}$ from its longitude does not alter the position of a point.

## Datums

A vertical datum (plural datums) is a base reference level for establishing the vertical dimension of elevation for the earth's surface. A datum can depend on the ellipsoid, the Earth model, or the definition of sea level. A coordinate system can be referenced to a datum or to an ellipsoid. A datum, however, always implies a specific ellipsoid.

As with ellipsoids, a datum can be defined globally or locally (e.g., particular to one country). While empirically determining a datum is a complex geodetic and surveying task, the result simply enables a map producer to know what the Earth's radius is at any given point. This is what ellipsoids also enable.

The datum used for a map (e.g, NAD27 or NAD83 for U.S. topographic sheets) must be known when you merge geospatial coordinate data compiled using different datums. This is because horizontal coordinates (both geographic and projected) shift when a new datum is applied. For example, locations of survey monuments in the U.S. can differ by 50 to 100 meters or more, depending on whether they were determined using the 1927 or 1983 North American Datum.

## Map Projections

While all geospatial data needs to be georeferenced (pinned to locations on the Earth's surface) in some way, a given data set might or might not explicitly describe locations with geographic coordinates (latitudes and longitudes). When it does, many applications - particularly map display - cannot make direct use of geographic coordinates, and must transform them in some way to plane coordinates. This transformation process, called map projection, is both algorithmic and the core of the cartographer's art.
The Mapping Toolbox includes dozens of map projection functions. Some are ancient and well-known (such as Mercator), others are ancient and obscure (such as Bonne), while some are modern inventions (such as Robinson). Some are suitable for showing the entire world, others for half of it, and some are only useful over small areas. When geospatial data has geographic coordinates, any projection can be applied, although some are not good choices. The Mapping Toolbox can project both vector data and raster data.

## Forward and Inverse Projection

When geospatial data has plane coordinates (i.e., it comes preprojected, as do many satellite images and municipal map data sets), it is usually possible to recover geographic coordinates if the projection parameters and datum are known. Using this information, you can perform an inverse projection, running the projection backward to solve for latitude and longitude. The Mapping Toolbox can perform accurate inverse projections for any of its projection functions as long as the original projection parameters and reference ellipsoid (or spherical radius) are provided to it.

## Projection Distortions

All map projections introduce distortions compared to maps on globes.
Distortions are inherent in flattening the sphere, and can take several forms:

- Areas - Relative size of objects (such as continents)
- Distances - Relative separations of points (such as a set of cities)
- Directions - Azimuths (angles between points and the poles)
- Shapes - Relative lengths and angles of intersection

Some classes of map projections maintain areas, and others preserve local shapes, distances, and/or directions. No projection, however, can preserve all these characteristics. Choosing a projection thus always requires compromising accuracy in some way, and that is one reason why so many different map projections have been developed. For any given projection, however, the smaller the area being mapped, the less distortion it introduces if properly centered. The Mapping Toolbox provides tools to help quantify and visualize projection distortions.

See "Using Map Projections and Coordinate Systems" on page 8-1 for a full discussion of map projections and how the Mapping Toolbox implements them. The "Summary and Guide to Projections" on page 8-53 lists all the available map projections and their intrinsic properties.

## Great Circles, Rhumb Lines, and Small Circles

In plane geometry, lines have two important characteristics. A line represents the shortest path between two points, and the slope of such a line is constant. When describing lines on the surface of a spheroid, however, only one of these characteristics can be guaranteed at a time.

## Great Circles

A great circle is the shortest path between two points along the surface of a sphere. The precise definition of a great circle is the intersection of the surface with a plane passing through the center of the planet. Thus, great circles always bisect the sphere. The equator and all meridians are great circles. All great circles other than these do not have a constant azimuth, the spherical analog of slope; they cross successive meridians at different angles. That great circles are the shortest path between points is not always apparent from maps, because very few map projections (the Gnomonic is one of them) represent arbitrary great circles as straight lines.

Because they define paths that minimize distance between two (or three) points, great circles are examples of geodesics. In general, a geodesic is the straightest possible path constrained to lie on a curved surface, independent of the choice of a coordinate system. The term comes from the Greek geo-, earth, plus daiesthai, to divide, which is also the root word of geodesy, the science of describing the size and shape of the Earth mathematically.

## Rhumb Lines

A rhumb line is a curve that crosses each meridian at the same angle. This curve is also referred to as a loxodrome (from the Greek loxos, slanted, and drome, path). Although a great circle is a shortest path, it is difficult to navigate because your bearing (or azimuth) continuously changes as you proceed. Following a rhumb line covers more distance than following a geodesic, but it is easier to navigate.

All parallels, including the equator, are rhumb lines, since they cross all meridians at $90^{\circ}$. Additionally, all meridians are rhumb lines, in addition to being great circles. A rhumb line always spirals toward one of the poles, unless its azimuth is true east, west, north, or south, in which case the rhumb line closes on itself to form a parallel of latitude (small circle) or a pair of antipodal meridians.

The following figure depicts a great circle and one possible rhumb line connecting two distant locations. Descriptions and examples of how to calculate points along great circles and rhumb lines appear below.


## Small Circles

In addition to rhumb lines and great circles, one other smooth curve is significant in geography and the Mapping Toolbox: the small circle. Parallels of latitude are all small circles (which also happen to be rhumb lines). The general definition of a small circle is the intersection of a plane with the surface of a sphere. On ellipsoids, this only yields true small circles when the defining plane is parallel to the equator. In the Mapping Toolbox, this definition includes planes passing through the center of the planet, so the set of all small circles includes all great circles as limiting cases. This usage is not universal.

Small circles are most easily defined by distance from a point. All points 45 nm (nautical miles) distant from ( $45^{\circ} \mathrm{N}, 60^{\circ} \mathrm{E}$ ) would be the description of one small circle. If degrees of arc length are used as a distance measurement, then (on a sphere) a great circle is the set of all points $90^{\circ}$ distant from a particular center point.

For true small circles, the distance must be defined in a great circle sense, the shortest distance between two points on the surface of a sphere. However, the Mapping Toolbox also can calculate loxodromic small circles, for which distances are measured in a rhumb line sense (along lines of constant azimuth). Do not confuse such figures with true small circles.

## Computing Small Circles

You can calculate vector data for points along a small circle in two ways. If you have a center point and a known radius, use scircle1; if you have a center point and a single point along the circumference of the small circle, use scircle2. For example, to get data points describing the small circle at $10^{\circ}$ distance from $\left(67^{\circ} \mathrm{N}, 135^{\circ} \mathrm{W}\right)$, use the following:

```
[latc,lonc] = scircle1(67,-135,10);
```

To get the small circle centered at the same point that passes through the point ( $55^{\circ} \mathrm{N}, 135^{\circ} \mathrm{W}$ ), use scircle2:

```
[latc,lonc] = scircle2(67,-135,55,-135);
```


## scircle1


scircle2


The scircle1 function also allows you to calculate points along a specific arc of the small circle. For example, if you want to know the points $10^{\circ}$ in distance and between $30^{\circ}$ and $120^{\circ}$ in azimuth from $\left(67^{\circ} \mathrm{N}, 135^{\circ} \mathrm{W}\right)$, simply provide arc limits:

```
[latc,lonc] = scircle1(67,-154,10,[30 120]);
```


## scircle1 with arc limits



When an entire small circle is calculated, the data is in polygon format. For all calculated small circles, 100 points are returned unless otherwise specified. You can calculate several small circles at once by providing vector inputs. For more information, see the scircle1 and scircle2 functions in the online Mapping Toolbox reference documentation.

An Annotated Map Illustrating Small Circles. The following Mapping Toolbox commands illustrate generating small circles of the types described above, including the limiting case of a large circle. To execute these commands, select them all by dragging over the list in the Help Browser, then click the right mouse button and choose Evaluate Selection:

```
figure;
axesm ortho; gridm on; framem on
setm(gca,'Origin', [45 30 30], 'MLineLimit', [75 -75],...
'MLineException',[0 90 180 270])
A = [45 90];
B = [0 60];
C = [0 30];
sca = scircle1(A(1), A(2), 20);
scb = scircle2(B(1), B(2), 0, 150);
scc = scircle1('rh',C(1), C(2), 20);
plotm(A(1), A(2),'ro','MarkerFaceColor','r')
plotm(B(1), B(2),'bo','MarkerFaceColor','b')
plotm(C(1), C(2),'mo','MarkerFaceColor','m')
plotm(sca(:,1), sca(:,2),'r')
plotm(scb(:,1), scb(:,2),'b--')
```

```
plotm(scc(:,1), scc(:,2),'m')
textm(50,0,'Normal Small Circle')
textm(46,6,'(20\circ from point A)')
textm(4.5,-10,'Loxodromic Small Circle')
textm(4,-6,'(20\circ from point C')
textm(-2,-4,'in rhumb line sense)')
textm(40,-60,'Great Circle as Small Circle')
textm(45,-50,'(90\circ from point B)')
```

The result is the following display:


## Angles and Directions on the Sphere and Spheroid

Azimuth is the angle a line makes with a meridian, measured clockwise from north. Thus the azimuth of due north is $0^{\circ}$, due east is $90^{\circ}$, due south is $180^{\circ}$, and due west is $270^{\circ}$. You can instruct the Mapping Toolbox to compute azimuths for any pair of point locations, either along rhumb lines or along great circles. These will have different results except along cardinal directions. For great circles, the result is the azimuth at the initial point of the pair defining a great circle path. This is because great circle azimuths other than $0^{\circ}, 90^{\circ}, 180^{\circ}$, and $270^{\circ}$ do not remain constant. Azimuths for rhumb lines are constant along their entire path (by definition).

For rhumb lines, computing an azimuth backward (from the second point to the first) yields the complement of the forward azimuth ( $\left.\left(\mathrm{Az}+180^{\circ}\right) \bmod 360^{\circ}\right)$. For great circles, the back azimuth is generally not the complement, and the difference depends on the distance between the two points.

In addition to forward and back azimuths, the Mapping Toolbox can compute locations of points a given distance and azimuth from a reference point, and can calculate tracks to connect waypoints, along either great circles or rhumb lines on a sphere or ellipsoid.

## Reckoning - the Forward Problem

A common problem in geographic applications is the determination of a destination given a starting point, an initial azimuth, and a distance. In the Mapping Toolbox, this process is called reckoning. A new position can be reckoned in a great circle or a rhumb line sense (great circle or rhumb line track).

As an example, an airplane takes off from La Guardia Airport in New York $\left(40.75^{\circ} \mathrm{N}, 73.9^{\circ} \mathrm{W}\right)$ and follows a northwestern rhumb line flight path at 200 knots (nautical miles per hour). Where would it be after 1 hour?

```
[rhlat,rhlong] = reckon('rh',40.75,-73.9,nm2deg(200),315)
rhlat =
    43.1054
rhlong =
    -77.0665
```

Notice that the distance, 200 nautical miles, must be converted to degrees of arc length with the nm2deg conversion function to match the latitude and
longitude inputs. If the airplane had a flight computer that allowed it to follow an exact great circle path, what would the aircraft's new location be?

```
[gclat,gclong] = reckon('gc',40.75,-73.9,nm2deg(200),315)
gclat =
    43.0615
gclong =
    -77.1238
```

Notice also that for short distances at these latitudes, the result hardly differs between great circle and rhumb line. The two destination points are less than 4 nautical miles apart. Incidentally, after 1 hour, the airplane would be just north of New York's Finger Lakes.

## Calculating Tracks - Great Circles and Rhumb Lines

You can generate vector data corresponding to points along great circle or rhumb line tracks using track1 and track2. If you have a point on the track and an azimuth at that point, use track1. If you have two points on the track, use track2. For example, to get the great circle path starting at $\left(31^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}\right)$ with an azimuth of $45^{\circ}$ with a length of $12^{\circ}$, use track1:

```
[latgc,longc] = track1('gc',-31,90,45,12);
```

For the great circle from $\left(31^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}\right)$ to $\left(23^{\circ} \mathrm{S}, 110^{\circ} \mathrm{E}\right)$, use track2:

```
[latgc,longc] = track2('gc',-31,90,-23,110);
```


## track1



Azimuth and range
track2


The track1 function also allows you to specify range endpoints. For example, if you want points along a rhumb line starting $5^{\circ}$ away from the initial point and ending $13^{\circ}$ away, at an azimuth of $55^{\circ}$, simply specify the range limits:

```
[latrh,lonrh] = track1('rh',-31,90,55,[5 13]);
```


## track1 with range limits



When no range is provided for track1, the returned points represent a complete track. For great circles, a complete track is $360^{\circ}$, encircling the planet and returning to the initial point. For rhumb lines, the complete track terminates at the poles, unless the azimuth is $90^{\circ}$ or $270^{\circ}$, in which case the complete track is a parallel that returns to the initial point.

For calculated tracks, 100 points are returned unless otherwise specified. You can calculate several tracks at one time by providing vector inputs. For more information, see the track1 and track2 functions in the online Mapping Toolbox reference documentation. More vector path calculations are described later in "Navigation" on page 9-11.

## Distance, Azimuth, and Back-azimuth (the Inverse Problem)

When you calculate the distance between two points with the Mapping Toolbox, the result depends upon whether you want a great circle or a rhumb line distance. The distance function returns the appropriate distance between two points as an angular arc length, employing the same angular units as the input latitudes and longitudes. The default path type is the shorter great circle, and the default angular units are degrees. The previous figure shows two points at $\left(15^{\circ} \mathrm{S}, 0^{\circ}\right)$ and $\left(60^{\circ} \mathrm{N}, 150^{\circ} \mathrm{E}\right)$. The great circle distance between them, in degrees of arc, is as follows:

```
distgc = distance(-15,0,60,150)
distgc =
    129.9712
```

The rhumb line distance is greater:

```
distrh = distance('rh',-15,0,60,150)
distrh =
    145.0288
```

To determine how much longer the rhumb line path is in, say, kilometers, you can use a distance conversion function on the difference:

```
kmdifference = deg2km(distrh-distgc)
kmdifference =
    1.6744e+03
```

Several distance conversion functions are available in the toolbox, supporting degrees, radians, kilometers, meters, statute miles, nautical miles, and feet. Converting distances between angular arc length units and surface length units requires the radius of a planet or spheroid. By default, the radius of the Earth is used.

## Calculating Azimuth and Elevation

Azimuth is the angle a line makes with a meridian, taken clockwise from north. When the azimuth is calculated from one point to another using the Mapping Toolbox, the result depends upon whether you want a great circle or a rhumb line azimuth. For great circles, the result is the azimuth at the starting point of the connecting great circle path. In general, the azimuth along a great circle is not constant. For rhumb lines, the resulting azimuth is constant along the entire path.

Azimuths, or bearings, are returned in the same angular units as the input latitudes and longitudes. The default path type is the shorter great circle, and the default angular units are degrees. In the example, the great circle azimuth from the first point to the second is

```
azgc = azimuth(-15,0,60,150)
azgc =
    19.0391
```

For the rhumb line, the constant azimuth is

```
azrh = azimuth('rh',-15,0,60,150)
azrh =
    58.8595
```

One feature of rhumb lines is that the inverse azimuth, from the second point to the first, is the complement of the forward azimuth and can be calculated by simply adding $180^{\circ}$ to the forward value:

```
inverserh = azimuth('rh',60,150,-15,0)
inverserh =
    238.8595
difference = inverserh-azrh
difference =
    180
```

This is not true, in general, of great circles:

```
inversegc = azimuth('gc',60,150,-15,0)
inversegc =
    320.9353
difference = inversegc-azgc
difference =
    301.8962
```

The azimuths associated with cardinal and inter-cardinal compass directions are the following:

| North | $0^{\circ}$ or $360^{\circ}$ |
| :--- | :--- |
| Northeast | $45^{\circ}$ |
| East | $90^{\circ}$ |
| Southeast | $135^{\circ}$ |
| South | $180^{\circ}$ |
| Southwest | $225^{\circ}$ |
| West | $270^{\circ}$ |
| Northwest | $315^{\circ}$ |

Elevation is the angle above the local horizontal of one point relative to the other. To compute the elevation angle of a second point as viewed from the first,
provide the position and altitude of the points. The default units are degrees for latitudes and longitudes and meters for altitudes, but you can specify other units for each. What are the elevation and slant range of a point 10 kilometers east and 10 kilometers above a surface point?

```
[elevang,slantrange] = elevation(0,0,0, 0,km2deg(10),10000)
elevang =
```

    44.901
    slantrange $=$
14156

The answer is slightly different from that expected from plane geometry because of the curvature of the Earth.

## Planetary Almanac Data

The Mapping Toolbox contains a function that provides almanac data on the major bodies of our solar system. Basic geometric parameters, such as ellipsoid vectors, radii, surface areas, and volumes, can be accessed for the Sun, the Earth's moon, and all of the planets, in any of the supported units of distance measurement.

Many planets have ellipsoid vectors available. Some planets return spherical ellipsoid vectors only:

```
almanac('earth','ellipsoid','nauticalmiles')
ans =
    3443.92 0.08
almanac('mars','ellipsoid','kilometers')
ans =
    3396.90
        0.11
almanac('moon','ellipsoid','statutemiles')
ans =
    1079.97 0
```

When you specify 'radius ' a scalar is returned representing the radius of the best spherical model of the planet. Notice that for a spherical model, the radius in radians is 1 :

```
almanac('mercury','radius','kilometers')
ans =
    2439
almanac('neptune','radius','radians')
ans =
    1
```

Surface areas and volumes are calculated based on a spherical model by default. In most cases, you can use the ellipsoid model instead, and for the Earth you can specify any of the supported ellipsoid models. You can also request the actual tabulated values of the Earth:

```
almanac('mars','surfarea','kilometers','ellipsoid')
ans =
    1.4441e+08
```

```
almanac('earth','volume','kilometers','international')
ans =
    1.0833e+12
almanac('earth','volume','kilometers','actual')
ans =
    1.0832e+12
```

For a complete description of available data, see the almanac function in the online Mapping Toolbox reference documentation.

## Measuring Area of Spherical Quadrangles

In solid geometry, the area of a spherical quadrangle can be exactly calculated. A spherical quadrangle is the intersection of a lune and a zone. In geographic terms, a quadrangle is defined as a region bounded by parallels north and south, and meridians east and west.


In the pictured example, a quadrangle is formed by the intersection of a zone, which is the region bounded by $15^{\circ} \mathrm{N}$ and $45^{\circ} \mathrm{N}$ latitudes, and a lune, which is the region bounded by $0^{\circ}$ and $30^{\circ} \mathrm{E}$ longitude. Under the spherical planet assumption, the fraction of the entire spherical surface area inscribed in the quadrangle can be calculated:

```
area = areaquad(15,0,45,30)
area =
    0.0187
```

That is, less than $2 \%$ of the planet's surface area is in this quadrangle. To get an absolute figure in, for example, square miles, you must provide the appropriate spherical radius. The radius of the Earth is about 3958.9 miles:

```
area = areaquad(15,0,45,30,3958.9)
area =
    3.6788e+06
```

The surface area within this quadrangle is over 3.6 million square miles for a spherical Earth.

## Creating and Viewing Maps

The Mapping Toolbox provides many ways to control displays of geospatial data. This chapter provides an overview of the most important functions and associated interfaces for displaying and interacting with vector and raster geodata.

| Introduction to Mapping Graphics | Understanding Mapping Toolbox functions as extensions |
| :--- | :--- |
| (p. 4-2) |  |

Simple Map Displays Using worldmap and usamap (p. 4-3)
Axes for Drawing Maps (p. 4-5)

The Map Frame (p. 4-18)
The Map Grid (p. 4-23)
Displaying Vector Data with Mapping Toolbox Functions (p. 4-27)
Displaying Data Grids (p. 4-34)

Interacting with Displayed Maps (p. 4-42)

Understanding Mapping Toolbox functions as extensions of MATLAB graphics

Generating political line and patch maps with worldmap and usamap
Creating and handling map axes with axesm, setm, and getm
Controlling your window on the world and its appearance
Setting up a map graticule and labeling it
Creating maps of line and patch data with Mapping Toolbox functions
Creating maps of raster geodata with Mapping Toolbox functions

Using functions and interfaces to place text, tracks, and circles, and manipulating mapped objects

## Introduction to Mapping Graphics

Even though geospatial data often is manipulated and analyzed without being displayed, high-quality interactive cartographic displays can play valuable roles in exploratory data analysis, application development, and presentation of results.

With the Mapping Toolbox, you can display geographic information almost as easily as you can plot tabular or time-series data in MATLAB. Most mapping functions are similar to MATLAB plotting functions, except they accept data with geographic/geodetic coordinates (latitudes and longitudes), instead of Cartesian and polar coordinates. Mapping functions typically have the same names as their MATLAB counterparts, with the addition of an ' $m$ ' suffix (for maps). For example, the Mapping Toolbox analog to the MATLAB plot function is plotm.

The Mapping Toolbox manages most of the details in displaying a map. It projects your data, cuts and trims it to specified limits, and displays the resulting map at various scales. With the toolbox you can also add customary cartographic elements, such as a frame, gridlines, coordinate labels, and text labels, to your displayed map. If you change your projection properties, or even the projection itself, the Mapping Toolbox redraws the map with the new settings, undoing any cuts or trims if necessary. See "Accessing, Computing, and Inverting Map Projection Data" on page 8-31, for information on how to project data without displaying it.

The toolbox also makes it easy to modify and manipulate maps. You can modify the map display and mapped objects either from the command line or through graphical user interfaces and property editing tools you can invoke by clicking on the display. Most mapping display functions have graphical user interfaces. See "GUI Reference" on page 12-1, for more on these capabilities.


#### Abstract

Note The Mapping Toolbox manages the map display with the UserData property field in the Axes structure. The Toolbox also uses the UserData property of mapped objects. This can cause conflicts with other functions that use the UserData property field, restricting their use.


## Simple Map Displays Using worldmap and usamap

The Mapping Toolbox enables you to control many aspects of a map display. Some functions accept many parameters, but nearly all of them have useful defaults. Some functions, for example, the worldmap and usamap functions, trade control for simplicity. These functions create maps of regions of the world or the United States by automatically selecting appropriate map projections and settings. You can then modify or add to the map displays using the methods described later in this chapter. You can also use these functions to prepare a map display using your own data rather than the built-in atlas data.

Here are two examples that create political maps. The first one creates a base map of South Africa.

```
figure
worldmap 'south africa'
hidem(gca)
```



The second example creates a map of the Chesapeake Bay region by specifying geographic limits. It also places text annotation:

```
latlim = [37 40]; lonlim = [-78 -74];
figure
usamap(latlim,lonlim)
textm(38.2,-76.1,' Chesapeake Bay ',...
'fontweight','bold','Rotation', 270)
```



For further information on options for these functions see the reference pages for worldmap and usamap.

## Axes for Drawing Maps

When you create a map, you can use one of the Mapping Toolbox's built-in user interfaces (UIs), or you can build the graphic with MATLAB and Mapping Toolbox functions. Many MATLAB graphics are built using the axes function:

```
axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)
```

The Mapping Toolbox provides an extended version of axes, called axesm, that includes information about the current coordinate system (map projection). Its syntax is similar:

```
axesm
axesm(handle)
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFile,PropertyName,PropertyValue,...)
```

The axesm function without arguments brings up a UI that lists all supported projections and assists in defining their parameters. You can also summon this UI with the axesmui function.

You can also list all the names, classes, and ID strings of Mapping Toolbox map projections with the maps function.

Axes created with axesm share all properties associated with regular axes, and have additional properties related to projections, scale, and positioning in geographic coordinates. See the axes and axesm reference pages for lists of properties.
Map axes created by axesm contain projection information in a structure accessed by their UserData property. For an example of what these properties are, type

```
h = axesm('MapProjection','mercator')
```

and then use the getm function to retrieve all the map axes properties:

$$
\mathrm{p}=\operatorname{getm}(\mathrm{h})
$$

As the projection data is stored in the UserData fields of the axes structure, you can also access it via the general axes properties:

```
q = get(h, 'UserData')
```


## Using axesm

The figure window created using axesm contains the same set of tools and menus as any MATLAB figure, and is by default blank, even if there is map data in your workspace. You can toggle certain properties, such as grids, frames, and axis labels by right-clicking in the figure window to obtain a pop-up menu.
You can define multiple independent map axes figures, but only one can be active at any one time. Return handles for them when you create them to allow them to be referenced when they are no longer current. Use the axesm (handle) syntax to activate an existing map axes figure.

## Accessing and Manipulating Map Axes Properties

Just as the properties of the underlying standard axes can be accessed and manipulated using the MATLAB functions set and get, map axes properties can also be accessed and manipulated using the functions setm and getm.

Note Use the axesm function only to create a map axes. Use the setm function to modify existing map axes.

1 As an example, create a map axes containing no map data:

```
axesm('MapProjection','miller','Frame','on')
```

Note that you specify MapProjection string values in lowercase. At this point you can begin to customize the map. For example, you might decide to make the frame lines bordering the map thicker. First, you need to identify the current line width of the frame, which you do by querying the current axes, identified as gca.

2 Access the current FLineWidth property value by typing

```
getm(gca,'FLineWidth')
ans =
    2
```

3 Now reset the line width to four points. The default fontunits for figures is points. You can set fontunits to be points, normalized, inches, centimeters, or pixels.
setm(gca,'FLineWidth',4)
4 You can set any number of properties simultaneously with setm. Continue by reducing the line width, changing the projection to equidistant cylindrical, and verify the changes:

```
setm(gca,'FLineWidth',3,'MapProjection','eqdcylin')
getm(gca,'FLineWidth')
ans =
    3
getm(gca,'MapProjection')
ans =
eqdcylin
```

5 To inspect the entire set of map axes properties at their current settings, use the following command:

```
getm(gca)
ans =
    mapprojection: 'eqdcylin'
            zone: []
        angleunits: 'degrees'
            aspect: 'normal'
        falseeasting: []
    falsenorthing: []
        fixedorient: []
            geoid: [1 0]
        maplatlimit: [-90 90]
        maplonlimit: [-180 180]
        mapparallels: 30
            nparallels: 1
                origin: [0 O 0]
        scalefactor: []
            trimlat: [-90 90]
            trimlon: [-180 180]
                    frame: 'on'
```

```
            ffill: 100
            fedgecolor: [0 0 0]
            ffacecolor: 'none'
            flatlimit: [-90 90]
            flinewidth: 3
            flonlimit: [-180 180]
                    grid: 'off'
            galtitude: Inf
                gcolor: [0 0 0]
            glinestyle: ':'
            glinewidth: 0.5000
mlineexception: []
            mlinefill: 100
            mlinelimit: []
    mlinelocation: 30
    mlinevisible: 'on'
plineexception: []
            plinefill: 100
            plinelimit: []
    plinelocation: 15
    plinevisible: 'on'
            fontangle: 'normal'
            fontcolor: [0 0 0]
                    fontname: 'helvetica'
                    fontsize: 9
            fontunits: 'points'
            fontweight: 'normal'
        labelformat: 'compass'
            labelunits: 'degrees'
    meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 90
            mlabelround: 0
    parallellabel: 'off'
plabellocation: 15
plabelmeridian: -180
    plabelround: 0
```

Note that the list of properties includes both those particular to map axes and general ones that apply to all MATLAB axes.

6 Similarly, use the setm function alone to display the set of properties, their enumerated values and defaults:

```
setm(gca)
AngleUnits [ {degrees} | radians | dms | dm ]
Aspect [ {normal} | transverse ]
FalseEasting
FalseNorthing
FixedOrient FixedOrient is a read-only property
Geoid
MapLatLimit
MapLonLimit
MapParallels
MapProjection
NParallels NParallels is a read-only property
Origin
ScaleFactor
TrimLat TrimLat is a read-only property
TrimLon TrimLon is a read-only property
Zone
Frame
    [ on | {off} ]
FEdgeColor
FFaceColor
FFill
FLatLimit
FLineWidth
FLonLimit
Grid [ on | {off} ]
GAltitude
GColor
GLineStyle
GLineWidth
MLineException
MLineFill
MLineLimit
MLineLocation
MLineVisible [ {on} | off ]
PLineException
PLineFill
PLineLimit
```

```
PLineLocation
PLineVisible [ {on} | off ]
FontAngle [ {normal} | italic | oblique ]
FontColor
FontName
FontSize
FontUnits [ inches | centimeters | normalized
{points} | pixels ]
FontWeight [ {normal} | bold ]
LabelFormat [ {compass} | signed | none ]
LabelRotation [ on | {off} ]
LabelUnits [ {degrees} | radians | dms | dm ]
MeridianLabel [ on | {off} ]
MLabelLocation
MLabelParallel
MLabelRound
ParallelLabel
    [ on | {off} ]
PLabelLocation
PLabelMeridian
PLabelRound
```

Many, but not all, property choices and defaults can also be displayed individually:

```
setm(gca,'AngleUnits')
AngleUnits [ {degrees} | radians | dms | dm ]
setm(gca,'MapProjection')
An axes's "MapProjection" property does not have a fixed set
    of property values.
setm(gca,'Frame')
Frame [ on | {off} ]
setm(gca,'FixedOrient')
FixedOrient FixedOrient is a read-only property
```

7 In the same way, getm displays the current value of any axes property:

```
getm(gca,'AngleUnits')
ans =
degrees
```

```
getm(gca,'MapProjection')
ans =
eqdconic
getm(gca,'Frame')
ans =
on
getm(gca,'FixedOrient')
ans =
```

    []
    For a complete listing and descriptions of map axes properties, see the reference page for axesm. To identify what properties apply to a given map projection, see the reference page for that projection.

## Switching Between Projections

Once map axes have been created with axesm, whether map data is displayed or not, it is possible to change the current projection as well as many of its parameters. You can use setm or the maptool UI to redefine the projection. If you do so, you might need to change some of the map axes properties to achieve proper appearance. Settings that are suitable for one projection might not be appropriate for another. Some projections have default properties that define that particular projection and cannot be altered; for example, the Balthasart cylindrical projection is defined to have standard parallels (MapParallels) at $50^{\circ}$. Other projections have default properties that are initially set for proper world display; for example, the Mercator projection limits the latitude range to $\pm 86^{\circ}$ to avoid "blowing up" at the poles.

Although similar projections can share the same set of properties (Miller cylindrical and plate carree cylindrical), others can be drastically different (polyconic and stereographic azimuthal). The classification of map projections is often a good indicator of whether changes need to be made. For instance, switching from a cylindrical to an azimuthal projection requires a few modifications, as the following examples indicate:

1 Create a Mercator projection with meridian and parallel labels:

```
axesm mercator
framem on; gridm on; mlabel on; plabel on
setm(gca,'LabelFormat','signed')
```



2 Get the default map and frame latitude limits for the Mercator projection:

```
[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =
-86 86
-86 86
```

Both the frame and map latitude limits are set to $86^{\circ}$ north and south for the Mercator projection to maintain a safe distance from the singularity at the poles.

3 Now switch the projection to an orthographic azimuthal:

```
setm(gca,'MapProjection','ortho')
```

What happened to the map frame and labels? If you recall, the frame latitude limits have not been changed and still correspond to the default values for a Mercator projection, as do all the other properties.

4 Only those properties that are required to have values are updated for the current projection. Among those that need not be are the latitude and longitude limits. Use getm to see their settings:

```
getm(gca,'FLatLimit')
ans =
-86 86
```

5 You must manually reset the frame and map limits to appropriate values for an orthographic projection so that the circular frame is displayed. If you don't know the default or appropriate numeric values, provide an empty matrix for any of the property values:

```
setm(gca,'FLatLimit',[],'MapLatLimit',[])
[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =
    -90 90
    -Inf 89
```

6 You also need to manually specify the locations of the meridian and parallel labels (see "Labeling Grids" on page 4-25):

```
setm(gca,'MLabelParallel',0,'PLabelMeridian',-90)
```

Now the map is displayed correctly, with the frame:


You can reset default property values to new values by specifying empty matrices, as shown in the last example. You can reset the entire set of properties to default values by using the Reset button on the axesmui GUI.

For complete descriptions of all map axes properties, see the axesm reference page. For more information on the use of axesmui, refer to the axesm, axesmui reference page.

## Projected and Unprojected Graphic Objects

Many graphic functions in the Mapping Toolbox functions project objects on a map axes based on their designated latitude-longitude positions. The latitudes and longitudes are mathematically transformed to x and y positions using the formulas for the current map projection. If the projection changes for a map axes (for example, if you use the setm function to alter the MapProjection property), these objects are reprojected into new positions. Mapping Toolbox functions with this property include the following:

- contourm
- contour3m
- fillm
- fill3m
- gridm
- linem
- patchm
- plotm
- plot3m
- surfm
- surfacem
- textm

Each of these functions is analogous to a standard MATLAB graphics function, which has the same name minus the trailing m . Both types of functions can be used on a map axes, as long as you are aware that the standard MATLAB graphics functions do not apply map projection transformations, and therefore require positions to be specified in Cartesian axes space.
If you have pre-projected vector or raster map data, you can display it with standard MATLAB graphics functions. If its projection is known and is one built into the Mapping Toolbox, you can use its parameters to project geodata in geographic coordinates to display it in the same axes. For additional
information, see "Using Cartesian MATLAB Display Functions" on page 6-18. You can also display projected geodata using mapview and mapshow.

## Placing Geographic and Non-geographic Objects in a Map Axes

Here is an example of how the two types of functions can interact when you place text objects:

1 Make a Miller map axes and grid:
axesm miller; framem on; gridm on; showaxes; grid off;

These two functions create a map axes, a map frame enclosing the region of interest, and geographic grid lines. The $x-y$ axes, which are normally hidden, are displayed, and the MATLAB $x-y$ grid is turned off. Note that the Mapping Toolbox function gridm behaves differently than the MATLAB $x-y$ grid function.

2 Now place a standard MATLAB text object and a mapped text object, using the two separate coordinate systems:

```
text(.5,-1,'Standard Text Object')
textm(60,-150,'Mapped Text Object')
```

In the figure, shown below, a standard text object is placed at $x=0.5$ and $y=-1$, while a mapped text object has been placed at $\left(60^{\circ} \mathrm{N}, 150^{\circ} \mathrm{W}\right)$ in the Miller projection.


3 Now change the projection to sinusoidal. The MATLAB text object remains at the same Cartesian position, which alters its latitude-longitude position. The mapped text object remains at the same geographic location, so its $x-y$ position is altered. Also, the frame and gridlines reflect the new map projection:

```
setm(gca,'MapProjection','sinusoid')
showaxes; grid off;
```



Similarly, vector and matrix data can be displayed using either mapping or standard functions (e.g., plot/plotm, surf/surfm). See "Displaying Vector Data with Mapping Toolbox Functions" on page 4-27 for information on plotting vector geodata, and "Displaying Data Grids" on page 4-34 for information on plotting raster geodata.

## The Map Frame

In the Mapping Toolbox, the map frame is the outline of the limits of a map, often in the form of a box, the "edge of the world," so to speak. The frame is displayed if the map axes property Frame is set to ' on '. This can be accomplished upon map axes creation with axesm, or later with setm, or with the direct command framem on. The frame is geographically defined as a latitude-longitude quadrangle that is projected appropriately. For example, on a map of the world, the frame might extend from pole to pole and a full $360^{\circ}$ range of longitude. In appearance, the frame would take on the characteristic shape of the projection. The examples below are full-world frames shown in three very different projections:


## Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however, the selection of a display projection has varied their appearance. Since each of the examples shows the entire world, FLatLimit is [-90 90], and FLonLimit is [-180 180] for each case. The frame quadrangle can encompass smaller
regions, as well, in which case the shape is a section of a full-world outline or simply a quadrilateral with straight or curving sides:


## Frame Quadrangles Shown in the Robinson Projection (symmetric about Prime Meridian)

For the frames shown above, the projection is centered on the prime meridian, or 0 longitude. Such a frame would be the result of creating a map axes with the defaults for the Robinson projection and then resetting the frame limits to cover just part of the world.

For example, to view the asymmetric frame in the lower right of the previous figure, type

```
axesm robinson
setm(gca,'FLatLimit',[-70 -30],...
    'FLonLimit',[60 150],...
    'Frame','on')
```

Note that map axes properties that concern frames begin with ' $F$ '.
When you want your frame to be symmetric about the region of interest, let axesm determine the proper settings for you. If you specify the map limits without specifying the map origin and frame limits, axesm will automatically set the appropriate values for a proper symmetric frame.


## Frame Quadrangles Shown in the Robinson Projection (Symmetric about Map Limits)

For example, to view the symmetric frame in the lower right of the above figure, set the map limits with axesm:

```
axesm('MapProjection','robinson',...
    'MapLatLimit',[-70 -30],...
    'MapLonLimit',[60 150],...
    'Frame','on')
```

You can manipulate properties beyond the latitude and longitude limits of the frame. Frame properties are established upon map axes creation; you subsequently can modify them with the setm and the framem functions. The command framem alone is a toggle for the Frame property, which controls the visibility of the frame. You can also call framem with property names and values to alter the appearance of the frame:

```
framem('FlineWidth',4,'FEdgeColor','red')
```

The frame is actually a patch with a default face color set to 'none' and a default edge color of black. You can alter these map axes properties by manipulating the FFaceColor and FEdgeColor properties. For example, the command

```
setm(gca,'FFaceColor','cyan')
```

makes the background region of your display resemble water. Since the frame patch is always the lowest layer of a map display, other patches, perhaps representing land, will appear above the "water." If an object is subsequently plotted "below" the frame patch, the frame altitude can be recalculated to lie below this object with the command framem reset. The frame is replaced and not reprojected.

Set the line width of the edge, which is 2 points by default, using the FLineWidth property.
The primary advantage of displaying the map frame is that it can provide positional context for other displayed map objects. For example, when vector data of the coasts is displayed, the frame provides the "edge" of the world.
See the framem reference page for more details.

## Map and Frame Limits

In the Mapping Toolbox, the map and frame limits are two related map axes properties that limit the map display to a defined region. The map latitude and longitude limits define the extents of geodata to be displayed, while the frame limits control how the frame fits around the displayed data. Any object that extends outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map limits are in absolute geographic coordinates referenced to an origin at the intersection of the prime meridian and the equator, while the frame limits are referenced to the rotated coordinate system defined by the map axes origin.
For all non-azimuthal projections, frame limits are specified as quadrangles ([latmin latmax] and [longmin longmax]) in the frame coordinate system. In the case of azimuthal projections, the frames are circular and are described by a polar coordinate system. One of the frame latitude limits must be a negative infinity ( - Inf) to indicate an azimuthal frame (think of this as the center of the circle), while the other limit determines the radius of the circular frame (rlatmax). The longitude limits of azimuthal frames are inconsequential, since a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame limit, you can reset the formats to the default values using empty matrices.

Note For nonazimuthal projections in the normal aspect, the map extent is limited by the minimum of the map limits and the frame limits; hence, the two limits will coincide after evaluation. Therefore if you manually change one set of limits, you might want to clear the other set to get consistent limits.

## The Map Grid

The map grid is the set of displayed meridians and parallels, also known as a graticule. Display the grid by setting the map axes property Grid to ' on '. You can do this when you create map axes with axesm, with setm, or with the direct command gridm on.

## Grid Spacing

To control display of meridians and parallels, set a scalar meridian spacing or a vector of desired meridians in the MLineLocation property. The property PLineLocation serves a corresponding purpose for parallels. The default values place grid lines every $30^{\circ}$ for meridians and every $15^{\circ}$ for parallels.


## Grid Layering

By default, the grid is placed as the top layer of any display. You can alter this by changing the GAltitude property, so that other map objects can be placed
"above" the grid. The new grid is drawn at its new altitude. The units used for GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm reset. You can also control the appearance of grid lines with the GLineStyle and GLineWidth properties, which are ':' and 0.5 , respectively, by default.

## Limiting Grid Lines

The Miller projection is an example in which all the meridians can extend to the poles without appearing to be cluttered. In other projections, such as the orthographic (below), the map grid can obscure the surface where they converge. Two map axes properties, MLineLimit and MLineException, enable you to control such clutter:

- Use the MLineLimit property to specify a pair of latitudes at which to terminate the meridians. For example, setting MLineLimit to [ -75 75] completely clears the region above and below this latitude range of meridian lines.
- If you want some lines to reach the poles but not others, you can specify them with the MLineException property. For example, if MLineException is set to [-90 090 180], then the meridians corresponding to the four cardinal longitudes will continue past the limit on to the pole.

The use of these properties is illustrated in the figure below. Note that there are two corresponding map axes properties, PLineLimit and PLineException, for controlling the extent of displayed parallels.


Default grid allows all displayed meridians to extend to the poles.

The property MLineLimit can truncate meridians at a given latitude, here at $75 \times \mathrm{N}$ and S .

## Labeling Grids

You can label displayed parallels and meridians. MeridianLabel and ParallelLabel are on-off properties for displaying labels on the meridians and parallels, respectively. They are both 'off' by default. Initially, the label locations coincide with the default displayed grid lines, but you can alter this by using the PlabelLocation and MlabelLocation properties. These grid lines are labeled across the north edge of the map for meridians and along the west edge of the map for parallels. However, the property MlabelParallel allows
you to specify 'north', 'south', 'equator', or a specific latitude at which to display the meridian labels, and the PlabelMeridian allows the choice of 'west', 'east', 'prime', or a specific longitude for the parallel labels. By default, parallel labels are displayed in the range of $0^{\circ}$ to $90^{\circ}$ north and south of the equator while meridian labels are displayed in the range of $0^{\circ}$ to $180^{\circ}$ east and west of the prime meridian. You can use the mlabelzero22pi function to redisplay the meridian labels in the range of $0^{\circ}$ to $360^{\circ}$ east of the prime meridian.

Properties affecting grid labeling are listed below:

| Property | Effect |
| :--- | :--- |
| MeridianLabel | Toggles display of meridian labels |
| ParallelLabel | Toggles display of parallel labels |
| MlabelLocation | Alternate interval for labeling meridians |
| PlabelLocation | Alternate interval for labeling parallels |
| MlabelParallel | Keyword or latitude for placing meridian labels |
| PlabelMeridian | Keyword or longitude for placing parallel labels |
| mlabelzero22pi <br> (function) | Relabel meridians with positive angle from $0^{\circ}$ to $360^{\circ}$ |

For complete descriptions of all map axes properties, refer to the axesm reference page.

## Displaying Vector Data with Mapping Toolbox Functions

In addition to mapview, maptool, and other Mapping Toolbox GUIs, you can create maps interactively by entering commands or via scripts. This section describes how to use the principal mapping functions for displaying vector geospatial data. The following section describes displaying raster map data.

## Displaying Vector Maps as Lines

The Mapping Toolbox lets you display vector map data as line objects much like the line display functions in MATLAB. The Mapping Toolbox line graphics functions have MATLAB analogs, the names of which can usually be determined by appending an $m$ to the MATLAB function name. For instance, the Mapping Toolbox version of plot is plotm. The main difference between the two classes of functions comes from the need for Mapping Toolbox functions to work with geographic coordinates and map projections.
The following table lists the available Mapping Toolbox line display functions:

| Function | Used For |
| :--- | :--- |
| contourm | Contour plot of map data |
| contour3m | Contour plot of map data in 3-D space |
| linem | Draws line objects projected on map axes |
| plotm | Clears figure and draws line objects projected on map axes |
| plot3m | Projects lines on map axes in 3-D space |

The following exercise shows how some of these functions work:
1 Set up a map axes and frame:

```
load coast
axesm mollweid
framem('FEdgeColor','blue','FLineWidth',0.5)
```

2 Plot the coast vector data using plotm. Just as with plot, you can specify line property names and values in the command:

```
plotm(lat,long,'LineWidth',1,'Color','blue')
```

Sometimes vector data represents specific points. Suppose you have variables representing the locations of Cairo ( $30^{\circ} \mathrm{N}, 32^{\circ} \mathrm{E}$ ), Rio de Janeiro $\left(23^{\circ} \mathrm{S}, 43^{\circ} \mathrm{W}\right)$, and Perth ( $32^{\circ} \mathrm{S}, 116^{\circ} \mathrm{E}$ ), and you want to plot them as markers only, without connecting line segments.

3 Define the three city geographic locations and plot symbols at them:

```
citylats = [30 -23 -32]; citylongs = [32 -43 116];
plotm(citylats,citylongs,'r*')
```



4 In addition to these sorts of "permanent" geographic data, you can also display calculated vector data. Calculate and plot a great circle track from Cairo to Rio de Janeiro, and a rhumb line track from Cairo to Perth:

```
[gclat,gclong] = track2('gc',citylats(1),citylongs(1),...
    citylats(2),citylongs(2));
[rhlat,rhlong] = track2('rh',citylats(1),citylongs(1),...
    citylats(3),citylongs(3));
plotm(gclat,gclong,'m-'); plotm(rhlat,rhlong,'m-')
```



## Displaying Vector Maps as Patches

Vector map data that is properly formatted (i.e., as closed polygons) can be displayed as patches, or filled-in polygons. The patchm function is the Mapping Toolbox equivalent to the MATLAB patch function.

Note The Mapping Toolbox patch display functions differ from their MATLAB equivalents by allowing you to display patch vector data that use NANs to separate closed regions.

The following table lists the available Mapping Toolbox patch display functions:

| Function | Used For |
| :--- | :--- |
| fillm | Filled 2-D map polygons |
| fill3m | Filled 3-D map polygons in 3-D space |


| Function | Used For |
| :--- | :--- |
| patchm | Patch objects projected on map axes |
| patchesm | Patches projected as individual objects on map axes |

1 The usalo MAT-file is useful for illustrating patches. Load it and observe what it contains:
load usalo
who
Your variables are:

| conus | gtlakelon | statelat | uslon |
| :--- | :--- | :--- | :--- |
| greatlakes | state | statelon |  |
| gtlakelat | stateborder | uslat |  |

The variables uslat and uslon together describe three polygons (separated by NaNs ), the largest of which represents the outline of the conterminous United States. The two smaller polygons represent Long Island and Martha's Vineyard. The variables gtlakelat and gtlakelon describe three polygons (separated by NaNs) for the Great Lakes. The variables statelat and statelon contain line-segment data (separated by NaNs) for the borders between states, which is not formatted for patch display.

2 Verify that line and patch data contains NaNs (hence multiple objects) by typing a command similar to find(isnan(vector)):
find(isnan(gtlakelon)) \%or greatlakelat
ans $=$
883
1058
1229
3 Thus you can tell that greatlakes contains three geographic objects. How do you know they are patches? If you type
greatlakes
you see it is a structure having six fields:
greatlakes =

```
1x3 struct array with fields:
    type
    tag
    lat
    long
    altitude
    otherproperty
```

4 The type field specifies whether the data is stored as lines or patches:
greatlakes.type
ans =
patch

For further details on how the Mapping Toolbox structures geographic data, see "Understanding Vector Data" on page 2-13. and "Understanding Raster Data" on page 2-27.

Now you will display the state polygons. As conic projections are appropriate for displaying the entire United States, you will create a map axes using an Albers equal-area conic projection. Specifying map limits that contain the region of interest automatically centers the projection on an appropriate longitude; the frame encloses just the mapping area, not the entire globe.

Note Conic projections need two standard parallels (latitudes at which scale distortion is zero). A good rule is to set the standard parallels at one-sixth of the way from both latitude extremes.

5 Obtain default latitudes by providing an empty matrix as the standard parallels:

```
axesm('MapProjection','eqaconic', 'MapParallels',[],...
    'MapLatLimit',[23 52], 'MapLonLimit',[-130 -62])
```

6 If you do not know what latitude and longitude limits are appropriate for your map, as a starting point you could use the exact ones. Obtain them for the usalo data as follows:

```
uslatlim = [min(uslat) max(uslat)]
uslatlim =
```

$25.1200 \quad 49.3800$

```
uslonlim = [min(uslon) max(uslon)]
uslonlim =
    -124.7200 -66.9700
```

7 Then you can use these variables to set the frame limits exactly, which will eliminate any border around the map:

```
axesm('MapProjection','eqaconic', 'MapParallels',[],...
    'MapLatLimit',uslatlim, 'MapLonLimit',uslonlim)
```

When patch data is displayed, layering can become important as objects above can hide objects below. You can control the visibility of objects by the order of their display and by their altitude. For this reason, the primary patch display function in the Mapping Toolbox, fillm, allows you to control the $z$-axis level of displayed patches. Here the land data is displayed at the default level, $z=0$. The Great Lakes data is assigned the altitude of $z=1$.

8 To plot the line segment data between these layers, use the plot3m function and specify an altitude of 0.5 :

```
fillm(uslat,uslon, 'FaceColor',[1 .5 .3], 'EdgeColor','none')
fillm(gtlakelat,gtlakelon,1,...
    'FaceColor','cyan', 'EdgeColor','none')
plot3m(statelat,statelon,0.5,'k')
```

Here is the resulting map:


The fillm function makes use of the low-level function patchm. The Mapping Toolbox provides another patch drawing function called patchesm. The optimal use of either depends on the application and user preferences. The patchm function creates one displayed object and returns one handle for a patch, which can contain multiple faces that do not necessarily connect. The Mapping Toolbox uses NaNs to separate unconnected patch faces, unlike MATLAB, which does not handle NaN clipped data for patches. The patchesm function, on the other hand, treats each face as a separate object and returns an array containing a handle for each patch. In general, patchm requires more memory but is faster than patchesm. The patchesm function is useful if you need to manipulate the appearance of individual patches (as thematic maps often require).

## Displaying Data Grids

The Mapping Toolbox provides functions for the display and enhancement of both regular and geolocated data grids originating in a variety of formats. Recall that regular data grids require a referencing vector or matrix that describes the sampling and location of the data points, while geolocated data grids require matrices of latitude and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB surface drawing functions, but operate specifically on map axes. Like the line plotting functions discussed in the previous chapter, Mapping Toolbox grid function names are mostly identical to their MATLAB counterparts, with an $m$ appended.

Note In the Mapping Toolbox, functions beginning with mesh are used for regular data grids, while those with surf are reserved for geolocated data grids. This usage differs from the MATLAB definition; that is, mesh plots are used for colored, wire-frame views of the surface, while surf displays colored, faceted surfaces.

Surface map objects can be displayed in a variety of different ways. You can assign colors from the figure colormap to surfaces according to the values of their data. You can also display images where the matrix data consists of indices into a colormap or display the matrix as a three-dimensional surface, with the $z$-coordinates given by the map matrix. You can use monochrome surfaces that reflect a pseudo-light source, thereby producing a three-dimensional, shaded relief model of the surface. Finally, you can use a combination of color and light shading to create a lighted shaded relief map.
The following table lists the available Mapping Toolbox surface map display functions:

| Function | Used For |
| :--- | :--- |
| meshm | Regular data grid warped to projected graticule mesh |
| surfm | Geolocated data grid projected on map axes |
| pcolorm | Projected data grid in $\mathrm{z}=0$ plane |


| Function | Used For |
| :--- | :--- |
| surfacem | Data grid warped to projected graticule mesh |
| surflm | 3-D shaded surface with lighting projected on map axes |
| meshlsrm | 3-D lighted shaded relief of regular data grid |
| surflsrm | 3-D lighted shaded relief of geolocated data grid |

## Fitting Gridded Data to the Graticule

The Mapping Toolbox projects surface objects in a manner similar to the traditional methods of map making. A cartographer first lays out a grid of meridians and parallels called the graticule. Each graticule cell is a geographic quadrangle. The cartographer calculates or interpolates the appropriate $x-y$ locations for every vertex in the graticule grid and draws the projected graticule by connecting the dots. Finally, the cartographer draws the map data freehand, attempting to account for the shape of the graticule cells, which usually change shape across the map. Similarly, the Mapping Toolbox calculates the $x-y$ locations of the four vertices of each graticule cell and warps or samples the matrix data to fit the resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography, the finer the mesh (analogous to using a graticule with more meridians and parallels), the greater precision the projected map display will have, at the cost of greater effort and time. The graticule in a printed map is analogous to the spacing of grid elements in a regular data grid, which the Mapping Toolbox represents as two-element vectors, of the form [number-of-parallels, number-of-meridians ]. The graticule for geolocated data grids is similar; it is the size of the latitude and longitude coordinate matrices, where number-of-parallels=mrows-1 and number-of-meridians=ncols-1. However, because geolocated data grids have arbitrary cell corner locations, spacing can vary and thus their graticule is not a regular equiangular mesh.

In other words, while the structure of cells for regular data grids is restricted to equal-angle quadrangles (i.e., length of cell in latitude must equal length of cell in longitude), geolocated data grids have no such constraints. Their cells can be of any size.

The topo regular data grid can be displayed quickly using a coarse graticule, at a cost in precision of representation. Observe the map that results from the following commands:

```
close all; clear all;
load topo %Get data grid and ref vec
figure; axesm robinson %Set up Robinson proj
spacing = [10 20];
h = meshm(topo,topolegend,spacing);
demcmap(topo)
    %Spec a 10x20 cell grid
    %Draw data into grid
%Set DEM color map
```



Notice that for this coarse graticule, the edges of the map do not appear as smooth curves. What might not be as obvious is that the easternmost column of graticule cells and the southwesternmost cell are sometimes invisible on displayed data grids. This is necessary for the proper projection of the surface object and is not a concern except with the coarsest graticules. Previous displays used the default [50 100] graticule, for which this effect is negligible.

Regardless of the graticule resolution, the grid data is unchanged. In this case, the data grid is the 180-by- 360 topo matrix, and regardless of projection fidelity, the resolution of its value data is unchanged.

Map objects displayed as surfaces have all the properties of any MATLAB surface, which can be set at object creation or by using the MATLAB set function. The mapping setm function allows the MeshGrat graticule property to
be manipulated for regular matrix surfaces. Since you saved the handle of the last displayed map, reset its graticule to a very fine grid. As making the mesh more precise is a tradeoff between resolution and time, doing this will take longer to display the map:

```
setm(h,'MeshGrat',[200 400])
```



Another way you could have done this is with the meshgrat function:

```
[latgrat,longrat] = meshgrat(topo,topolegend,[200 400])
setm(h,'Graticule',latgrat,longrat)
```

The vectors latgrat and longrat produced by meshgrat are vectors containing parallel and meridian values in each mesh direction.
You'll probably notice that the result does not appear to be any better than the original display with the default [50 100] graticule, but it took much longer to produce. There is no point to specifying a mesh finer than the data resolution (in this case, 180-by-360 grid cells). In practice, you will probably use coarse graticules for development tasks and fine graticules for final graphics production.

## Using Raster Data to Create 3-D Displays

The simplest way to display raster data is to assign colors to matrix elements according to their data values and view them in two dimensions. Raster data maps also can be displayed as 3-D surfaces using the matrix values as the $z$ data. Here you explore some basic concepts and operations for setting up surface views, which requires explicit horizontal coordinates.


#### Abstract

Note The difference between regular raster data and a geolocated data grid is that each grid intersection for a geolocated grid is explicitly defined with ( $\mathrm{x}, \mathrm{y}$ ) or (latitude, longitude) matrices or is interpolated from a graticule, while a regular matrix only implies these locations (which is why it needs a georeferencing vector or matrix).


You will use the raster elevation data in the korea MAT-file, which also includes bathymetry data for the region around the Korean peninsula, along with a referencing vector variable, which indicates the data set is a regular data grid and locates it on the Earth:

1 Load the MAT-file and transform this representation to a fully geolocated data grid by calculating a mesh via the meshgrat function.
load korea
[lat,lon] = meshgrat(map,maplegend);
2 Next use the km2deg function to convert the units of elevation from meters to degrees, so they are commensurate with the latitude and longitude coordinate matrices.

```
map = km2deg(map/1000);
```

3 Observe the results by typing the whos command.

| whos |  |  |  |
| :--- | :---: | ---: | :--- |
| Name | Size | Bytes | Class |
|  |  |  |  |
| ans | $0 \times 0$ | 0 | double array |
| lat | $180 \times 240$ | 345600 | double array |
| lon | $180 \times 240$ | 345600 | double array |
| map | $180 \times 240$ | 345600 | double array |
| maplegend | $1 \times 3$ | 24 | double array |

Notice that the lat and lon coordinate matrices form a mesh the same size as the map matrix. This is a requirement for constructing 3-D surfaces, unlike the example given above using the topo raster data set, which was displayed in 2-D using the meshm function. If you inspect lat and lon in the MATLAB array editor, you find that in lon all columns contain the same number for a given row, and in lat, all rows contain the same number for a given column. This is because the mesh produced by meshgrat in this case is regular, but such data grids need not have equal spacing.

4 Now set up map axes with the equal area conic projection:

```
axesm('MapProjection','eqaconic','MapParallels',[],...
    'MapLatLimit',[30 45],'MapLonLimit',[115 135])
```

5 Instead of using the meshm function to make this map, display the korea geolocated data grid using the surfm function, and set an appropriate colormap:

```
surfm(lat,lon,map,map); demcmap(map)
```

Here is the result, which is no different than what meshm would produce:


Be aware, however, that this map is really a 3-D view seen from directly overhead (the default perspective). To appreciate that, all you need to do is to change your viewpoint.

6 Use the view function to specify a viewing azimuth of 60 degrees (from the East Southeast) and a viewing elevation of 30 degrees above the horizon:
view (60,30)
The figure immediately rotates to the specified perspective:


The Mapping Toolbox provides many other controls over perspective map representations. See Chapter 5, "Making Three-Dimensional Maps," for additional help on constructing 3-D views.

## Interacting with Displayed Maps

You can use the Mapping Toolbox to interact with maps, both in mapview and in figures created with axesm. This section describes two useful graphic input functions, inputm and gcpmap. The inputm function (analogous to the MATLAB ginput function) allows you to get the latitude-longitude position of a mouse click. The gcpmap function (analogous to the MATLAB function get (gca, 'CurrentPoint')) returns the current mouse position, also in latitude and longitude.

Explore inputm with the following commands, which display a map axes with its grid, and then requests three mouse clicks, the locations of which are stored as geographic coordinates in the variable points. Then the plotm function plots the points you clicked on as red markers. The display you see depends on the points you select:

```
axesm sinusoid
framem on; gridm on
points=inputm(3)
points =
    -41.7177 -145.0293
        7.9211 -0.5332
        38.5492 149.2237
plotm(points,'r*')
```



Note If you click outside the map frame, inputm returns a valid but incorrect latitude and longitude, even though the point you indicated is off the map.

One reason you might want to manually identify points on a map is to interactively explore how much distortion a map projection has at given locations. For example, you can feed the data acquired with inputm to the distortcalc function, which computes area and angular distortions at any location on a displayed map axes. If you do so using the points variable, the results of the previous three mouse clicks are as follows:

```
[areascale,angledef] = distortcalc(points(1,1),points(1,2))
areascale =
    1.0000
angledef =
    85.9284
>> [areascale,angledef] = distortcalc(points(2,1),points(2,2))
areascale =
    1.0000
angledef =
    3.1143
[areascale,angledef] = distortcalc(points(3,1),points(3,2))
areascale =
    1.0000
angledef =
    76.0623
```

This indicates that the current projection (sinusoidal) has the equal-area property, but exhibits variable angular distortion across the map, less near the equator and more near the poles.

## Defining Small Circles and Tracks Interactively

Geographic line annotations such as navigational tracks and small circles can be generated interactively. Great circle tracks are the shortest distance between points, and when closed partition the Earth into equal halves; a small circle is the locus of points at a constant distance from a reference point. Use trackg and scircleg to create them by clicking on the map. Double-click on the tracks or circles to modify the lines. Shift-click to type specific parameters
into a control panel. The control panels also allow you to retrieve or set properties of tracks and circles (for instance, great circle distances and small circle radii).

The following example illustrates how to interactively create a great circle track from Los Angeles, California, to Tokyo, Japan, and a 1000 km radius small circle centered on the Hawaiian Islands. The track is made via the trackg function, which prompts you to select end points for a track with the mouse. The scircleg function prompts for two points also, a center and any point on the circumference of the small circle. The specifics of the track and the circle are then adjusted more precisely with dialog controls:

1 Set up an orthographic view centered over the Pacific Ocean. Use the coast MAT-file:

```
axesm('ortho','origin',[30 180])
framem;gridm
load coast
plotm(lat,long,'k')
```

2 Create a track with the trackg function, which prompts for two endpoints. The default track type is a great circle:

```
trackg
Track1: Click on starting and ending points
```

Click near Los Angeles and Tokyo and the track is drawn.
3 Now create a small circle around Hawaii with the scircleg function, which prompts for a center point and a point on the perimeter. Make the circle's radius about 2000 km , but don't worry about getting the size exact:

```
scircleg
Circle 1: Click on center and perimeter
```

The map should look approximately like this:


4 Adjust the size of the small circle to be 2000 km by shift-clicking anywhere on its perimeter. This brings up the Small Circles dialog box.

5 Type 2000 into the Radius field.
6 Click Close. The small circle readjusts to be 2000 km around Hawaii.
7 To adjust the track between Los Angeles and Tokyo, shift-click on it. This brings up the Track dialog, with which you specify a position and initial azimuth for either endpoint, as well as the length and type of the track.

8 Change the track type from Great Circle to Rhumb Line with the Track pop-up menu. The track immediately changes shape.

9 Experiment with the other Track dialog controls. Also note that you can move the endpoints of the track with the mouse by dragging the red circles, and obtain the arc's length in various units of distance.

The following figure shows the Small Circles and Track dialogs.


For further information, see the reference page descriptions of the related scirclui and trackui GUIs, which enable you to define these annotations with or without mouse input.

## Interactive Text Annotation

You can also interactively place text annotations by clicking on a map display. The textm function, which requires numerical arguments for locating a specified text string, was illustrated in Chapter 4, "Placing Geographic and Non-geographic Objects in a Map Axes." The gtextm function, which takes a text string and optional properties as arguments, interactively defines the location for the specified text object based on where you click on the map.

Try these gtextm commands to label the locations you have just annotated:

```
gtextm('Hawaii','color','r')
gtextm('Tokyo')
gtextm('Los Angeles')
```

The following figure displays the results of these gtextm commands. After you place text, you can move it interactively using the selection tool in the map figure window.


## Working with Objects by Name

The Mapping Toolbox allows you to manipulate displayed objects by name. Many mapping functions assign descriptive names to the Tag property of the objects they create. The namem and related functions allow you to control the display of groups of similarly named objects, determine the names and change them if so desired, and use the name in the Handle Graphics ${ }^{\circledR}$ set and get functions. There is also a Mapping Toolbox graphical user interface, mobjects, to help you manage the display and control of objects.

Some mapping display functions like framem, gridm, and contourm assign object tags by default. You can also set the name upon display by assigning a string to the Tag property in mapping display functions that use property name / property value pairs. If the Tag does not contain a string, the name defaults to an object's Type property, such as 'line' or 'text'.

## Determining and Manipulating Object Names

1 Display a vector map of the world:

```
f = axesm('fournier')
```

```
framem on; gridm on;
plabel on; mlabel('MLabelParallel',0)
load coast
plotm(lat,long,'k','Tag','Coastline')
```

Below is the resulting map.


2 List the names of the objects in the current axes using namem:
namem
ans =
Coastline
PLabel
MLabel
Meridian
Parallel
Frame
3 The handlem function allows you to dereference graphic objects and to get or set their properties. Change the line width of the coastline with set:
set(handlem('Coastline'), 'LineWidth', 2)
4 Change the colors of the meridian and parallel labels separately:

```
set(handlem('Mlabel'),'Color',[.5 .2 0])
```

```
set(handlem('Plabel'),'Color',[.2 .5 0])
```

You can also change these labels to be the same color using setm:

```
setm(f,'fontcolor', [.4 .5 .6])
```

5 The handlem command with no arguments summons a UI control with a list of map axes objects. This is useful for selecting objects interactively. Try handlem
or
h = handlem
6 Combined with set, this makes it simple to change properties such as color. Remember, however, to use the right property name. Patches, for example, have a 'FaceColor' and 'EdgeColor', while most other objects simply have 'Color ', as is the case with the Coastline object. Now use handlem to call a color picker to set the coastline to any color you like:

```
set(handlem,'Color',uisetcolor)
```

The reference page for handlem lists the object names that it recognizes. Note that most of these names can be prefixed with 'all', which returns an array of all handles for that class of object.

7 Now try handlem using the all modifier:

```
t = handlem('alltext')
l = handlem('allline')
```

Note that you can also use all with the hidem and showm functions:

```
hidem('alltext')
showm('alltext')
```

For more information on the use of functions and tools for manipulating objects, consult the setm, getm, handlem, hidem, showm, clmo, namem, tagm, and mobjects entries in the Mapping Toolbox reference documentation.

## Making Three-Dimensional Maps


#### Abstract

The Mapping Toolbox constructs three-dimensional as well as two-dimensional map displays. Any map can be constructed and viewed in three dimensions. Some thematic mapping functions plot 3-D symbolism. The most common 3-D application is terrain visualization, for which terrain data grids supply the altitude data. This chapter describes how to obtain and work with terrain data, techniques for making 3 -D surface representations, and continues on to describe ways to drape other data over terrain, how to shade, light, and view both planimetric and spherical 3-D relief displays.


Sources of Terrain Data (p. 5-2) | Notes on terrain data available from U.S. mapping |
| :--- |
| agencies |

Reading Elevation Data Interactively (p. 5-11)

Determining and Visualizing Visibility Across Terrain (p. 5-16)
Shading and Lighting Terrain Maps (p. 5-19)

Draping Data on Elevation Maps (p. 5-35)

Working with the Globe Display (p. 5-43)

Notes on terrain data available from U.S. mapping agencies
Using the dteds, dted, and demdataui functions

Computing line-of-sight and viewsheds with los2 and viewshed

Different approaches to illuminating terrain: using the lightm, surflm, surflsrm, and meshlsrm functions

Using shading and color to combine surface relief with other surface characteristics to make bivariate maps

Visualizing around and around a round world

## Sources of Terrain Data

Nearly all published terrain elevation data is in the form of data grids. "Displaying Data Grids" on page 4-34 described basic approaches to rendering surface data grids with Mapping Toolbox functions, including viewing surfaces in 3-D axes. The following sections describe some common data formats for terrain data, and how to access and prepare data sets for particular areas of interest.

## Digital Terrain Elevation Data from NIMA

The Digital Terrain Elevation Data (DTED) Model is a series of gridded elevation models with global coverage at resolutions of 1 kilometer or finer. DTEDs are products of the U. S. National Imagery and Mapping Agency (NIMA), formerly the Defense Mapping Agency (DMA). The data is provided as 1-by-1 degree tiles of elevations on geographic grids with product-dependent grid spacing.

## DTED Level 0

The lowest resolution data is the DTED Level 0, with a grid spacing of 30 arc-seconds, or about 1 kilometer. NIMA has published specifications for DTED at http://www.nima.mil/ast/fm/acq/89020.pdf. Level 0 DTED files are available for public download from NIMA over the Internet; see the NIMA public data browser at http://earth-info.nima.mil/. The intended coverage is global, but there are currently large gaps in coverage for South America and Africa. There is no public FTP site; you must use the NIMA Web interface to select data, specify its packaging, and download it as a compressed archive.
The DTED files are binary. The files have filenames with the extension dtN, where $N$ is the level of the DTED product.

## Higher-Resolution DTED Files

NIMA also provides higher-resolution terrain data files. DTED Level 1 has a resolution of 3 arc-seconds, or about 100 meters, and was the primary source for the USGS 1:250,000 ( 1 degree) DEMs. DTED Level 2 and above are at even higher resolutions. DTED Level 1 and above are available to the U. S. Department of Defense and its contractors from NIMA.

## Digital Elevation Model Files from USGS

The United States Geological Survey (USGS) has prepared terrain data grids for the U.S. suitable for use at scales between 1:24,000 and 1:250,000 and beyond. Some of this data originated from Defense Mapping Agency DTEDs. Specifications and data quality information are available for these digital elevation models (DEMs) and other U.S. National Mapping Program geodata from the USGS at http: / /mapping.usgs.gov/standards/index.html.

The largest-scale USGS DEMs are partitioned to match the USGS 1:24,000 scale map series. The grid spacing for these elevations models is 30 meters on a Universal Transverse Mercator grid. Each file covers a 7.5 minute quadrangle (note, however, that only a subset of paper quadrangle maps are projected with UTM, and that USGS vector geodata products may not use this coordinate system). The map and data series is available for much of the conterminous United States, Hawaii, and Puerto Rico.

> Note USGS no longer directly distributes 1:24,000 DEMs and other large-scale geodata. U.S. DEM files in SDTS format are available from private vendors, either for a fee or at no charge, depending on the data sets involved. The USGS is creating a seamless National Elevation Database (NED) at $1 / 3$ and 1 arc-second resolutions (see http:// seamless.usgs.gov). USGS describes the available NED data distribution formats as ArcGRID, TIFF, GridFloat, and BIL-meters. For information on locating USGS DEM and other geodata, see http://edc.usgs.gov/geodata/.

## Determining What Elevation Data Exists for a Region

The Mapping Toolbox provides several functions and a GUI to assist you in deriving file names for and managing digital elevation model data for areas of interest. These tools do not retrieve data from the Internet; however, they do locate files that lie on the MATLAB path and indicate the names of data sets that you can download or order on magnetic media or CD-ROM.
The Mapping Toolbox has utility functions for describing and importing elevation data. The following table describes functions that read in data,
determine what file names might exist for a given area, or return metadata for elevation grid files:

| File Type | Description | Function to <br> Read Files | Function to <br> Identify Files |
| :--- | :--- | :--- | :--- |
| DTED | U.S. Department of <br> Defense Digital <br> Terrain Elevation <br> Data | dted | dteds |
| DEM | USGS 1-degree <br> (3-arc-second <br> resolution) digital <br> elevation models | usgsdem | usgsdems |
| DEM24K | USGS 1:24K(30-meter <br> resolution) digital <br> elevation models | usgs24kdem | n.a. |
| GTOPO30 | Tiles of 30-arc-second <br> global elevation <br> models | gtopo30 | gtopo30s |
| Digital elevation <br> models in U.S. SDTS <br> format | sdtsdemread | sdtsinfo(reads <br> metadata from <br> catalog file) |  |
| SDTS <br> DEM |  |  |  |

Note that the names of functions that identify file names are those of their respective file-reading functions appended with $s$. These functions determine file names for areas of interest, and have calling arguments of the form (latlim, longlim), with which you indicate the latitude and longitude limits for an area of interest, and all return a list of filenames that provide the elevations required. The southernmost latitude and the westernmost longitude must be the first numbers in latlim and longlim, respectively.

## Using dteds, usgsdems, and gtopo30s to Identify DEM Files

Suppose you want to obtain elevation data for the area around Cape Cod, Massachusetts. You defined your area of interest to extend from $41.1^{\circ} \mathrm{N}$ to $43.9^{\circ} \mathrm{N}$ latitude and from $71.9^{\circ} \mathrm{W}$ to $69.1^{\circ} \mathrm{W}$ longitude.

1 To determine which DTED files you need, use the dteds function, which returns a cell array of strings:

```
dteds([41.1 43.9],[-71.9 -69.1])
ans =
    '\DTED\W072\N41.dt0'
    '\DTED\W071\N41.dt0'
    '\DTED\W070\N41.dt0'
    '\DTED\W072\N42.dt0'
    '\DDTED\W071\N42.dt0'
    '\DTED\W070\N42.dt0'
    '\DTED\W072\N43.dt0'
    '\\DTED\W071\N43.dt0'
    '\DTED\W070\N43.dt0'
```

Note three important points about these files:
a DTED filenames reflect latitudes only and thus do not uniquely specify a data set; they must be organized within directories that specify longitudes. When you download level 0 DTEDs from the NIMA Web site, The DTED directory and its subdirectories are transferred as a compressed archive that you must decompress and place on the MATLAB path.
b Some files that the dteds function identifies do not exist, either because they completely cover water bodies or have never been created or released by NIMA. In the preceding case, the file \DTED\W070\N42.dt0 has no land areas lying within its bounds, and thus is not available from NIMA. The dted function that reads the downloaded DTEDs handles missing cells appropriately.
c NIMA might or might not continue to make DTED and other digital data sets available to the general public online. At this time, it provides a Web interface ("Geospatial Engine") for downloading DTED level 0 files, which is accessible through http://www.nima.mil > Products and Services > Topographical > Geospatial Engine: Overview.

2 To determine the USGS DEM files you need, use the usgsdems function:

```
usgsdems([41.1 43.9],[-71.9 -69.1])
ans =
    'portland-w'
    'portland-e'
    'bath-w'
```

```
'boston-w'
'boston-e'
'providence-w'
'providence-e'
'chatham-w'
```

Note that, in contrast to the dteds command you executed above, there are eight rather than nine files listed to cover the 3-by-3-degree region of interest. The cell that consists entirely of ocean has no name and is thus omitted from the output cell array.

3 To determine the GTOPO30 files you need, use the gtopo30s function:

```
gtopo30s([41.1 43.9],[-71.9 -69.1])
ans =
    'w100n90'
```

Note The GTOPO30 and DTED grids are in latitude and longitude, and USGS DEMs grids are in UTM coordinates. The usgs24kdem function automatically unprojects the grids from UTM to latitude and longitude.

For additional information, see the reference pages for dteds, usgsdems, usgs24kdem, and gtopo30s.

## Mapping a Single DTED File with the DTED Function

In this exercise, you render DTED level 0 data for a portion of Cape Cod. The $1^{\circ}$-by- $1^{\circ}$ file can be downloaded from NIMA or purchased on CD-ROM. You read and display the elevation data at full resolution as a lighted surface to show both large- and small-scale variations in the data.

1 Define the area of interest and determine the file to be obtained:

```
mylats = [41.2 41.95]
mylons = [-70.95 -70.1]
dteds(mylats, mylons)
ans =
    'dted\w071\n41.dt0'
```

2 Download the directories containing this file from NIMA or from a CD-ROM onto your system (for information see "Using dteds, usgsdems, and gtopo30s to Identify DEM Files" on page 5-4). The original data comes as a compressed tar or zip archive that you must expand before using.

3 Use the dted function to create a terrain grid in the workspace at full resolution. If more than one DTED file named $n 41$. dt0 exists on the path, your working directory must be /dted/w071 in order to be sure that dted finds the correct file. If the file is not on the path, you are prompted to navigate to the n 41 . dt0 file by the dted function:

```
[cape1,caperef1] = dted('n41.dt0',1,mylats,mylons);
```

4 Because DTED files contain no bathymetric depths, decrease elevations of zero slightly to render them with blue when the colormap is reset:

```
cape1 ( cape1==0)=-1;
```

5 Use usamap to produce a map of coastlines within your specified limits: usamap (mylats, mylons, 'line')

6 Use meshm to render the elevations, and set the colormap accordingly:

```
meshm(cape1, caperef1,size(cape1), cape1);
demcmap(cape1)
```

The resulting map, shown below, is a window on Cape Cod, and illustrates the relative coarseness of DTED level 0 data.


## Mapping Multiple DTED Files with the DTED Function

When your region of interest extends across more that one DTED tile, the dted function concatenates the tiles into a single matrix, which can be at full resolution or a sample of every $n$th row and column. You can specify a single DTED file, a directory containing several files (for different latitudes along a constant longitude), or a higher-level directory containing subdirectories with files for several longitude bands.

1 To follow this exercise, you need to acquire the necessary DTED files from http://www.nima.mil, as described in the prior exercise, or from a
CD-ROM. This yields a set of directories that contain the following files:

## /dted

/w070
n41.avg
n41.dto
n41.max
n41.min
n43.avg
n43.dt0
n43.max
n43.min
/w071
n41.avg
n41.dto

$$
\begin{gathered}
\text { n41.max } \\
\text { n41.min } \\
\text { n42.avg } \\
\text { n42.dt0 } \\
\text { n42.max } \\
\text { n42.min } \\
\text { n43.avg } \\
\text { n43.dt0 } \\
\text { n43.max } \\
\text { n43.min } \\
\text { /w072 } \\
\text { n41.avg } \\
\text { n41.dt0 } \\
\text { n41.max } \\
\text { n41.min } \\
\text { n42.avg } \\
\text { n42.dt0 } \\
\text { n42.max } \\
\text { n42.min } \\
\text { n43.avg } \\
\text { n43.dt0 } \\
\text { n43.max } \\
\text { n43.min }
\end{gathered}
$$

2 Change your working directory to the directory that includes the top-level DTED directory (which is always named dted):

3 Use the dted function, specifying that directory as the first argument. You must also specify a sampling interval as the second, latitude limits as the third, and longitude limits as the fourth arguments:
[capetopo, caperef] $=$ dted (pwd, 5, [41.1 43.9],[-71.9 -69.1]);
The greater the sampling interval parameter is, the smaller your output grid file will be (by its square).

Note You can specify a DTED filename rather than a directory name if you are accessing only one DTED file. If the file cannot be found, a file dialog is presented for you to navigate to the file you want. See the example "Mapping a Single DTED File with the DTED Function" on page 5-6.

4 As DTEDs contain no bathymetric depths, recode all zero elevations to -1, to enable water areas to be rendered properly:
capetopo ( capetopo==0) $=-1$;
5 Obtain the elevation grid's latitude and longitude limits; use them to draw an outline map of the area to orient the viewer:

```
[latlim,lonlim] = limitm(capetopo,caperef);
usamap(latlim,lonlim,'line')
```

6 Render the elevation grid with meshm, and then recolor the map with demcmap to display hypsometric colors (elevation tints):
meshm(capetopo, caperef, size(capetopo), capetopo);
demcmap (capetopo)

## Reading Elevation Data Interactively

You can browse many formats of digital elevation map data using the demdataui graphical user interface. The demdataui GUI depicts coverage of data sets and reads data ETOPO5, TerrainBase, the satellite bathymetry model (SATBATH), GTOPO30, GLOBE, and DTED files into the workspace.

Note When it opens, demdataui scans your MATLAB path for candidate data files. On PCs, it also checks the root directory of CD-ROMs and other drives. This can cause a delay before the GUI appears.

You can choose to read from any of the data sets demdataui has located. If demdataui does not recognize data that you think it should find, check your path and use the Help button to read about how files are identified.

## Extracting DEM Data with demdataui

This exercise illustrates how to use the demdataui interface. You will not necessarily have all the DEM data sets shown in this example. Even if you have only one (the DTED used in the previous exercise, for example), you can still follow the steps to obtain your own results.

1 Open the demdataui UI. It will scan the path for data before it is displayed: demdataui


The Source list in the left pane shows the data sets that were found. The coverage of each data set is indicated by a yellow tint on the map.

2 Clicking on a different source in the left column updates the coverage display. Here is the coverage area for the satellite bathymetry data set:


3 The map is used to determine how much data to extract. The storage required for the matrix of the area currently displayed is printed above the map. To reduce the amount of data, click or click and drag on the map to zoom in, or raise the Samplefactor slider. A sample factor of 1 reads every point, 2 reads every other point, 3 reads every third point, etc. The size estimate is only updated when you move the Samplefactor slider.

Here is the panel after selection of the TerrainBase data and zooming in on the Indian subcontinent


4 Click the Get button to show terrain data from the selected data set at the slider's sample factor within the geographic limits shown. It will appear in the GUI map pane. In this instance, the result of this operation is a matrix of about 400 by 500 cells, as shown on the map below:


5 If you are not satisfied with the result, click the Clear button to remove all data previously read in via Get and make new selections.

6 When you are ready to import DEM data to the workspace or save it as a MAT-file, click the Save button. You are then asked to select a destination and name the output variable or file. You can save to a MAT-file or to a workspace variable. The demdataui function returns one or more matrices as an array of geographic data structures, having one element for each separate get you requested (assuming you did not subsequently clear). You can then use displaym or mlayers to add the data grids to a map axes.

7 To access the contents of the geographic data structure, use its field names. Here map and maplegend are copied from the structure and used to create a lighted three-dimensional elevation map display using worldmap (demdata is the default name for the structure, which you can override when you save it).

```
map = demdata.map;
maplegend = demdata.maplegend;
figure
worldmap(map,maplegend,'ldem3d')
hidem(gca)
```



## Determining and Visualizing Visibility Across Terrain

You can use regular data grids of elevation data to answer questions about the mutual visibility of locations on a surface (intervisibility). For example,

- Is the line of sight from one point to another obscured by terrain?
- What area can be seen from a location?
- What area can see a given location?

The first question, on the line of sight between two points, can be answered with the los2 function. In its simplest form, los2 determines the visibility between two points on the surface of a digital elevation map. You can also specify the altitudes of the observer and target points, as well as the datum with respect to which the altitudes are measured. For specialized applications, you can even control the actual and effective radius of the Earth. This allows you to assume, for example, that the Earth has a radius $1 / 3$ larger than its actual value, which is a model frequently used in predicting radio wave propagation.

## Computing Line-of-Sight with los2

The following example shows a line-of-sight calculation between two points on a regular data grid generated by the peaks function. The calculation is performed by the los2 function, which returns a logical result: 1 (points are intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500, and set its origin at $\left(0^{\circ} \mathrm{N}, 0^{\circ} \mathrm{W}\right)$, with a spacing of 1000 cells per degree):

```
map = 500*peaks(100);
maplegend = [ 1000 0 0];
```

2 Define two locations on this grid to test intervisibility:

```
lat1 = -0.027; lon1 = 0.05; lat2 = -0.093; lon2 = 0.042;
```

3 Calculate intervisibility. The final argument specifies the altitude (in meters) above the surface of the first location (lat1, lon1) where the observer is located (the viewpoint):

```
los2(map,maplegend,lat1,lon1,lat2,lon2,100)
ans =
1
```

The los2 function also produces a profile diagram in a figure window showing visibility at each grid cell along the line of sight that can be used to interpret the Boolean result. In this example, the diagram shows that the line between the two locations just barely clears an intervening peak.



You can also compute the viewshed, a name derived from watershed, which is all of the areas that are visible from a particular location. The viewshed function can be thought of as performing the los2 line-of-sight calculation from one point on a digital elevation map to every other entry in the matrix. The viewshed function supports the same options as los2.

The following shows which parts of the peaks elevation map in the previous example are visible from the first point:

```
[vismap,vismapleg] = viewshed(map,maplegend,lat1,lon1,100);
```



## Shading and Lighting Terrain Maps

The lightm function creates light objects in the current map. To modify the positions and colors of lights created on world maps or large regions you can use the interactive lightmui GUI. For finer control over light position (for example in small areas lit by several lights) you have to specify light positions using projected coordinates. This is because lights are children of axes and share their coordinate space. See "Lighting a Global Terrain Map with lightm and lightmui" on page 5-22 for an example of using lightmui.

## Lighting a Terrain Map Constructed from a DTED File

In this exercise, you manually specify the position of a single light in the northwest corner of a DTED DEM for Cape Cod.

1 To illustrate lighting terrain maps, begin by following the exercise in "Mapping a Single DTED File with the DTED Function" on page 5-6, or execute the steps as reproduced below:

```
mylats = [41.2 41.95];
mylons = [-70.95 -70.1];
cd dted\w071 %Note: Your absolute path may vary
[cape1,caperef1] = dted('n41.dt0',1,mylats,mylons);
cape1 (cape1==0)=-1;
usamap(mylats,mylons,'line')
meshm(cape1, caperef1, size(cape1), cape1);
demcmap(cape1)
```

The map looks like this:


2 Set the vertical exaggeration. Use daspectm to specify that elevations are in meters and should be multiplied by 20 :

```
daspectm('m',20)
```

3 Make sure that the line data is visible. To ensure that it is not obscured by terrain, use zdatam to set it to the highest elevation of the cape 1 terrain data:

```
zdatam('allline',max(cape1(:)))
```

4 Specify a location for a light source with lightm:

```
h = lightm(42,-71)
```

If you omit arguments, a GUI for setting positional properties for the new light will open.

5 To see the properties of light objects, inspect the handle returned by lightm:

```
get(h)
    Position = [-0.00616097 0.796039 1]
    Color = [\begin{array}{lll}{1}&{1}&{1}\end{array}]
    Style = infinite
    BeingDeleted = off
    ButtonDownFcn =
```

```
Children = []
Clipping = on
CreateFcn =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [138.001]
Selected = off
SelectionHighlight = on
Tag =
Type = light
UIContextMenu = []
UserData = [ (1 by 1) struct array]
Visible = on
```

Had you used the MATLAB light function in place of lightm, you would have needed to specify the position in Cartesian 3 -space.

6 The lighting computations caused the map to become quite dark with specular highlights. Now restore its luminance by specifying three surface reflectivity properties in the range of 0 to 1 :
ambient = 0.7; diffuse = 1; specular = 0.6;
material([ambient diffuse specular])
The surface looks blotchy because there is no interpolation of the lighting component (flat facets are being modeled). Correct this by specifying Phong shading:
lighting phong
The map now looks like this:


7 If you want to compare the lit map with the unlit version, you can toggle the lighting off:
lighting none
For additional information, see the reference pages for daspectm, lightm, light, lighting, and material.

## Lighting a Global Terrain Map with lightm and lightmui

In this example you create a global topographic map and add a local light at a distance of 250 km above New York City, $\left(40.75^{\circ} \mathrm{N}, 73.9^{\circ} \mathrm{W}\right)$. You then change the material and lighting properties, add a second light source, and then activate the lightmui tool to change light position, altitude, and colors.

The lightmui display plots lights as circular markers whose facecolor indicates the light color. To change the position of a light, click and drag the circular marker. Alternatively, right-clicking on the circular marker summons a dialog for changing the position or color of the light object. Clicking on the color bar in that dialog invokes the uisetcolor dialog box that can be used to specify or pick a color for the light.

1 Load the topo DTM files, and set up an orthographic projection:

```
close all; clear;
load topo
axesm ('mapprojection','ortho', 'origin',[10 -20 0])
```

2 Plot the topography and assign a topographic colormap:

```
meshm(topo,topolegend);
demcmap(topo)
```

3 Set up a yellow light source over New York City:

```
hl = lightm(40.75,-73.9, 500/almanac('earth','radius'),...
'color','yellow', 'style', 'local');
```

The first two arguments to lightm are the latitude and longitude of the light source. The third argument is its altitude, in units of Earth radii (in this case they are in kilometers, the default units of almanac).

4 The surface is quite dark, so give it more reflectivity by specifying

```
material([0.7270 1.5353 1.9860 4.0000 0.9925]);
lighting phong; hidem(gca)
```

The lighted orthographic map looks like this:


5 If you want, you can add more lights, as follows:

```
h2 = lightm(20,40, .1,'color','magenta', 'style', 'local')
```

The second light is magenta, and positioned over the Gulf of Arabia:
6 To modify the lights, you can use the lightmui GUI, which lets you drag lights across a world map and specify their color and altitudes:

## lightmui(gca)

The lights are shown as appropriately colored circles, which you can drag to new positions. You can also ctrl+click on a circle to bring up a dialog for directly specifying that light's position, altitude and color. The GUI and the map look like this at this point:


7 In the lightmui window, drag the yellow light to the eastern tip of Brazil, and drag the magenta light to the Straits of Gibraltar:


8 ctrl+click or Shift-click on the magenta circle in the lightmui window. A second UI, for setting light position and color, opens. Set the altitude to
0.04 (Earth radii). Set the light color components to 1.0 (red), 0.75 (green), and 1.0 (blue). Press Return after each action. The color bar on the UI changes to indicate the color you set. If you prefer to pick a color, click on the colorbar to bring up a color-choosing UI. The map now looks like this:


For additional information, see the reference pages for lightm and lightmui.

## Surface Relief Shading

You can make dimensional monochrome shaded-relief maps with the function surflm, which is analogous to the MATLAB surfl function. The effect of surflm is similar to using lights, but the function models illumination itself (with one "light source" that you specify when you invoke it, but cannot reposition) by weighting surface normals rather than using light objects.
Shaded relief maps of this type are usually portrayed two-dimensionally rather than as perspective displays. The surfl function works with any projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that regular data grids are a subset of geolocated data grids, to which they can be converted using meshgrat (see "Fitting Gridded Data to the Graticule" on page 4-35). The following example illustrates this procedure.

## Creating Monochrome Shaded Relief Maps Using surflm

As stated above, surflm simulates a single light source instead of inserting light objects in a figure. Conduct the following exercise with the korea data set to see how surflm behaves. It uses worldmap to set up an appropriate map axes and reference outlines.

1 Set up a projection and display a vector map of the Korean peninsula with worldmap:

```
hk = worldmap('korea','lineonly'); framem off;
```

worldmap chooses a projection and map bounds to make this map:


2 Load the korea terrain model:
load korea
3 Generate the grid of latitudes and longitudes to transform the regular data grid to a geolocated one:

```
[klat,klon] = meshgrat(map,maplegend);
```

4 Use surflm to generate a default shaded relief map, and change the colormap to a monochromatic scale, such as gray, bone, or copper.

```
ht = surflm(klat,klon,map);
```

```
colormap('copper')
```

In this default case, the lighting direction is set at $45^{\circ}$ counterclockwise from the viewing direction; thus the "sun" is in the southeast. This map is shown below.


5 To make the light come from some other direction, you can specify the light source's azimuth and elevation as the fourth argument to surflm. Clear the terrain map and redraw it, specifying an azimuth of $135^{\circ}$ (northeast) and an elevation of $60^{\circ}$ above the horizon:

```
clmo(ht); ht=surflm(klat,klon,map,[135,60]);
```

The surface lightens and has a new character because it is lit closer to overhead and from a different direction:


6 Now shift the light to the northwest ( $-135^{\circ}$ azimuth), and lower it to $40^{\circ}$ above the horizon. Because a lower "sun" decreases the overall reflectance when viewed from straight above, also specify a more reflective surface as a fifth argument to surflm. This is a 1-by-4 vector describing relative contributions of ambient light, diffuse reflection, specular reflection, and a specular shine coefficient. It defaults to [.55 . 6 . 4 10].

```
clmo(ht); ht=surflm(klat,klon,map,[-135, 30],[.65 .4 .3 10]);
```

This is a good choice for lighting this terrain, because of the predominance of mountain ridges that run from northeast to southwest, more or less perpendicular to the direction of illumination. Here is the final map:


For further information see the reference pages for surflm and surfl.
Shaded relief representations can highlight the fine structure of the land and sea floor, but because of the monochromatic coloration, it is difficult to distinguish land from sea. The next section describes how to color such maps to set off land from water.

## Colored Surface Shaded Relief

The functions meshlsrm and surflsrm display maps as shaded relief with surface coloring as well as light source shading. You can think of them as extensions to surflm that combine surface coloring and surface light shading. Use meshlsrm to display regular data grids and surflsrm to render geolocated data grids.

These two functions construct a new colormap and associated CData matrix that uses grayscales to lighten or darken a matrix component based on its calculated surface normal to a light source. While there are no analogous MATLAB display functions that work like this, you can obtain similar results using MATLAB light objects, as "Relief Mapping with Light Objects" on page 5-31 explains.

## Coloring Shaded Relief Maps and Viewing Them in 3-D

In this exercise, you use surflsrm in a similar way to how you used surflm in the preceding exercise, "Creating Monochrome Shaded Relief Maps Using
surflm" on page $5-26$. In addition, you will set a vertical scale and view the map from various perspectives.

1 Start with a new map axes and the korea data, then georeference the regular data grid:

```
close all; clear all;
load korea
[klat,klon] = meshgrat(map,maplegend);
axesm miller
```

2 Create a colormap for DEM data; it is transformed by surflsm to shade relief according to how you specify the sun's altitude and azimuth:

```
[cmap,clim] = demcmap(map);
```

3 Plot the colored shaded relief map, specifying an azimuth of $-135^{\circ}$ and an altitude of $50^{\circ}$ for the light source:
surflsrm(klat,klon,map, [-130 50], cmap, clim)
You could also achieve the same effect with meshlsrm, which operates on regular data grids (it first calls meshgrat, just as you just did), e.g., meshlsrm(map,maplegend).

4 The surface will have more contrast than if it were not shaded, and it might help to lighten it uniformly by $25 \%$ or so:
brighten(.25)
The map, which has an overhead view, looks like this:


5 Plot an oblique view of the surface by hiding its bounding box, exaggerating terrain relief by a factor of 50 , and setting the view azimuth to $-30^{\circ}$ (south-southwest) and view altitude to $30^{\circ}$ above the horizon:

```
set(gca,'Box','off')
daspectm('meters',50)
view(-30,30)
```

The map now looks like this:


6 You can continue to rotate the perspective with the view function (or interactively with the Rotate 3D tool in the figure window), and to change the vertical exaggeration with the daspectm function. You cannot change the built-in lighting direction without generating a new view using surflsrm.

For further information, see the reference pages for surflsrm, meshlsrm, daspectm, and view.

## Relief Mapping with Light Objects

In the exercise "Lighting a Global Terrain Map with lightm and lightmui" on page $5-22$, you created light objects to illuminate a globe projection. In the following one, you create a light object to mimic the map produced in the previous exercise ("Coloring Shaded Relief Maps and Viewing Them in 3-D" on page 5-29), which uses shaded relief computations rather than light objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the colormap with bands of light and dark. The map matrix is then converted to indices for the new "shaded" colormap based on calculated surface normals.

Using light objects allows for a wide range of lighting effects. The Mapping Toolbox manages light objects with the lightm function, which depends upon the MATLAB light function. Lights are separate MATLAB graphic objects, each with its own object handle.

## Colored 3-D Relief Maps Illuminated with Light Objects

As a comparison to the lighted shaded relief example shown earlier, add a light source to the surface colored data grid of the Korean peninsula region:

1 If you need to, load the korea DEM, and create a map axes using the Miller projection:

```
load korea
figure; axesm('MapProjection','miller',...
    'MapLatLimit',[30 45],'MapLonLimit',[115 135])
```

2 Display the DEM with meshm, and color it with terrain hues:

```
meshm(map,maplegend,size(map),map);
demcmap(map)
```

The map, without lighting effects, looks like this:


3 Create a light object with lightm (similar to the MATLAB light function, but specifies position with latitude and longitude rather than $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ). The light is placed at the northwest corner of the grid, one degree high:

```
h=lightm(45,115,1)
```

The figure becomes darker.

4 To see any relief in perspective, it is necessary to exaggerate the vertical dimension. Use a factor of 50 for this:

```
daspectm('meters',50)
```

The figure becomes darker still, with highlights at peaks.
5 Set the ambient (direct), diffuse (skylight) and specular (highlight) surface reflectivity characteristics, respectively:

```
material ([.7, .9, .8])
```

6 By default the lighting is flat (plane facets). Change this to phong shading (interpolated normal vectors at facet corners):

## lighting phong

The map now looks like this:


7 Finally, remove the edges of the bounding box and set a viewpoint of $-30^{\circ}$ azimuth, $30^{\circ}$ altitude:

```
set(gca,'Box','off')
view(-30,30)
```

The view from $(-30,30)$ with one light at $(45,115,1)$ and phong shading is shown below. Compare it to the final map in the previous exercise, "Coloring Shaded Relief Maps and Viewing Them in 3-D" on page 5-29.


To remove a light (when there is only one) from the current figure, type clmo(handlem('light'))

For more information, consult the reference pages for lightm, daspectm, material, lighting, and view, along with the section on lighting in the MATLAB graphics documentation.

## Draping Data on Elevation Maps

Lighting effects can provide important visual cues when elevation maps are combined with other kinds of data. The shading resulting from lighting a surface makes it possible to "drape" satellite data over a grid of elevations. It is common to use this kind of display to overlay georeferenced land cover images from Earth satellites such as LANDSAT and SPOT on topography from digital elevation models. The Mapping Toolbox can generate such displays using variations of techniques described in the previous section.

When the elevation and image data grids correspond pixel-for-pixel to the same geographic locations, you can build up such displays using the optional altitude arguments in the surface display functions. If they do not, you can interpolate one or both source grids to a common mesh. See "Draping via Converting a Regular Grid to a Geolocated Data Grid" on page 5-38 and "Draping a Geolocated Grid on Regular Data Grid via Texture Mapping" on page 5-40, below for further details on regridding.

## Draping Geoid Heights over Topography

The following example shows the figure of the Earth (the geoid data set) draped on topographic relief (the topo data set). That is, the geoid data is shown as an attribute (using a color scale) rather than being depicted as a 3-D surface itself. The two data sets are both 1-by-1-degree meshes sharing a common origin.

> Note The geoid can be described as the surface of the ocean in the absence of waves, tides, or land obstructions. It is influenced by the gravitational attraction of denser or lighter materials in the Earth's crust and interior and by the shape of the crust. A model of the geoid is required for converting ellipsoidal heights (such as might be obtained from GPS measurements) to orthometric heights. Geoid heights vary from a minimum of about 105 meters below sea level to a maximum of about 85 meters above sea level.

1 Begin by loading the topo and geoid regular data grids:

[^1]2 Create a map axes using a Gall stereographic cylindrical projection (a perspective projection):
axesm gstereo
3 Use meshm to plot a colored display of the geoid's variations, but specify topo as the final argument, to give each geoid grid cell the height ( $z$-value) of the corresponding topo grid cell:

```
meshm(geoid,geoidlegend,size(geoid),topo)
```

Low geoid heights are shown as blue, high ones as red.
4 For reference, plot the world coastlines in black, raise their elevation to 1000 meters (high enough to clear the surface in their vicinity), and expand the map to fill the frame:

```
load coast
plotm(lat,long,'k')
zdatam(handlem('allline'),1000)
tightmap
```

At this point the map looks like this:


5 Due to the vertical view and lack of lighting, the topographic relief is not visible, but it is part of the figure's surface data. Bring it out by exaggerating relief greatly, then setting a view from the south-southeast: daspectm('m',200); tightmap

```
view(20,35)
```

6 Remove the bounding box, shine a light on the surface (using the default position, offset to the right of the viewpoint), and re-render with phong shading:

```
set(gca,'Box','off')
camlight;
lighting phong
```

7 Finally, set the perspective to converge slightly (the default perspective is orthographic):

```
set(gca,'projection','perspective')
```

The final map is shown below. From it, you can see that the geoid mirrors the topography of the major mountain chains such as the Andes, the Himalayas, and the Mid-Atlantic Ridge. You can also see that large areas of high or low geoid heights are not simply a result of topography.


## Draping Data over Terrain with Different Gridding

If you want to combine elevation and attribute (color) data grids that cover the same region but are gridded differently, you must resample one matrix to be consistent with the other. It helps if at least one of the grids is a geolocated data grid, because their explicit horizontal coordinates allow them to be resampled using the ltln2val function. To combine dissimilar grids, you can either

- Construct a geolocated grid version of the regular data grid values
- Construct a regular grid version of the geolocated data grid values.

The following two examples illustrate these closely related approaches.

## Draping via Converting a Regular Grid to a Geolocated Data Grid

This example drapes slope data from a regular data grid on top of elevation data from a geolocated data grid. Although the two data sets actually have the same origin (the geolocated grid derives from the topo data set), the approach being demonstrated will work with any dissimilar grids. The example uses the geolocated data grid as the source for surface elevations and transforms the regular data grid into slope values, which are then sampled to conform to the geolocated data grid (creating a set of slope values for the diamond-shaped grid) and color-coded for surface display.

Note When you use ltln2val to resample a regular data grid over an irregular area, it is important that the regular data grid completely covers the area of the geolocated data grid.

1 Begin by loading the geolocated data grids from mapmtx, which contains two regions. You will only use the diamond-shaped portion of mapmtx (lt1, lg1, and map1) centered on the Middle East, not the lt2, lg2, and map2 data:
load mapmtx lt1
load mapmtx lg1
load mapmtx map2
Also load the topo global regular data grid:
load topo
2 Compute surface aspect, slope, and gradients for topo. You will use only the slopes in subsequent steps:

```
[aspect,slope,gradN,gradE] = gradientm(topo,topolegend);
```

3 Use ltln2val to interpolate slope values to the geolocated grid specified by lt1, lg1:

```
slope1 = ltln2val(slope,topolegend,lt1,lg1);
```

The output is a 50 -by- 50 grid of elevations matching the coverage of the map1 variable.

4 Set up a figure with a Miller projection and use surfm to display the slope data. Specify the $z$-values for the surface explicitly as the map1 data, which is terrain elevation:

```
figure; axesm miller
surfm(lt1,lg1,slope1,map1)
```

The map mainly depicts steep cliffs, which represent mountains (the Himalayas in the northeast), and continental shelves and trenches.

5 The coloration depicts steepness of slope. Change the colormap to make the steepest slopes magenta, gentler slopes dark blue, and flat areas light blue: colormap cool;

6 Use view to get a southeast perspective of the surface from a low viewpoint: view(20,30); daspectm('m',200)

In 3-D, you immediately see the topography as well as the slope.
7 The default rendering uses faceted shading (no smooth interpolation); re-render the surface as shiny with phong shading and lighting from the east (the default of camlight lights surfaces from over the viewer's right shoulder):

```
material shiny;camlight;lighting phong
```

8 Finally, remove white space and re-render the figure in perspective mode:

```
axis tight; set(gca,'Projection','Perspective')
```

Here is the mapped result:


## Draping a Geolocated Grid on Regular Data Grid via Texture Mapping

The second way to combine a regular and a geolocated data grid is to construct a regular data grid of your geolocated data grid's $z$-data. This approach has the advantage that more computational functions are available for regular data grids than for geolocated ones. Another aspect is that the color and elevation grids do not have to be the same size. If the resolutions of the two are different, you can create the surface as a three-dimensional elevation map and later apply the colors as a texture map. You do this by setting the surface Cdata property to contain the color matrix, and setting the surface face color to 'TextureMap '.

In the following steps, you create a new regular data grid that covers the region of the geolocated data grid, then embed the color data values into the new matrix. The new matrix might need to have somewhat lower resolution than the original, to ensure that every cell in the new map receives a value.

1 Clear the workspace and load the topo and terrain data from mapmtx:

```
clear; load topo;
```

load mapmtx lt1
load mapmtx lg1
load mapmtx map2
2 Identify the geographic limits of one of the mapmtx geolocated grids:

```
latlim = [min(lt1(:)) max(lt1(:))];
lonlim = [min(lg1(:)) max(lg1(:))];
```

3 Trim the topo data to the rectangular region enclosing the smaller grid:

```
[topo1,topo1ref] = maptrims(topo,topolegend,latlim,lonlim);
```

4 Create a regular grid filled with NaNs to receive texture data:

```
[curve1,curve1ref] = nanm(latlim,lonlim,.5);
```

The last parameter establishes the grid at $1 / .5$ cells per degree.
5 Use imbedm to embed values from map1 into the curve1 grid; the values are the discrete Laplacian transform (the difference between each element of the map1 grid and the average of its four orthogonal neighbors):

```
curve1 = imbedm(lt1,lg1,del2(map1),curve1,curve1ref);
```

6 Set up a map axes with the Miller projection and use meshm to draw the topo1 extract of the topo DEM:

```
figure; axesm miller
h = meshm(topo1,topo1ref,size(topo1),topo1);
```

7 Render the figure as a 3-D view from a $20^{\circ}$ azimuth and $30^{\circ}$ altitude, and exaggerate the vertical dimension by a factor of 200 :

```
view(20,30); daspectm('m',200)
```

8 Light the view and render with Phong shading in perspective:

```
material shiny; camlight; lighting phong
axis tight; set(gca,'Projection','Perspective')
```

So far, both the surface relief and coloring represent topographic elevation, and appear as follows:


9 Now apply the curve1 matrix as a texture map directly to the figure using the set function:

```
set(h,'Cdata',curve1,'FaceColor','TextureMap')
```

The area originally covered by the [lt1, lg1, map1] geolocated data grid, and recoded via the Laplacian transform as curve1 now controls color symbolism, with the NaN -coded outside cells rendered in black.


## Working with the Globe Display

The Globe display is a three-dimensional view of geospatial data capable of mapping terrain relief or other data for an entire planet viewed from space. Its underlying transformation maps latitude, longitude, and elevation to a three-dimensional Cartesian frame. All projections in the Mapping Toolbox transform latitudes and longitudes to map $x$ - and $y$-coordinates. The globe function is special because it can render relative relief of elevations above, below or on a sphere. In Earth-centered Cartesian $(x, y, z)$ coordinates, $z$ not an optional elevation; rather, it is an axis in Cartesian three-space. globe is useful for geospatial applications which require three-dimensional relationships between objects to be maintained, such as when one simulates flybys, and or views planets as they rotate.

The Globe display is based on a coordinate transformation, and is not a map projection. Note that while it has none of the distortions inherent in planar projections, it is a three-dimensional model of a planet that cannot be displayed without distortion or in its entirety. That is, in order to render the globe in a figure window, either a perspective or orthographic transformation must be applied, both of which necessarily involve setting a viewpoint, hiding the back side, and distortions of shape, scale, and angles.

The globe transform is applied only to the sphere, not to ellipsoids of rotation. However, you are free to impose some flattening on the figure axes by changing the aspect ratio.

## The Globe Display Compared with the Orthographic Projection

The following example illustrates differences between the two-dimensional orthographic projection, which looks spherical but is really flat, and the three-dimensional globe display. You use the Rotate 3D tool to manipulate the display.

1 First load the topo data set and render it with an orthographic map projection:
load topo
axesm ortho; framem
meshm(topo, topolegend); demcmap (topo)
2 View the map obliquely:

```
view(3); daspectm('m',1)
```

3 You can view it in 3-D from any perspective, even from underneath. To help visualize this, define a geolocated data grid with meshgrat, populate it with a constant $z$-value, and render it as a stem plot with stem3m:

```
[latgrat,longrat] = meshgrat(topo,topolegend,[20 20]);
stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')
```

Use the Rotate 3D tool on the figure window toolbar to change your viewpoint. You see that no matter how you position the view, you are looking at a disc with stems protruding perpendicularly. Here is the type of view you can see:


4 Now create another figure using the globe transform rather than orthographic projection:

```
figure
axesm('globe','Geoid',almanac('earth','radius','m'))
```

5 Display the topo surface in this figure and view it in 3-D:

```
meshm(topo,topolegend); demcmap(topo)
```

view(3)

6 Also include the stem plot to visualize the difference in surface normals on a sphere:

```
stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')
```

7 You can apply lighting to the display, but its location is fixed, and does not move as the camera position is shifted:

```
camlight('headlight','infinite')
```

8 If you prefer a more unobstructed view, you can hide the 3-D axes:

```
set(gca,'Box','off')
```

Here is a representative view using the Globe dispaly without lighting:


For additional details, see the reference pages for view, camlight, meshgrat, and stem3m.

## Using Opacity and Transparency in Globe Displays

Because Globe displays depict 3-D objects, you can see into and through them as long as no opaque surfaces (e.g., patches or surfaces) obscure your view. This can be particularly disorienting for point and line data, because features on the back side of the world are reversed and can overlay features on the front side.

Here is one way to create an opaque surface over which you can display line and point data:

1 Create a figure and set up a Globe display:

```
figure; axesm('globe')
```

2 Draw a graticule in a light color, slightly raised from the surface:
gridm('GLineStyle','-','Gcolor',[.8 .7 .6],'Galtitude', .02)
3 Load and plot the coast data in black, and set up a 3-D perspective:

```
load coast
plot3m(lat,long,.01,'k')
view(3)
```

The 3D view looks like this:


4 Use the Rotate 3D tool on the figure's toolbar to rotate the view. Note how confusing the display is because of its transparency.

5 Make a uniform 1-by-1-degree grid and a referencing vector for it:

```
base = zeros(180,360); baseref = [1 90 0];
```

6 Render the grid onto the globe, color it copper, light it from camera right, and make the surface reflect more light:

```
hs = meshm(base,baseref,size(base));
colormap copper
camlight right
material([.8 .9 .4])
```

Note Another way to make the surface of the globe one color is to change the FaceColor property of a displayed surface mesh (e.g., topo).

The display (if you haven't rotated it) looks like this:


When you manually rotate this map, its movement can be jerky due to the number of vectors that must be redisplayed. In any position, however, the copper surface effectively hides all lines on the back side of the globe.

Note The technique of using a uniform surface to hide rear-facing lines has limitations for the display of patch symbolism (filled polygons). As patch polygons are represented as planar, in three-space the interiors of large patches can intersect the spherical surface mesh, allowing its symbolism to show through.

## Over-the-Horizon 3-D Views Using Camera Positioning Functions

You can create dramatic 3-D views using the globe display. The camtargm and camposm functions (Mapping Toolbox versions of camtarget and campos) enable you to position focal point and a viewpoint, respectively, in geographic coordinates, so you do not need to deal with 3-D Cartesian figure coordinates.
In this exercise, you display national boundaries from the worldlo data set over topographic relief, and then view the globe from above Washington, D.C., looking toward Moscow, Russia.

1 Set up a globe display and obtain topographic data for the map: clear; axesm globe
load topo
2 Display topo without the vertical component (by omitting the fourth argument to meshm):
hs = meshm(topo,topolegend,size(topo)); demcmap(topo);
The default view is from above the North Pole with the central meridian running parallel to the $x$-axis.

3 Use displaym to pull in national outlines stored in the POline geostruct within the worldlo data set and plot them in light grey:

```
hl = displaym(worldlo('POline')); set(hl,'color',[.7 .7 .7])
```

4 Use extractm to identify the coordinate locations for Moscow and Washington from the worldlo gazetteer:

```
[tlat,tlon] = extractm(worldlo('gazette'),'Moscow');
[plat,plon] = extractm(worldlo('gazette'),'Washington');
```

5 Create a great circle track to connect Washington with Moscow and plot it in red:

```
[latc,lonc] = track2('gc',tlat,tlon,plat,plon);
```

plotm(latc,lonc, 'r')

6 Point the camera at Moscow. Wherever the camera is subsequently moved, it always looks toward [tlat,tlon]:
camtargm(tlat,tlon, 0 )
7 Station the camera at (plat, plon,3). The third argument is an altitude in Earth radii:

```
camposm(plat,plon,3)
```

8 Establish the camera up vector with the camera target's coordinates. The great circle joining Washington and Moscow now runs vertically:

```
camupm(tlat,tlon)
```

9 Set the field of view for the camera to $20^{\circ}$ for the final view: camupm(20)

10 Add a light, specify a relatively nonreflective surface material, and hide the map background:

```
camlight; material(0.6*[ 1 1 1])
hidem(gca)
```

Here is the final view:


For additional information, see the reference pages for displaym, extractm, camtargm, camposm, camupm, camupm, globe, and camlight.

## Displaying a Rotating Globe

Because the globe display can be viewed from any angle without the need to recompute a projection, you can easily animate it to produce a rotating globe. If the displayed data is simple enough, such animations can be edrawn at relatively fast rates. In this exercise, you progressively add or replace features on a globe display and rotate it under the control of an M-file that resets the view to rotate the globe from west to east in one-degree increments.

1 In the MATLAB editor, create an M-file containing the following code:

```
% spin.m: Rotates a view around the equator one revolution
% in 5-degree steps. Negative step makes it rotate normally
% (west-to-east).
for i=360:-5:0
```

```
        view(i,0);
        drawnow
    end
```

Save this as spin.m in your current directory or on the MATLAB path. Note that the azimuth parameter for the figure does not have the same origin as geographic azimuth: it is 90 degrees to the west.

2 Set up a Globe display with a graticule, as follows:

```
axesm('globe','Grid','on','Gcolor',[.7 . 8 .9],'GlineStyle','-')
```

The view is from above the North Pole.
3 Hide the edges of the figure's box, and view it in perspective rather than orthographically (the default perspective):
set(gca, 'Box','off', 'Projection','perspective')
4 Spin the globe one revolution with your M-file:
spin
The globe spins rapidly. The last position looks like this:


5 To make the globe opaque, create a sea-level data grid as you did for the previous exercise, "Using Opacity and Transparency in Globe Displays" on page 5-45:

```
base = zeros(180,360); baseref = [1 90 0];
hs = meshm(base,baseref,size(base));
```

```
colormap copper
```

The globe now is a uniform dark copper color with the grid overlaid.
6 Pop up the grid so it appears to float $2.5 \%$ above the surface:
setm(gca, 'Galtitude',0.025)
7 Spin the globe again:
spin
The motion is much slower, due to the need to re-render the 180-by- 360 mesh: The last frame looks like this:


8 Get ready to replace the uniform sphere with topographic relief:
clmo(hs)
load topo
9 Scale the elevations to have an exaggeration of 50 (in units of Earth radii) and plot the surface:
topo = topo / (almanac('earth','radius')* 20); hs = meshm(topo,topolegend,size(topo),topo);
demcmap(topo)
10 Spin again:
spin
Here is a representative view, showing the Himalayas rising on the Eastern limb of the planet and the Andes on the Western limb:


11 You can apply lighting as well, which will shift as the planet rotates. Try the following settings, or experiment with others:

```
camlight right
lighting phong;
material ([.7, .9, .8])
```

Here is the illuminated version of the preceding view:


For additional information, see the reference pages for globe, camlight, and view.

## Customizing and Printing Maps

Using the Mapping Toolbox you can place several types of map annotations in addition to those previously described (tracks, circles, grids, meridian and parallel labels, and other text objects). The following sections describe some of this additional functionality for defining annotation elements and for making a variety of thematic maps.

Inset Maps (p. 6-2)
Graphic Scales (p. 6-5)

North Arrows (p. 6-7)
Thematic Maps (p. 6-9)

Using Cartesian MATLAB Display Functions (p. 6-18)

Using Colormaps and Colorbars (p. 6-23)

Printing Maps to Scale (p. 6-30)

Placing small overview maps in a map frame
Placing scale bars in a map frame and controlling their appearance

Placing arrows in map frames that point to true north
Symbolizing vector and raster data and attributes in 2-D and 3-D

Exploiting non mapping MATLAB functions and integrating their outputs into map axes

Creating colormaps and colorbar legends

How to determine the size a map will be when a figure window is printed

## Inset Maps

Inset maps are often used to display widely separated areas, generally at the same scale, or to place a map in context by including overviews at smaller scales. You can create inset maps by nesting multiple axes in a figure and defining appropriate map projections for each. To ensure that the scale of each of the maps is the same, use axesscale to resize them. As an example, create an inset map of California at the same scale as the map of South America, to relate the size of that continent to a more familiar region:

1 Begin by defining a map of South America using worldmap:

```
close all; clear all; h1 = worldmap('south america');
setm(h1,'FFaceColor','w') % set the frame fill to white
```

2 Place axes for an inset in the lower middle, and project a line map of California:

```
h2 = axes('pos',[.5 .2 . 1 .1]);
usamap('californiaonly','lineonly')
```

3 Set the frame fill color and set the labels

```
setm(h2,'FFaceColor','w')
mlabel; plabel; gridm % toggle off
```

4 Set the scale for child axes to that of the parent axes, and hide map borders:

```
axesscale(h1)
hidem([h1 h2])
```



Note that the Mapping Toolbox chose a different projection and appropriate parameters for each region based on its location and shape. You can override these choices to make the two projections the same.

5 Find out what map projections are used, and then make South America's projection the same as California's:

```
getm(h1, 'mapprojection')
ans =
    eqdconic
getm(h2, 'mapprojection')
ans =
    lambert
setm(h1, 'mapprojection', getm(h2, 'mapprojection'))
```

Note that the parameters for South America defaulted properly (those appropriate for California were not used).

6 Finally, experiment with changing properties of the inset, such as its color:

```
setm(h2, 'ffacecolor', 'y')
```


## Graphic Scales

Graphic scale elements are used to provide indications of size even more frequently than insets are. These are ruler-like objects that show distances on the ground at the nominal scale of the projection. You can use the scaleruler function to add a graphic scale to the current map. You can check and modify the scaleruler settings using getm and setm. You can also move the graphic scale to a new position by dragging its baseline.

Try this by creating a map, adding a graphic scale with the default settings, and shifting its location. Then add a second scale in nautical miles, and change the tick mark style and direction:

1 Plot a patch map of Guatemala:
clear all; close all;
worldmap('lo','guatemala','patchonly')
2 Add a default graphic scale and then bump it up:
scaleruler
setm(handlem('scaleruler1'), 'YLoc', . 205)
3 Place a second graphic scale. It will look wrong until you adjust it manually:

```
scaleruler('units','nm')
setm(handlem('scaleruler2'),'MajorTick', 0:100:300,...
    'MinorTick',0:25:50,'TickDir',''down',...
    'MajorTickLength',km2nm(25),...
    'MinorTickLength',km2nm(12.5))
```

4 Experiment with the two other ruler styles available:

```
setm(handlem('scaleruler1'),'RulerStyle','lines')
setm(handlem('scaleruler2'),'RulerStyle','patches')
```



## North Arrows

The north arrow element provides the orientation of a map by pointing to the geographic North Pole. You can use the northarrow function to display a symbol indicating the direction due north on the current map. The north arrow symbol can be repositioned by clicking and dragging its icon. The orientation of the north arrow is computed, and does not need manual adjustment no matter where you move the symbol. Ctrl+clicking on the icon creates an input dialog box with which you can change the location of the north arrow:

1 To illustrate the use of north arrows, create a map centered at the South Pole and add a north arrow symbol at a specified geographic position.

```
close all; clear all;
figure; worldmap('south pole')
northarrow('latitude', -57,'longitude',135);
```

2 Click on and drag the north arrow symbol to another corner of the map. Note that it always points to the North Pole.

3 Drag the north arrow back to the top left corner.
4 Right-click or Ctrl+click on the north arrow. The Inputs for North Arrow dialog opens which lets you specify the line weight, edge and fill colors, and relative size of the arrow. Set the LineWidth to 2 and click OK. Here is what the map now looks like:


5 Set some north arrow properties manually, just to get a feel for them:

```
h = handlem('NorthArrow');
set(h,'FaceColor',[1.000 0.8431 0.0000],...
'EdgeColor',[0.0100 0.0100 0.9000])
```

6 Make three more north arrows, to show that from the South Pole, every direction is north.

```
northarrow('latitude',-57,'longitude',45)
northarrow('latitude',-57,'longitude',225)
northarrow('latitude',-57,'longitude',315)
```

Note North arrows are created as objects in the MATLAB axes (and thus have Cartesian coordinates), not as mapping objects. As a result, if you create more than one north arrow, any Mapping Toolbox function that manipulates a north arrow will affect only the last one drawn.

## Thematic Maps

Rather than showing physical features on the ground, such as shorelines, roads, settlements, topography, and vegetation, a thematic map displays quantified facts (a "theme"), such as statistics for a region or sets of regions. Examples include the locations of traffic accidents in a city, or election results by state. Thematic maps have a wide vocabulary of cartographic symbols, such as point symbols, dot distributions, "quiver" vectors, isolines, colored zones, raised prisms, and continuous 3-D surfaces. The Mapping Toolbox provides functions to produce most of these types of map symbology.

## Choropleth Maps

The most familiar form of thematic map is probably the choropleth map (from the Greek choros, for place, and plethos, for magnitude). Often used to present data in newspapers, magazines, and reports, choropleth maps fill geographic zones (such as countries or states, but also matrices) with colors and/or patterns to represent nominal, ordinal, or cardinal data values. As there are usually more possible data values than unique symbols or colors capable of differentiating them, choropleth maps usually classify their data into value ranges.

The Mapping Toolbox uses patch objects to construct choropleth maps. It assigns a color to each patch face to represent a specified variable, one value per patch. When the variable is scalar (as opposed to nominal) it generally represents a density (such as population per unit area), intensity (such as income per family), or incidence rate (such as fatalities per thousand persons). It can also convey extensive measurements or counts (such as electoral votes per state) if used carefully.

To make a choropleth map you need to input or compute a vector of values, one for each patch in a vector data set. Symbolizing such data values with the Mapping Toolbox is straightforward. It involves assigning the data values to the CData property of a set of patches, and then setting up a colormap with an appropriate color scheme and range. Colormaps usually map N or fewer values (for N patches) to M colors. M can be any number between 2 and N , but typically ranges between 5 and 10 .

In the following example, patches representing the 50 states of the U.S. (and the District of Columbia) are displayed and colored according to the surface areas calculated by the areaint function. An equal-area projection is
appropriate for this and other choropleth maps. This is because data is often computed or normalized over the patches being displayed, and thus area distortion should be minimized, even at the expense of shape distortion:

1 Set up the U.S. state patch data:

```
close all; clear all; load usalo
```

This data set includes patch data for individual states, the United States, and its Great Lakes.

2 Set up map axes with a projection suitable to display all 50 states with equal areas, a graticule, and grid labels:

```
axesm('MapProjection','eqaconic','MapParallels',[],...
    'MapLatLimit',[15 75],'MapLonLimit',[-175 -60],...
    'MLineLocation', 15,'MLabelParallel', 'south',...
    'MeridianLabel','on','ParallelLabel','on',...
    'GLineStyle','-','GColor',0.5*[11 1 1],...
    'Grid','on','Frame','on')
```

3 Draw the basic patch map of the polygons (patches) in the state structure:

```
displaym(state)
```

4 The colors assigned to patches are based on the default colormap and the ordering of patches, which is alphabetical. See this for yourself as you set up a cell array containing their names:

```
tags = {state.tag}
tags =
    Columns 1 through 5
        'Alabama' 'Alaska' 'Arizona' 'Arkansas' 'California'
```

5 Choose an ellipsoid for computing spherical area (geoid defaults to wgs80):
refvec = almanac('earth', 'geoid');

6 Use a for loop to compute areas for all U.S. states plus D.C. (this loop could also include calculations to classify values for areas into intervals of varying size):

```
maxarea = 0.0;
for i=1:length(state)
        lat = state(i).lat;
        long = state(i).long;
        surfarea = sum(areaint(lat, long, refvec));
        set(handlem(tags{i}),'CData', surfarea);
        maxarea = max(surfarea, maxarea);
end
```

7 Set the range of value space for the colormap:

```
caxis([0 maxarea])
```

8 Show a colorbar as a key to the symbology, in its default location. This legend relates patch color to area in $\mathrm{km}^{2}$ :
colorbar
9 Choose a colormap. Here use a monotonic change from brown to yellow. colormap('autumn')

10 The map is mostly red, as the following figure shows. Experiment with other colormaps. Some names of predefined colormaps are autumn, cool, copper, gray, pink, and jet.


Note that while the color scale varies continuously, many states appear to be the same color. This is because of the skewed distribution of state areas. One way to differentiate the symbology is to clamp the lower end (because the smallest patches, such as District of Columbia and Rhode Island, are much smaller than average) and the upper end (because Alaska's area is so much larger than that of any other state).

11 Issue the following commands to reset the $z$-axis (color range), change the colormap to one that has more hues and a smaller number of steps, and redraw the colorbar to display the new value range:

```
caxis([10000 1000000])
colormap(cool(16))
colorbar
```

Note how you can specify the size of a colormap with the colormap syntax used above. Be aware that, because you clamped the value range, the numeric limits of the colorbar overstate the minimum area and understate the maximum area. However, the map give much more information overall
because more states have distinct symbology, as the resulting map below depicts.


## Special Thematic Mapping Functions

In addition to choropleth maps, the Mapping Toolbox provides other display and symbology functions. These include the following:

| Function | Used For |
| :--- | :--- |
| cometm | Traces (animates) vectors slowly from a comet head |
| comet3m | Traces (animates) vectors in 3-D slowly from a comet head |
| quiverm | Plots directed vectors in 2-D from specified latitudes and <br> longitudes with lengths also specified as latitudes and <br> longitudes |


| Function | Used For |
| :--- | :--- |
| quiver3m | Plots directed vectors in 3-D from specified latitudes, <br> longitudes, and altitudes with lengths also specified as <br> latitudes and longitudes, and altitudes |
| scatterm | Draws fixed or proportional symbol maps for each point in <br> a vector with specified marker symbol. Similar maps can be <br> generated using geoshow and mapshow using appropriate <br> symbol specifications ("symbolspecs"). |
| stem3m | Projects a 3-D stem plot map on the current map axes |

The cometm and quiverm functions operate like their MATLAB counterparts comet and quiver. The stem3m function allows you to display geographic bar graphs. Like the MATLAB scatter function, the scatterm function allows you to display a thematic map with proportionally sized symbols. The tissot function calculates and displays Tissot Indicatrices, which graphically portray the shape distortions of any map projection. For more information on these capabilities, consult the descriptions of these functions in the reference pages.

## Stem Maps

Stem plots are 3-D geographic bar graphs portraying numeric attributes at point locations, usually on vector base maps. Below is an example of a stem plot over a map of the continental United States. The bars could represent anything from selected city populations to the number of units of a product purchased at each location:


## Contour Maps

Contour and quiver plots can be useful in analyzing matrix data. In the following example, contour elevation lines have been drawn over a topographical map. The region displayed is the Gulf of Mexico, obtained from the topo matrix. Quiver plots have been added to visualize the gradient of the topographical matrix.

Here is the displayed map:


## Scatter Maps

The scatterm function plots symbols at specified point locations, like the MATLAB scatter function. If the symbols are small and inconspicuous and do not vary in size, the result is a dot-distribution map. If the symbols vary in size and/or shape according to a vector of attribute values, the result is a proportional symbol map.

Below is an example of using scatterm to create a star chart of the northern sky. The stars are represented by filled circles whose size is proportional to visual magnitude. To execute the following commands, select them all by dragging over the list in the Help Browser, then click the right mouse button and choose Evaluate Selection:

```
close all; clear all
load stars
% Set all visual magnitude zero values to eps
index = find(vmag <= 0);
vmag(index) = eps;
% View the sky orthographically
axesm('MapProjection','ortho','Origin',[90 0])
setm(gca,'FLatLimit',[90 0],'MapLatLimit',[90 0])
gridm on
setm(gca,'LabelFormat','compass','LabelRotation','on')
setm(gca,'MLabelParallel',0,'PLabelMeridian',0)
```

```
setm(gca,'MeridianLabel','on','ParallelLabel','on')
setm(gca,'GlineStyle','-')
% Make scatterplot of vmag data with blue filled circles
scatterm(lat, long, vmag, 'b', 'filled')
```



## Using Cartesian MATLAB Display Functions

If you cannot find a Mapping Toolbox display function that does what you need, you might be able to use a non-mapping MATLAB function. When placing graphic objects on a map axes, you can use the MATLAB function to add the graphic objects to the display, using latitude and longitude as $x$ and $y$, and then project the data afterwards.

Note Before applying non mapping functions to geodata, you should take into consideration that performing Cartesian geometric operations on geographic coordinates can yield inaccurate results when the data cover large regions of a planet or lie near one of its poles.

## Example 1: Triangulating Data Points

The Mapping Toolbox does not have a function that displays a triangulated surface from random data points, a structure generally known as a triangulated irregular network (TIN). However, MATLAB does have a function to create Delaunay triangles, a method that is often used to form TINs from projected point coordinate data. Explore triangulating some point data and bringing the result into the Mapping Toolbox:

1 Use the seamount data provided with MATLAB:
clear all; close all; load seamount
2 Determine the bounds of the coordinates and add a degree of white space:
latlim $=[\min (y)-.5 \max (y)+.5] ;$
lonlim $=[\min (x)-.5 \max (x)+.5] ;$
3 Create map axes to contain the seamount region (worldmap selects a projection for you):
worldmap(latlim,lonlim, 'none')
4 Create a Delaunay triangulation of $x$ and $y$ (longitude and latitude):

```
tri = delaunay(y,x);
```

5 Generate a 3-D surface that combines the triangulation and $z$-values:

```
h = trisurf(tri,y,x,z);
```

6 Map the surface onto the axes by projecting to the $x-y$ plane (project is a Mapping Toolbox function especially for this purpose):
project(h, 'yx')
Note that even though the triangulated surface appears to be part of the map, it does not have a geostruct at this point (see "Mapping Toolbox Geographic Data Structures" on page 2-16).

7 Add a default graphic scale to the display:
scaleruler


If, as in this example, the displayed objects are already in the right place and do not need to be projected, you can trim them to the map frame and convert them to mapped objects (having geostructs) using trimcart and makemapped. They can then be manipulated as if they had been created with map display functions.

## Example 2: Constructing Quiver Maps

As was briefly described for text objects in "Projected and Unprojected Graphic Objects" on page 4-14, you can also combine Mapping Toolbox and MATLAB
functions to mix spherical and Cartesian coordinates. An example would be a quiver plot (sometimes known as a vector field) in which the locations of the vectors are geographic, but the lengths, being specified by attributes, are not. In that case, you can use Mapping Toolbox projection calculations and MATLAB graphics functions. Cylindrical projections are the simplest to use because North is up, South is down, and East and West are on an orthogonal axis.

In this example, you will impose a quiver map of the slope of a surface on a world map. The surface is a Gaussian field generated by the MATLAB peaks function.

```
figure; axesm mercator; framem; gridm
load coast
plotm(lat,long,'color',[.75 .75 .75])
[u,v] = gradient(peaks(13)/10);
[lat,lon] = meshgrat(-90:15:90,-180:30:180);
[x,y] = mfwdtran(lat,lon);
h = quiver(x,y,u,v,.2,'r');
trimcart(h)
```



An extra step might be required for noncylindrical projections. In these projections, compass directions vary with location. To make the directions agree with the map grid, vectors should be rotated to bring them into alignment. This can be done with the vector transformation function vfwdtran. Consider the same data displayed on a conic projection.

```
load coast; figure
axesm('lambert','MapLatLimit',[-20 80])
framem; gridm
plotm(lat,long,'color',[.75 .75 .75])
[x,y] = mfwdtran(lat,lon);
thproj = deg2rad(vfwdtran(lat,lon,90*ones(size(lat))));
[th,r] = cart2pol(u,v);
[uproj,vproj] = pol2cart(th+thproj,r);
h = quiver(x,y,uproj,vproj,0,'r') ;
trimcart(h)
```



Conformal projections, such as this Lambert conformal conic, are often the best choice for quiver displays. They preserve angles, ensuring that the difference between north and east will always be 90 degrees in projected coordinates.

## Using Colormaps and Colorbars

## Colormap for Terrain Data

In previous examples, the function demcmap was used to color several digital elevation model (DEM) topographic displays. This function creates colormaps appropriate to rendering DEMs, although it is certainly not limited to DEMs.

These colormaps, by default, have atlas-like colors varying with elevation or depth that properly preserve the land-sea interface. In cartography, such color schemes are called hypsometric tints:

1 Here you explore demcmap using the topographic data for the Korean peninsula provided in the korea data set:

```
clear all; close all; load korea
worldmap(map,maplegend,'meshonly')
```

2 The Korea DEM is displayed using the default colormap, which is inappropriate and causes the surface to be unrecognizable. Now apply the default DEM colormap and turn off the map frame:
demcmap (map)
hidem(gca)


3 You can also make demcmap assign all altitudes within a particular range to the same color. This results in a quasi-contour map with breaks at a
constant interval. Now color this map using the same color scheme coarsened to display 500 meter bands:

```
demcmap('inc',map,500)
colorbar
```

Note that the first argument to demcmap, 'inc ', indicates that the third argument should be interpreted as a value range. If you prefer, you could specify the desired number of colors with the third argument by setting the first argument to 'size'.


## Contour Colormaps

You can create colormaps that make surfaces look like contour maps for other types of data besides terrain. The contourcmap function creates a colormap that has color changes at a fixed value increment. Its required arguments are the increment value and the name of a colormap function. Optionally, you can also use contourcmap to add and label a colorbar similarly to the MATLAB colorbar function:

1 Explore contourcmap by loading the world geoid data set and rendering it with a default colormap:

```
load geoid
figure; worldmap(geoid,geoidlegend)
```

2 Use contourcmap to specify a contour interval of 10 (meters), and to place a colorbar beneath the map:

```
contourcmap(10,'jet','colorbar','on','location','horizontal')
```


$-11-90990-80-70-60-50-40-30-20-100102030405060708090$

3 If you want to render a restricted value range, you can enter a vector of evenly spaced values for the first argument. Here you specify a 5 -meter interval and truncate symbology at 0 meters on the low end and 50 meters at the high end:

```
contourcmap([0:5:50],...
'jet','colorbar','on','location','horizontal')
```



Should you need to write a custom colormap function, for example, one that has irregular contour intervals, you can easily do so, but it should work like those provided with MATLAB.

## Colormaps for Political Maps

Political maps typically use muted, contrasting colors that make it easy to distinguish one country from its neighbors. You can create colormaps of this kind using the polcmap function. The polcmap function creates a colormap with randomly selected colors of all hues. Since the colors are random, if you don't like the result, execute polcmap again to generate a different colormap:

1 To explore political colormaps, display the worldlo data set as patches:

```
figure; axesm bries
displaym(worldlo('POpatch'))
framem
```

Note how garish the default coloring is.


2 Use polcmap to randomly recolor the patches and expand the map to fill the frame:

```
polcmap
tightmap loose
```



3 The polcmap function can also control the number and saturation of colors. Reissue the command specifying 256 colors and a maximum saturation of 0.2 . To ensure that the colormap is always the same, reset the seed on the MATLAB random number function using the 'state' argument with a fixed value of your choice:

```
rand('state',0)
polcmap(256,.2)
```



4 For maximum control over the colors, specify the ranges of hues, saturations, and values. Use the same set of random color indices as before:

```
rand('state',0)
polcmap(256,[.2 .5],[.3 .3],[1 1])
```

Note that polcmap works with displaym but not with geoshow or mapshow.


Note The famous Four Color theorem states that any political map can be colored to completely differentiate neighboring patches using only four colors. Experiment to find how many colors it takes to color neighbors differently with polcmap.

## Labeling Colorbars

Political maps are an example of nominal data display. Many nominal data sets have names associated with a set of integer values, or consist of codes that identify values that are ordinal in nature (such as low, medium and high). The MATLAB function lcolorbar creates a colorbar having a text label aligned with each color. Nominal colorbars are customarily used only with small colormaps (where 10 categories or fewer are being displayed).

```
figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peaches','melons'};
lcolorbar(labels,'fontweight','bold');
```



## Editing Colorbars

Maps of nominal data often require colormaps with special colors for each index value. To avoid building such colormaps by hand, use the MATLAB GUI for colormaps, colormapeditor, or theMapping Toolbox GUI cmapui. The cmapui panel allows you to select color entries in a colormap one by one by clicking on the colorbar. To change a selected color's hue and saturation, drag the color Marker on the color wheel. To control the value (lightness) of the color in HSV space, drag the red Slider. Clicking the Accept button returns the modified colormap.

## Printing Maps to Scale

Maps are often printed at a size that makes objects on paper a particular fraction of their real size. The linear ratio of the mapped to real object sizes is called map scale, and it is usually notated with a colon as " $1: 1,000,000$ " or " $1: 24,000$ ". Another way of specifying scale is to call out the printed and real lengths, for example " 1 inch = 1 mile."

You can specify the printed scale using the paperscale function. It modifies the size of the printed area on the page to match the scale. If the resulting dimensions are larger than your paper, you can reduce the amount of empty space around the map using tightmap, zoom, or panzoom, and by changing the axes position to fill the figure. This also reduces the amount of memory needed to print with the zbuffer (raster image) renderer. Be sure to set the paper scale last. For example,

```
set(gca,'Units','Normalized','Position',[0}00011]
tightmap
paperscale(1,'in', 5,'miles')
```

The paperscale function also can take a scale denominator as its first and only argument. If you want the map to be printed at $1: 20,000,000$, type

```
paperscale(2e7)
```

To check the size and extent of text and the relative position of axes, use previewmap, which resizes the figure to the printed size.
previewmap
For more information on printing, see the "Basic Printing and Exporting" section of the MATLAB graphics documentation.

## Manipulating Geospatial Data

For some purposes, geospatial data is fine to use as is. Sooner or later, though, you need to extract, combine, massage, and transform geodata. This chapter discusses some of the tools and techniques that the Mapping Toolbox provides for such purposes.

Units and Notation (p. 7-2) Notating and converting distance and time units
Manipulating Vector Data (p. 7-10) Ways to extract, compare, densify, and reduce data
Manipulating Raster Data (p. 7-38) Encoding, extracting, and transforming gridded data values

## Units and Notation

Geospatial data always expresses or implies units and types of distance, and in many instances involves time. This section helps you understand the different types and notations used for time, location, and distance, and how to convert data between them easily.

| "Converting Latitude and | Notations for spherical coordinates and <br> conversion between them |
| :--- | :--- |
| Longitude Notations" on <br> page 7-2 |  |
| "Converting Distance Units" | Angular distance and conversion to linear <br> on page 7-5 |
| "Converting Time Notations" | Expressing time and conversions between <br> on page 7-8 |
| time notations |  |

For related documentation on calculating distances, positions, ranges, and angles, see "Planetary Almanac Data" on page 3-24.

## Converting Latitude and Longitude Notations

Spherical coordinates such as latitude and longitude are angular measures, and cannot be represented as plane coordinates without projection. Angles can be represented as variables in the Mapping Toolbox in three ways:

- Degrees plus fractions (default; also called decimal degrees)
- Radians
- Degrees-minutes-seconds

The toolbox provides functions for converting among these formats.
Regardless of the units used for angles, a pair of them is needed to fix the horizontal location of a point. To manipulate geospatial data given in spherical coordinates, it is necessary to know whether a coordinate tuple represents (latitude, longitude) or (longitude, latitude). This might not always be obvious from inspecting the data.

## Degrees-Minutes-Seconds

Degrees-minutes-seconds, or $d m s$, notation, is common in atlases and geographic texts, and is sometimes used in digital data sets. Angles in dms are
normally notated as $d d d^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}{ }^{\prime \prime}$. For example, $142^{\circ} 15^{\prime} 27{ }^{\prime \prime}$ is 142 degrees, 15 minutes, and 27 seconds. There are 60 seconds in a minute and 60 minutes in a degree. The Mapping Toolbox internally represents dms angles by a single number, the format of which is $d d d m m . s s$. For example, $142^{\circ} 15^{\prime} 27^{\prime \prime}$ is 14215.27. Such numbers can be either positive or negative. A special case of the dms format is the $d m$ format, in which seconds are not included.

The real value of this notation is in entering data that arrives in this format. The toolbox includes the mat2dms function for easily entering dms data.

If you have a three-column matrix in which the columns are degrees, minutes, and seconds, respectively, mat2dms converts it to dms format:

```
format long g
dmsmatrix = [45 13 46; 156 45 01; -7 34 12.1]
dmsmatrix =
    45 13 46
    156 45 1
    -7 34 12.1
dmsformat = mat2dms(dmsmatrix)
dmsformat =
    4 5 1 3 . 4 6
    15645.01
    -734.121
```

Note Take care when working with the $d m s$ format; for example, two angles in this format cannot be added. You should convert dms data to decimal degrees before working with it.

## Converting Among Angle Unit Formats

The toolbox includes a variety of angle unit conversion functions. For example, to convert the dms format values to degrees or to radians, you can use dms2deg and dms2rad, respectively:

```
degformat = dms2deg(dmsformat)
degformat =
    45.2294
```

```
156.7503
    -7.5700
radformat = dms2rad(dmsformat)
radformat =
    0.7894
    2.7358
-0.1321
```

Similar functions include deg2rad, rad2deg, and deg2dms. Another, more general function, angledim, converts from one format to another. For example, how many degrees are in one quarter radian?

```
degs = angledim(1/4*pi,'radians','degrees')
degs =
    4 5
```


## Converting Formatted Angle Strings to Numbers

Many sources of geographic data consist of text with the angles in degrees-minutes-seconds format such as $d d d^{\circ} \mathrm{mm}$ ' ss". These formatted strings can include the characters for degrees, minutes, and seconds, as well as letters for north, south, east, and west or other special characters. These kinds of angle strings cannot be converted to numbers by using the MATLAB num2str function. However, you can convert many of these string formats to numeric decimal degrees using the str2angle function. The str2angle function accepts string matrices or cell arrays of strings containing values formatted in a number of commonly used angle formats:

```
strs = {'123`30''00"S','123-30-00S','123d30m00sS','1233000S'};
str2angle(strs)
ans =
    -123.5
    -123.5
    -123.5
    -123.5
```


## Angular Unit Conversion

Longitudes always increase going eastward and decrease going westward. For longitudes of any magnitude, the function npi2pi wraps data to the range ( -180 180):

```
longitudes = [-560 125 190];
```

```
newlongitudes = npi2pi(longitudes)
newlongitudes =
    160.0000 125.0000-170.0000
```

Sometimes it is more natural to consider longitude as strictly positive, proceeding from the prime meridian ( $0^{\circ}$ ) eastward around and back to the prime meridian $\left(360^{\circ}\right)$. Any longitude data can be converted to this domain using the zero22pi function:

```
positivelongs = zero22pi(newlongitudes)
positivelongs =
    160.0000 125.0000 190.0000
```

If you need this data in radians, you can use an angle conversion function:

```
radianlongs = deg2rad(positivelongs)
radianlongs =
    2.7925 2.1817 3.3161
```

Several angle conversion functions are available in this toolbox, supporting degrees, radians, and degrees-minutes-seconds notation. Some useful utility functions are also included, such as antipode. For example, what is the antipodal point (on the opposite side of the Earth) of Natick, Massachusetts (about $42.3^{\circ} \mathrm{N}, 71.35^{\circ} \mathrm{W}$ )?

```
[antilat,antilong] = antipode(42.3,-71.35)
antilat =
    -42.3000
antilong =
    108.6500
```

The result $\left(42.3^{\circ} \mathrm{S}, 108.65^{\circ} \mathrm{E}\right)$ lies in the Indian Ocean southwest of Australia.

## Converting Distance Units

In spherical coordinates distances are expressed as angles, not lengths. Since there is an infinity of arcs that can connect two points on a sphere or spheroid, by convention the shortest one (the great circle distance) is used to measure how far apart points are. To transform an angular distance into linear distance along a great circle, you must specify which ellipsoid vector should be used.

The Mapping Toolbox can express distances in a number of different units. It provides functions to convert between nautical miles ( nm ), statute miles ( sm ), feet ( ft ), kilometers ( km ), meters (m), degrees of arc length (deg), and radians of arc length (rad). The names of these functions are of the form sm2km, km2rad, etc. A general distance conversion function, distdim, is available as well.

There is no single default unit of distance measurement in the toolbox. Navigation functions use nautical miles as a default, almanac functions use kilometers, and the distance function use degrees of arc length. It is essential that you understand the default units of any function you use.

Note When distances are given in terms of angular units (degrees or radians), be careful to remember that these are specified in terms of arc length. While a degree of latitude always subtends one degree of arc length, this is only true for degrees of longitude along the Equator. If this were generally true, the Earth would be cylindrical.

On the Earth, a degree of arc length at the equator is about 60 nautical miles:

```
nauticalmiles = deg2nm(1)
nauticalmiles =
    60.0405
```

The Earth is the default assumption for these conversion functions. You can use other radii, however:

```
nauticalmiles = deg2nm(1,almanac('moon','radius'))
nauticalmiles =
    30.3338
```

The function deg2sm returns distances in statute, rather than nautical, miles:

```
deg2sm(1)
ans =
    69.0952
```


## The unitsratio Distance Conversion Function

The unitsratio function lets you convert plane distances and angular distances from one measurement unit to another. It supports a wide range of linear distance units, from microns to miles. The syntax for unitsratio is

```
factor = unitsratio(to-unit, from-unit) * distance
```

By omitting the distance, you can obtain the raw conversion factor.
1 For example, to compute the number of centimeters in an inch, type

```
cm2in = unitsratio('cm','inch')
cm2in =
    2.5400
```

2 To convert this number of centimeters back to inches, type

```
in = unitsratio('in','centimeter') * cm2in
in =
    1
```

Note that unitsratio supports various abbreviations for units of length.
1 As another example, first use almanac to obtain the grs80 ellipsoid:

```
almanac('earth','grs80', 'km')
```

ans $=$
$1.0 \mathrm{e}+003$ *
$6.3781 \quad 0.0001$

2 Compute the difference between the semi-major and semi-minor axis:

```
dkm = ans(1) * ans(2)
dkm =
    521.8540
```

3 Use unitsratio to convert this distance from kilometers to meters:

```
dm = unitsratio('m','km')*dkm
dm =
    5.2185e+005
```

4 Now convert from meters to international feet:

```
dft = unitsratio('ft','m')*dm
dft =
    1.7121e+006
```

5 Finally, see how much is this in statute miles:

```
dsmi = unitsratio('statute mile','foot')*dft
dsmi =
    324.2644
```

The unitsratio function also converts angles between degrees and radians.

## Converting Time Notations

Times can be represented as variables in the Mapping Toolbox in three ways: hours, seconds, and hours-minutes-seconds. The toolbox provides functions for converting among these formats.

## Hours

This is the default time unit notation for the toolbox.
Hour notation is simply decimal notation in terms of hours. Two hours and fifteen minutes would be 2.25 .

## Seconds

Seconds notation is simply decimal notation in terms of seconds. One hour would be 3600 .

## Hours-Minutes-Seconds

Hours-minutes-seconds, or $h m s$ notation, is analogous to dms notation for angles. In text, an hms time would be $h h: m m: s s$. For example, 12:36:15 is 12 hours, 36 minutes, and 15 seconds. In the Mapping Toolbox, when hms times are represented by a single number, the format is hhmm.ss. For example, 12:36:15 is 1236.15.

This notation is most useful for entering data provided in this format. The toolbox includes the mat2hms function for entering hms data, which is similar to the mat2dms function described earlier.

Note Exercise care when you use with the hms format; for example, two times in this format cannot simply be added. Always convert data to decimal hours before working with it numerically.

## Converting Between Time Unit Formats

Time units can be converted using functions similar to those described for angle unit conversions. These include hr2sec and hms2hr, as well as a general conversion function, timedim, that works like angledim.

## Manipulating Vector Data

The Mapping Toolbox enables you to manipulate, combine, and separate vector geodata in a variety of ways. This section describes some useful functions for conditioning, selecting, and transforming vector geodata.
"Repackaging Vector Separating and combining NaN-delimited
Objects" on page 7-11
"Matching Line Segments" on page 7-12
"Geographic Interpolation" on page 7-13
"Vector Intersections" on page 7-19 vectors

Forming closed loops that can be represented as patches

Linear point interpolation on the sphere and spheroid; adding detail to lines manually

Computing where small circles, rhumb lines, and circles intersect
"Polygon Area" on page 7-21 Computing the areas of polygons on the sphere and spheroid
"Overlaying Polygons with Performing geometric intersections of polygons Boolean Logic" on page 7-22 and obtaining logical answers
"Cutting Polygons at the Working around the discontinuity in longitude Date Line" on page 7-26 that happens at 180 degrees east/west
"Building Buffer Zones" on Constructing distance contours around map page 7-28 features for analysis and display
"Trimming Vector Data to a Clipping away line and polygon coordinates Rectangular Region" on page 7-30
"Trimming Vector Data to an Arbitrary Region" on page 7-32
"Simplifying Vector Coordinate Data" on page 7-33

Using a data grid to define regions of interest and clip vector data to them

Eliminating visually redundant coordinates to remove unnecessary detail, and to speed and stylize map displays

## Repackaging Vector Objects

It can be difficult to identify line or patch segments once they have been combined into large NaN-clipped vectors. You can separate these polygon or line vectors into their component segments using polysplit, which take column vectors as inputs:

## Extracting and Joining Polygons or Line Segments

1 Enter two NaN-delimited arrays in the form of column vectors:

```
lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89]';
long = [13 -97.45 165 NaN 0 -114.2 -18 0]';
```

2 Use polysplit to create two cell arrays, latc and lonc:

```
[latc,lonc] = polysplit(lat,long)
latc =
    [3x1 double] [4x1 double]
lonc =
    [3\times1 double] [4\times1 double]
```

3 Inspect the contents of the cell arrays:

```
[latc{1} lonc{1}]
ans =
    45.6 13
    -23.47 -97.45
    78 165
[latc{2} lonc{2}]
ans =
    43.9 0
-67.14 -114.2
    90 -18
    -89 0
```

Note that each cell array element contains a segment of the original line.
4 To reverse the process, use polyjoin:
[lat2,lon2] = polyjoin(latc,lonc);
5 The joined segments are identical with the initial lat and lon arrays:

```
[lat long] == [lat2 lon2]
ans =
    1 1
    1
    1 1
    0
    1
    1
    1 1
    1
```

The logical comparison is false for the NaN delimiters by definition.
6 You can test for global equality, including NaNs, as follows:
isequalwithequalnans(lat,lat2) \& isequalwithequalnans(long,lon2) ans =

1
See the reference pages for polysplit and polyjoin for further information.

## Matching Line Segments

A common operation on sets of line segments is the concatenation of segments that have matching endpoints. The polymerge command compares endpoints of segments within latitude and longitude vectors to identify endpoints that match exactly or lie within a specified distance. The matching segments are then concatenated, and the process continues until no more coincidental endpoints can be found. The two required arguments are a latitude (or $x$ ) vector and a longitude (or $y$ ) vector. The following exercise shows this process at work:

## Linking Line Segments into Polygons

1 Construct column vectors representing coordinate values:

```
lat = [3 2 NaN 1 2 NaN 5 6 NaN 3 4]';
lon = [13 12 NaN 11 12 NaN 15 16 NaN 13 14]';
```

2 Concatenate the segments that match exactly:

```
[latm,lonm] = polymerge(lat,lon)
ans =
```

| 5 | 15 |
| ---: | ---: |
| 6 | 16 |
| NaN | NaN |
| 1 | 11 |
| 2 | 12 |
| 2 | 12 |
| 3 | 13 |
| 3 | 13 |
| 4 | 14 |

The original four segments are merged into two segments.
The polymerge function takes an optional third argument, a (circular) distance tolerance that permits inexact matching. A fourth argument enables you to specify whether the function outputs vectors or cell arrays. See the reference page for polymerge for further information.

## Geographic Interpolation

When using vector data, you must be careful when you make assumptions concerning geographic reality between data points. For instance, when plotting vector data, you might connect each point with a straight line segment. This does not usually indicate any true knowledge about the region between known points. Data consisting of points along a coastline might be sparse; in the absence of other knowledge, filling in data can be misleading.


## Interpreting Sparse Vector Data

Despite the dangers of misinterpretation, many circumstances exist in which geographic data interpolation is useful or necessary. Sparser data can be linearly filled in with the interpm function.

Consider a set of latitude and longitude points that you want to be separated by no more than one degree in either direction:

```
    lats = [1 2 4 5]; longs = [1 3 4 5]; maxdiff = 1;
[newlats,newlongs] = interpm(lats,longs,maxdiff)
newlats =
    1.0000
    1.5000
    2.0000
    3.0000
    4.0000
    5.0000
newlongs =
    1.0000
    2.0000
    3.0000
    3.5000
    4.0000
    5.0000
```

In the original lats, there is a gap of 2 degrees between the 2 and the 4 . A linearly interpolated point, $(3,3.5)$ was therefore inserted in newlats and newlongs. Similarly, in the original longs, there is a gap of 2 degrees between the 1 and the 3 . The point $(1.5,2)$ was therefore interpolated and placed into newlats and newlongs. Now, no adjacent points in either newlats or newlongs are greater than maxdiff apart.

The interpm function returns the original data with new linearly interpolated points inserted. Sometimes, however, only the interpolated values are desired. The commands intrplat and intrplon provide a capability similar to the MATLAB interp1 command, allowing for different methods of interpolation.

Use intrplat to interpolate a latitude for a given longitude. Given a monotonic set of longitudes and their matching latitude points, you can interpolate a new latitude for a given longitude in a linear, spline, cubic, rhumb line, or great circle sense.

Find the latitude corresponding to a longitude of $7.3^{\circ}$ in the following data in a linear, great circle, and rhumb line sense:

```
longs = [1 3 4 9 13]; lats = [57 68 60 65 56]; newlong = 7.3;
newlat = intrplat(longs,lats,newlong,'linear')
newlat =
    63.3000
newlat = intrplat(longs,lats,newlong,'gc')
newlat =
    6 3 . 5 0 2 9
newlat = intrplat(longs,lats,newlong,'rh')
newlat =
```

    63.3937
    great circle latitude $=63.3937$
rhumb line latitude $=63.5029$
linear latitude $=63.3000$
$\left(60^{\circ}, 4^{\circ}\right)$


The intrplon function provides the same capability for interpolating new longitudes for given latitudes.

## Interpolating Points Along Line Vectors

When using vector data, remember that like raster data, coordinates are sampled measurements. This involves unavoidable assumptions concerning what the geographic reality is between specified data points. The normal assumption when plotting vector data requires that points be connected with straight line segments, which essentially indicates a lack of knowledge about conditions between the measured points. For lines that are by nature continuous, such as most rivers and coastlines, such piecewise linear interpolation can be false and misleading.


## Interpolating Sparse Vector Data

Despite the possibility of misinterpretation, circumstances do exist in which geographic data interpolation is useful or even necessary. The Mapping Toolbox provides the interpm function to interpolate between known data points. One value of linearly interpolating points is to fill in lines of constant latitude or longitude (e.g., administrative boundaries) that can curve when projected.

## Interpolating Vectors to Achieve a Minimum Point Density

This example interpolates values in a set of latitude and longitude points to have no more than one degree of separation in either direction.

1 Define two fictitious latitude and longitude data vectors:

```
lats = [1 2 4 5]; longs = [1 3 3 4 5];
```

2 Specify a densification parameter of 1 (the default unit is degrees):

```
maxdiff = 1;
```

3 Call interpm to fill in any gaps greater than $1^{\circ}$ in either direction:

```
[newlats,newlongs] = interpm(lats,longs,maxdiff)
newlats =
    1.0000
    1.5000
```

$$
\begin{gathered}
2.0000 \\
3.0000 \\
4.0000 \\
5.0000 \\
\text { newlongs }= \\
1.0000 \\
2.0000 \\
3.0000 \\
3.5000 \\
4.0000 \\
5.0000
\end{gathered}
$$

In lats, a gap of $2^{\circ}$ exists between the values 2 and the 4 . A linearly interpolated point, $(3,3.5)$ was therefore inserted in newlats and newlongs. Similarly, in longs, a gap of $2^{\circ}$ exists between the 1 and the 3 . The point $(1.5,2)$ was therefore interpolated and placed into newlats and newlongs. Now, the separation of adjacent points is no greater than maxdiff in either newlats or newlongs.

See the reference page for interpm for further information.

## Interpolating Coordinates at Specific Locations

Both the original data and new linearly interpolated points are returned by interpm. Sometimes, however, you might want only the interpolated values. The functions intrplat and intrplon provide a capability similar to the MATLAB interp1 function, and give you control over the method used for interpolation. Note that they only interpolate and return one value at a time.

Use intrplat to interpolate a latitude for a given longitude. Given a monotonic set of longitudes and their matching latitude points, you can interpolate a new latitude for a longitude you specify, interpolating along linear, spline, cubic, rhumb line, or great circle paths. The longitudes must increase or decrease monotonically. If this is not the case, you might be able to use the companion function intrplon if the latitude values are monotonic.

Interpolate a latitude corresponding to a longitude of $7.3^{\circ}$ in the following data in a linear, great circle, and rhumb line sense:

1 First define some fictitious latitudes and longitudes:

```
longs = [1 3 4 9 13]; lats = [57 68 60 65 56];
```

2 Specify the longitude for which to compute a latitude:

```
newlong = 7.3;
```

3 Generate a new latitude with linear interpolation:

```
newlat = intrplat(longs,lats,newlong,'linear')
newlat =
    63.3000
```

4 Now generate the latitude using great circle interpolation:

```
newlat = intrplat(longs,lats,newlong,'gc')
newlat =
```

    63.5029
    5 Generate it again, specifying interpolation along a rhumb line:

```
newlat = intrplat(longs,lats,newlong,'rh')
newlat =
    63.3937
```

The following diagram illustrates these three types of interpolation. The intrplat function also can perform spline and cubic spline interpolations.


As mentioned above, the intrplon function provides the capability to interpolate new longitudes from given set of longitudes and monotonic latitudes.

See the reference pages for intrplat and intrplon for further information.

## Vector Intersections

The Mapping Toolbox provides a set of functions to perform intersection calculations on vector data computed by the toolbox, which include great and small circles as well as rhumb line tracks. The functions also determine intersections of arbitrary vector data.

Compute the intersection of a small circle centered at ( $0^{\circ}, 0^{\circ}$ ) with a radius of 1250 nautical miles and a small circle centered at $\left(5^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ with a radius of 2500 kilometers:

```
[lat,long] = scxsc(0,0,nm2deg(1250),5,30,km2deg(2500))
lat =
    17.7487 -12.9839
long =
    11.0624 16.4170
```



Notice that, in general, small circles intersect twice or never. For the case of exact tangency, scxsc returns two identical intersection points. Other similar commands include rhxrh for intersecting rhumb lines, gexgc for intersecting great circles, and gcxsc for intersecting a great circle with a small circle.

Imagine a ship setting sail from Norfolk, Virginia $\left(37^{\circ} \mathrm{N}, 76^{\circ} \mathrm{W}\right)$, maintaining a steady due-east course $\left(90^{\circ}\right)$, and another ship setting sail from Dakar, Senegal
$\left(15^{\circ} \mathrm{N}, 17^{\circ} \mathrm{W}\right)$, with a steady northwest course $\left(315^{\circ}\right)$. Where would the tracks of the two vessels cross?

```
[lat,long] = rhxrh(37,-76,90,15,-17,315)
lat =
    37
long =
    -41.7028
```

The intersection of the tracks is at $\left(37^{\circ} \mathrm{N}, 41.7^{\circ} \mathrm{W}\right)$, which is roughly 600 nautical miles west of the Azores in the Atlantic Ocean.


You can also compute the intersection points of arbitrary vectors of latitude and longitude. The polyxpoly command finds the segments that intersect and interpolates to find the intersection points. The interpolation is done linearly, as if the points were in a cartesian $x-y$ coordinate system. The polyxpoly
command can also identify the line segment numbers associated with the intersections:
[xint,yint] = polyxpoly(x1,y1,x2,y2);


If the spacing between points is large, there can be some difference between the intersection points computed by polyxpoly and the intersections shown on a map display. This is a result of the difference between straight lines in the unprojected and projected coordinates. Similarly, there can be differences between the polyxpoly result and intersections assuming great circles or rhumb lines between points.

## Polygon Area

You can use the function areaint to calculate geographic areas for vector data in polygon format. The function performs a numerical integration using Green's Theorem for the area on a surface enclosed by a polygon. Because this is a discrete integration on discrete data, the results are not exact.
Nevertheless, the method provides the best means of calculating the areas of arbitrarily shaped regions. Better measures result from better data.

The Mapping Toolbox function areaint (for area by integration), like the other area functions, areaquad and areamat, returns areas as a fraction of the entire planet's surface, unless a radius is provided. Here you calculate the area of the continental United States using the usalo workspace. Three areas are returned, because the data contains three polygons: Long Island, Martha's Vineyard, and the rest of the continental U.S.:

```
earthradius = almanac('earth','radius');
area = areaint(uslat,uslon,earthradius)
area =
    1.0e+06 *
            7.9256
            0.0035
            0.0004
```

Because the default Earth radius is in kilometers, the area is in square kilometers. From the same workspace, the areas of the Great Lakes can be calculated, this time in square miles:

```
earthradius = almanac('earth','radius','miles');
area = areaint(gtlakelat,gtlakelon,earthradius)
area =
    1.0e+04 *
        8.0124
        1.0382
        0.7635
```

Again, three areas are returned, the largest for the polygon representing Superior, Michigan, and Huron together, the other two for Erie and Ontario.

## Overlaying Polygons with Boolean Logic

Polygon Boolean operations are used to answer a variety of questions about logical relationships of vector data polygon objects. Standard Boolean operations include intersection, union, subtraction, and an exclusive OR operation. The polybool function performs these operations on two sets of vectors, which can represent $x-y$ or latitude-longitude coordinate pairs. In computing points where boundaries intersect, interpolations are carried out on the coordinates as if they were planar. Here is an example that shows all the available operations.


The result is returned as NaN-clipped vectors by default. In cases where it is important to distinguish outer contours of polygons from interior holes, polybool can also accept inputs and return outputs as cell arrays. In the cell array format, a cell array entry starts with the list of points making up the outer contour. Subsequent NaN-clipped faces within the cell entry are interpreted as interior holes.

## Intersecting Polygons with the polybool Function

The following exercise demonstrates how you can use polybool:
1 Construct a twelve-sided polygon:

```
theta = (0:pi/6:2*pi)';
lat1 = sin(theta);
lon1 = cos(theta);
```

2 Construct a triangle that overlaps it:

```
lat2 = [0 0 1 -1 0]';
lon2 = [0 2 2 0]';
```

3 Plot the two shapes together with blue and red lines:

```
axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')
```

4 Compute the intersection polygon and plot it as a green patch:

```
[lati,loni] = polybool('intersection',lat1,lon1,lat2,lon2);
[lati loni]
ans =
    0.44093 0.88185
    1.2246e-016 1
    -0.44093 0.88185
    1.2246e-016 6.1232e-017
    0.44093 0.88185
patchm(lati,loni,'g')
```

5 Compute the union polygon and plot it as a magenta patch:
[latu,lonu] = polybool('union',lat1,lon1,lat2,lon2);
[latu lonu]
ans =
$0.44093 \quad 0.88185$
$1 \quad 2$
$-1 \quad 2$
-0.44093 0.88185
-0.5 0.86603
$-0.86603 \quad 0.5$
-1 6.1232e-017
$-0.86603 \quad-0.5$
$-0.5-0.86603$
$\begin{array}{ll}1.2246 e-016 & -1\end{array}$
$0.5-0.86603$
$0.86603 \quad-0.5$
1 6.1232e-017
$0.86603 \quad 0.5$
0.50 .86603
$0.44093 \quad 0.88185$
patchm(latu,lonu,'m')

6 Compute the exclusive OR polygon and plot it as a yellow patch:

```
[latx,lonx] = polybool('xor',lat1,lon1,lat2,lon2);
[latx lonx]
ans =
    -0.44093 0.88185
    1.2246e-016 1
        0.44093 0.88185
            1 2
            -1 2
            -0.44093 0.88185
            NaN NaN
            0.44093 0.88185
    1.2246e-016 6.1232e-017
            -0.44093 0.88185
            -0.5 0.86603
            -0.86603 0.5
            -1 6.1232e-017
            -0.86603 -0.5
            -0.5 -0.86603
    1.2246e-016 -1
            0.5 -0.86603
            0.86603 -0.5
            1 6.1232e-017
            0.86603 0.5
            0.5 0.86603
            0.44093 0.88185
patchm(latx,lonx,'y')
```

7 Lastly, subtract the triangle from the 12 -sided polygon and plot the resulting concave polygon as a white patch:

```
[latm,lonm] = polybool('minus',lat1,lon1,lat2,lon2);
[latm lonm]
ans =
    0.44093 0.88185
    1.2246e-016 6.1232e-017
        -0.44093 0.88185
        -0.5 0.86603
        -0.86603 0.5
            -1 6.1232e-017
```

| -0.86603 | -0.5 |
| ---: | ---: |
| -0.5 | -0.86603 |
| $1.2246 \mathrm{e}-016$ | -1 |
| 0.5 | -0.86603 |
| 0.86603 | -0.5 |
| 1 | $6.1232 \mathrm{e}-017$ |
| 0.86603 | 0.5 |
| 0.5 | 0.86603 |
| 0.44093 | 0.88185 |

The final set of colored shapes is shown below.


See the reference page for polybool for further information.

## Cutting Polygons at the Date Line

Polygon Boolean operations treat input vectors as plane coordinates. The polyxpoly function can be confused by geographic data that has discontinuities in longitude coordinates at date line crossings. This can happen when points with longitudes near $180^{\circ}$ connect to points with longitudes near $-180^{\circ}$, as might be the case for eastern Siberia, Antarctica, and also for small circles and other patch objects generated by toolbox functions.

You can prepare such geographic data for use with polybool or for patch rendering by cutting the polygons at the date line with the flatearthpoly
function. The result of flatearthpoly is a polygon with points inserted to follow the date line up to the pole, traverse the longitudes at the pole, and return to the date line crossing along the other edge of the datel ine.

## Removing Discontinuities from a Small Circle

1 Create an Orthographic view of the Earth and plot coast on it:

```
close all; clear all;
axesm ortho
setm(gca,'Origin', [60 170]); framem on; gridm on
load coast
plotm(lat, long)
```

2 Generate a small circle that encompasses the North Pole and color it yellow:

```
[latc,lonc] = scircle1(75,45,30);
patchm(latc,lonc,'y')
```

3 Now "latten the small circle with flatearthpoly:

```
[latf,lonf] = flatearthpoly(latc,lonc);
```

4 Plot the cut circle that you just generated as a magenta line: plotm(latf,lonf,'m')

5 Generate a second small circle that does not include a pole:

```
[latc1 lonc1] = scircle1(20, 170, 30)
```

6 Flatten it and plot it as a red line:

```
[latf1,lonf1] = flatearthpoly(latc1,lonc1);
plotm(latf1,lonf1,'r')
```

The following figure shows the result of these operations. Note that the second small circle, which does not cover a pole, has been clipped into two pieces along the date line. On the right, the polygon for the first small circle is plotted in plane coordinates to illustrate its flattened shape.


The flatearthpoly function assumes that the interior of the polygon being flattened is in the hemisphere that contains most of its edge points. Thus a polygon produced by flatearthpoly will not cover more than a hemisphere.

Note As the above figure illustrates, you do not need to use flatearthpoly to prepare data for a map display. The Mapping Toolbox display functions automatically cut and trim geographic data if required by the map projection. Use this function only when conducting Boolean operations on polygons.

See the reference page for flatearthpoly for further information.

## Building Buffer Zones

A buffer zone is the area within a specified distance of a map feature. For vector geodata, buffer zones are constructed as polygons. For raster geodata, buffer zones are collections of contiguous, identically-coded grid cells. When the feature is a polygon, a buffer zone can be defined as the locus of points within a certain distance of its boundary, either inside or outside the polygon. A buffer zone for a linear object is the locus of points a certain distance away from it. Buffer zones form equidistant contour lines around objects.

The bufferm function computes and returns vectors that represent a set of points that define a buffer zone. It forms the buffer by placing small circles at
the vertices of the polygon and rectangles along each of its line segments, and applying the union Boolean operation to these objects.

## Generating a Buffer Around a Compound Polygon

Demonstrate bufferm using a compound polygon representing Italy that you extract from the worldlo data set. The boundaries of Italy are provided to bufferm as NaN-clipped latitude and longitude vectors. Using it, compute a buffer zone at a distance of 1.5 degrees out from the boundaries of Italy:

1 Create a base map of the area surrounding Italy, and hide the border:
close all; clear all;
worldmap('lo', [35,50], [3,23], 'lineonly')
hidem(gca)
2 Read the worldlo data set and extract the polygons representing Italy:
load worldlo
[ilat,ilon] = extractm(POpatch,'italy');
3 User bufferm to process the Italy polygons and output a buffer zone 1.5 degrees away from the boundary:

```
[latb,lonb] = bufferm(ilat,ilon,1.5,'out');
```

This can take several minutes, because of the great number of geometric computations that bufferm is performing.

4 Draw the buffer zone in yellow, and then draw Italy in green:

```
patchesm(latb, lonb, 'y')
patchesm(ilat, ilon, 'g')
```



## Trimming Vector Data to a Rectangular Region

It is not unusual for vector data to extend beyond the geographic region currently of interest. For example, you might have coastline data for the entire world (such as the coast data set), but are interested in mapping Australia only. In this and other situations, you might want to eliminate unnecessary data from the workspace and from calculations in order to save memory or to speed up processing and display.

Line data and patch data need to be trimmed differently. You can trim line data by simply removing points outside the region of interest by clipping lines at the map frame or to some other defined region. Patch data requires a more complicated method to ensure that the patch objects are correctly formed.

For the vector data, two functions are available to achieve this. If the vectors are to be handled as line data, the maptriml function returns variables containing only those points that lie within the defined region. If, instead, you want to maintain polygon format, use the maptrimp function. Be aware, however, that patch-trimmed data is usually larger and more expensive to compute.

Note When drawing maps, the Mapping Toolbox automatically trims vector geodata to the region specified by the frame limits (FLatLimit and FLonLimit map axes properties) for azimuthal projections, or to frame or map limits (MapLatLimit and MapLonLimit map axes properties) for nonazimuthal projections. The trimming is done internally in the display routine, keeping the original data intact. For further information on trimming vector geodata, see "Axes for Drawing Maps" on page 4-5, along with the reference pages for the trimming functions.

## Trimming Vectors to Form Lines and Polygons

1 Load the coast MAT-file for the entire world:

```
close all; clear all;
```

load coast

2 Define a region of interest centered on Australia:
latlim = [-50 0]; longlim = [105 160];
3 Use maptriml to delete all data outside these limits, producing line vectors:
[linelat,linelong] = maptriml(lat,long,latlim,longlim);
4 Do this again, but use maptrimp to produce polygon vectors:
[polylat,polylong] = maptrimp(lat,long,latlim,longlim);
5 See how much data has been reduced:
whos

| Name | Size | Bytes | Class |
| :--- | ---: | ---: | :--- |
|  |  |  |  |
| lat | $9589 \times 1$ | 76712 | double array |
| latlim | $1 \times 2$ | 16 | double array |
| linelat | $870 \times 1$ | 6960 | double array |
| linelong | $870 \times 1$ | 6960 | double array |
| long | $9589 \times 1$ | 76712 | double array |
| longlim | $1 \times 2$ | 16 | double array |
| polylat | $1020 \times 1$ | 8160 | double array |
| polylong | $1020 \times 1$ | 8160 | double array |

```
Grand total is 22962 elements using 183696 bytes
```

Note that the clipped data is only $10 \%$ as large as the original data set.
6 Plot the trimmed patch vectors on a Miller projection:

```
axesm('MapProjection', 'miller', 'Frame', 'on',...
'FlatLimit', latlim, 'FlonLimit', longlim)
patchesm(polylat, polylong, 'c')
```

7 Lastly, plot the trimmed line vectors to see that they conform to the patches:

```
plotm(linelat, linelong, 'm')
```



See the reference pages for maptriml and maptrimp for further information.

## Trimming Vector Data to an Arbitrary Region

Often a set of data contains unwanted data mixed in with the desired values. For example, your data might include vectors covering the entire United States, but you only want to work with those falling in Alabama. Sometimes a data set contains noise - perhaps three or four points out of several thousand are obvious errors (for example, one of your city points is in the middle of the ocean). In such cases, locating outliers and errors in the data arrays can be quite tedious.

The filterm command uses a data grid to filter a vector data set. Its calling sequence is as follows:

```
[flats,flons] = filterm(lats,lons,grid,refvector,allowed)
```

Each location defined by lats and lons is mapped to a cell in grid, and the value of that grid cell is obtained. If that value is found in allowed, that point is output to flats and flons. Otherwise, the point is filtered out.

The grid might encode political units, and the allowed values might be the code or codes indexing certain states or countries (e.g., Alabama). The grid might also be real-valued (e.g., terrain elevations), although it could be awkward to specify all the values allowed. More often, logical or relational operators will give better results for such grids, enabling the allowed value to be 1 (for true). For example, you could use this transformation of the topo grid:

```
[flats,flons] = filterm(lats,lons,double(topo>0),topolegend,1)
```

The output would be those points in lats and lons that occupy dry land (mostly, because some water bodies are above sea level).

For further information, see the reference page for filterm. Also see "Data Grids as Logical Variables" on page 7-42.

## Simplifying Vector Coordinate Data

Avoiding visual clutter in composing maps is an essential part of cartographic presentation. In cartography, this is described as map generalization, which involves coordinating many techniques, both manual and automated. Limiting the number of points in vector geodata is an important part of generalizing maps, and is especially useful for conditioning cartographic data, plotting maps at small scales, and creating versions of geodata for use at small scales.

An easy, but naive, approach to point reduction would be to discard every $n$th element in each coordinate vector. However, this can result in very poor representations of the original shapes. The Mapping Toolbox provides a function to eliminate insignificant geometric detail in linear and polygonal objects while still maintaining accurate representations of their shapes. The reducem function implements a powerful line simplification algorithm (known as Douglas-Peucker) that intelligently selects and deletes visually redundant points.

The reducem function takes latitude and longitude vectors plus an optional linear tolerance parameter as arguments, and outputs reduced (simplified) versions of the vectors, in which deviations perpendicular to local "trend lines" in the vectors are all greater than the tolerance criterion. Endpoints of vectors
are preserved. Optional outputs are an error measure and the tolerance value used (which is computed when you do not supply a value).

Note Simplified line data might not always be appropriate for display. If all or most intermediate points in a feature are deleted, then lines that appear straight in one projection can be incorrectly displayed as straight lines in others, and separate lines can be caused to intersect. In addition, when you are reducing data over large world regions, the effective degree of reduction near the poles will be less than that achieved near the equator, due to the fact that the algorithm treats geographic coordinates as if they were planar.

## Using reducem to Simplify Lines

The reducem function works on both patch and line data. Getting results that look right at an intended scale might require some experimentation with the tolerance parameter. The best way to proceed may be to allow the tolerance to default, and have reducem return the tolerance it computed as the fourth value. If the output still has too much detail, then double the tolerance and try again. Similarly, if the output lines do not have enough detail, halve the tolerance and try again. You can also use the third return value, which indicates the percentage of line length that was eliminated by reduction, as a guide to achieve consistent simplification results, although this parameter is sensitive to line geometry and thus can vary by feature type.

To demonstrate the use of reducem, this example extracts the outline of the state of Massachusetts from the usahi high-resolution data set:

1 Load the U.S. data, extract Massachusetts, and remove the rest of the data:

```
clear all; close all; load usahi
```

The stateline structure contains vector data for all 50 U.S. states and the District of Columbia. Retrieve the boundary of Massachusetts, the 19th entry in the structure:

```
malat = stateline(19).lat;
malon = stateline(19).long;
```

Had you not known the index for Massachusetts, you could have used extractm, asking for the state by name:

```
[malat, malon] = extractm(stateline,'massachusetts');
```

2 Note that the Massachusetts state outline consists of 953 points:

```
numel(malat)
```

ans =
958

3 As you no longer need it, delete the rest of the data from the workspace:

```
clear state*
```

4 Now use reducem to simplify the boundary vectors, and inspect the results:

```
[malat1,malon1,cerr,tol] = reducem(malat,malon);
numel(malat1)
ans =
    2 5 3
```

5 The number of points used to represent the boundary has dropped from 958 to 253 . Compute the degree of reduction:

```
numel(malat1)/numel(malat)
```

ans =
0.26409

The vectors have been reduced to about a quarter of their original size using the default tolerance.

6 Now examine the error and tolerance values returned by reducem:

```
[cerr tol]
ans =
    0.033116 0.0059728
```

The cerr value says that only $3.3 \%$ of total boundary length was eliminated (despite removing $74 \%$ of the points). The tolerance that achieved this was computed by reducem as 0.006 decimal degrees, or about 0.66 km .

7 To see the geometric result, plot the reduced outline in red over the original outline in blue:

```
axesm('MapProjection','eqdcyl', 'FlatLim',[41.1 43.0],...
'FlonLim',[-69.8, -73.6], 'Frame','on');
```

```
plotm(malat, malon, 'b')
plotm(malat1, malon1, 'r')
```

You need to zoom in two or three times to see the differences in detail.
8 Double the tolerance, and reduce the original boundary into new variables:

```
[malat2,malon2,cerr2,tol2] = reducem(malat,malon, 0.012);
```

9 Repeat step 3 above with the new data and plot it in dark green:

```
numel(malat2)/numel(malat)
ans =
    0.16493
[cerr2 tol2]
ans =
    0.051734 0.012
plotm(malat2, malon2, 'Color',[0 .6 0])
```

Now you have removed $83 \%$ of the points, and $5.2 \%$ of total length.
10 Repeat one more time, raising the tolerance to 0.1 , and plot the result in black:

```
[malat3,malon3,cerr3,tol3] = reducem(malat,malon, 0.1);
plotm(malat3, malon3, 'Color',[0 0 0])
```

As the composite map shows, the visual effects of point reduction are subtle, up to a point. The choice of a tolerance when reducing line detail depends strongly on the purpose of the map and the scale at which it is to be displayed.

Note This exercise generalized a set of disconnected patches. When patches are contiguous (such as the U.S. state outlines), using reducem can result in inconsistencies in boundary representation and gaps at points where states meet. For best results, reducem should be applied to line data.


See the reference page for reducem for further information.

## Manipulating Raster Data

There are some operations on geodata for which raster data is appropriate and in fact makes easier. Among them are logical operations on attributes, extracting attributes along tracks, and computing surface characteristics.
"Vector-to-Raster Data Creating a grid from line or polygon vectors
Conversion" on page 7-38
"Data Grids as Logical Applying relational and Boolean logic to grid
Variables" on page 7-42
"Data Grid Values Along a
Path" on page 7-46
"Data Grid Gradient, Slope, Computing the steepness and direction of and Aspect" on page 7-47 gridded surfaces

## Vector-to-Raster Data Conversion

You can convert latitude-longitude vector data to a grid at any resolution you choose to make a raster base map or grid layer. The Mapping Toolbox provides GUI tools to help you do this, but you can also perform vector-to-raster conversions from the command line. The principal function for gridding vector data is vec2mtx, which allocates lines to a grid of any size you indicate, marking the lines with 1's and the unoccupied grid cells with 0's. The grid contains doubles, but if you desire a logical grid (see "Data Grids as Logical Variables" on page 7-42, below) you can cast the result to be a logical array.

If the vector data consists of polygons (patches), the gridded outlines are all hollow. You can differentiate them using the encodem function, calling it with an array of rows, columns, and seed values to produce a new grid containing polygonal areas filled with the seed values to replace the binary values generated by vec2mtx.

## Creating Data Grids from Vector Data

To demonstrate vector-to-raster data conversion, extract patch data for Switzerland from the worldlo data set:

1 Use extractm to get patch data for the boundary of Switzerland:

```
close all; clear all;
```

```
[swlat,swlon] = extractm(worldlo('POpatch'),'Switzerland');
```

2 Set grid density to be 40 cells per degree, and use vec2mtx to rasterize the boundary and generate a referencing vector for it:

```
den = 40;
[swgrid,swrv] = vec2mtx(swlat,swlon,den);
whos
\begin{tabular}{llrl} 
Name & Size & Bytes & Class \\
& & & \\
den & \(1 \times 1\) & 8 & double array \\
swgrid & \(80 \times 186\) & 119040 & double array \\
swlat & \(81 \times 1\) & 648 & double array \\
swlon & \(81 \times 1\) & 648 & double array \\
swrv & \(1 \times 3\) & 24 & double array
\end{tabular}
```

Grand total is 15046 elements using 120368 bytes
The resulting grid contains doubles, and has 80 rows and 186 columns.
3 Make a map of the data grid in contrasting colors:

```
axesm eqdcyl
meshm(swgrid,swrv)
colormap jet(4)
```

4 Set up the map limits:

```
[latlim lonlim]=limitm(swgrid,swrv);
setm(gca, 'Flatlimit', latlim, 'FlonLimit', lonlim)
tightmap
```

5 To fill (recode) the interior of Switzerland, you need a seed point (which must be identified by row and column) and a seed value (to be allocated to all cells within the polygon). Select the middle row and column of the grid and choose an index value of 3 to identify Swiss territory when calling encodem to generate a new grid:

```
swpt = [size(swgrid)/2, 3]
swpt =
    40 93 3
```

```
swgrid3 = encodem(swgrid,swpt,1)
```

The last argument (1) identifies the code for boundary cells, where filling should halt.

6 Clear and redraw the map using the filled grid:

```
meshm(swgrid3,swrv)
```

7 Plot the original vectors on the grid to see how well data was rasterized:

```
plotm(swlat,swlon,'k')
```

The resulting map is shown below. You can use the zoom tool on the figure window to examine the gridding results more closely.


See the reference pages for vec2mtx and encodem for further information. A related function for gridding point values is imbedm.

## Using a GUI to Rasterize Polygons

In the previous example, had you wanted to include the countries that border Switzerland, you could also have extracted Germany, Austria, Italy, and France along with Switzerland, and then deleted unwanted areas of these polygons using maptrimp (see "Trimming Vector Data to a Rectangular Region" on page 7-30 for specific details on its use). You can use the seedm function with seed points found using the getseeds GUI to fill multiple polygons after they are gridded:

1 Extract the data for Switzerland and its neighbors, by passing a cell array of their names to extractm:

```
close all; clear all;
```

```
pcs={'Switzerland','Germany','Austria', 'Italy', 'France'};
[celat,celon] = extractm(worldlo('POpatch'),pcs);
```

2 Use maptrimp to trim the country boundaries to specified limits:
[polylat,polylon] = maptrimp(celat,celon,[45 49],[5 11]);
3 Rasterize the trimmed polygons at a 1-arc-minute resolution (60 cells per degree), also producing a referencing vector:

```
[cegrid,cerv] = vec2mtx(polylat,polylon,60);
```

4 Set up a map figure and display the binary grid just created:

```
axesm eqdcyl
meshm(cegrid,cerv)
colormap jet(8)
```

5 Use getseeds to interactively pick seed points for Switzerland, Germany, Austria, Italy and France, in that order:

```
[row,col,val] = getseeds(cegrid,cerv,5,[3 4 5 6 7])
row =
    1 1 9
    1 9 7
    136
    40
    4 9
col =
    1 7 7
    240
    339
    303
        33
val =
    3
    4
    5
    6
    7
```

The MATLAB prompt returns after you pick five locations in the figure window. As you chose them yourself, your row and col numbers will differ.

6 Use encodem to fill each country with a unique value, producing a new grid, cegrid5:

```
cegrid5 = encodem(cegrid,[row col val],1);
```

7 Clear the display and display cegrid5 to see the result:

```
clma
meshm(cegrid5,cerv)
```

The rasterized map of Switzerland and its neighbors is shown below.


See the reference page for getseeds for more information. The GUI tools maptrim and seedm are also useful in this context.

## Data Grids as Logical Variables

You can apply logical criteria to numeric data grids to create logical grids. Logical grids are data grids consisting entirely of 1's and 0's. You can create them by performing logical tests on data grid variables. The resulting binary grid is the same size as the original grid(s) and can use the same referencing vector, as the following hypothetical data operation illustrates:

```
logicalgrid = (realgrid>0)
```

This transforms all values greater than zero into 1's and all other values to 0's. You can apply multiple conditions to a grid in one operation:

```
logicalgrid = (realgrid>-100)&(realgrid<100)
```

Should several grids be of the same size and share the same referencing vector (i.e., the grids are in registration), you can create a logical grid by testing joint conditions, treating the individual data grids as map layers:

```
logicalgrid = (population>10000)&(elevation<400)&...
    (country==nigeria)
```

The Mapping Toolbox provides functions enabling the creation of logical grids using logical and relational operators. Grids resulting from such operations contain logical rather than numeric values (which reduce storage by a factor of 8 ), and might need to be cast to double in order to be used in certain functions. The following example shows how you can generate grids of all 1's and all 0's.

## Generating "Blank" Logical Grids

Construct a pair of five-cell-per-degree grids. They will contain doubles.
1 Cover the conterminous United States with a grid of 1's; define the country's bounding latitudes and longitudes and the grid resolution:

```
latlims = [25 55]; longlims = [-130 -60]; scale = 5;
```

2 Generate a grid of all 1's over this region at 1/5-degree resolution:

```
onesgrid = onem(latlims,longlims,scale);
```

3 Generate a grid of all 0 's over this region at $1 / 5$-degree resolution:

```
zerosgrid = zerom(latlims,longlims,scale);
```

Turn the grids into logical-valued grids and note the difference in size:

| lonesgrid = logical(onesgrid); |  |  |  |
| :---: | :---: | :---: | :---: |
| ```lzerosgrid = logical(zerosgrid); whos``` |  |  |  |
| Name | Size | Bytes | Class |
| latlims | 1x2 | 16 | double array |
| lonesgrid | $150 \times 350$ | 52500 | logical array |
| longlims | $1 \times 2$ | 16 | double array |
| lzerosgrid | $150 \times 350$ | 52500 | logical array |
| onesgrid | $150 \times 350$ | 420000 | double array |
| scale | $1 \times 1$ | 8 | double array |
| zerosgrid | $150 \times 350$ | 420000 | double array |

```
Grand total is 210008 elements using 945064 bytes
```

4 Create a referencing vector for mapping the grids:

```
gridref = [5 latlim(2) longlim(1)]
gridref =
```

```
    5 55 -130
```

Remember that referencing vectors take the form

```
[cells-per-degree northern-latitude western-longitude]
```

See the references pages for onem and zerom for more details. You can create grids of all NaNs and sparse grids of all 0's in a similar fashion with the commands nanm and spzerom, respectively.

## Obtaining the Area Occupied by a Logical Grid Variable

You can analyze the results of logical grid manipulations to determine the area satisfying one or more conditions (either coded as 1's or an expression that yields a logical value of 1 ). The command areamat can provide the fractional surface area on the globe associated with 1's in a logical grid. Each grid element is a quadrangle, and the sum of the areas meeting the logical condition provides the total area:

1 You can use the topo grid and the greater-than relational operator to determine what fraction of the Earth lies above sea level:

```
load topo
a = areamat((topo>0),topolegend)
a =
    0.2890
```

The answer is about $30 \%$ (note that land areas below sea level are excluded).
2 You can include a planetary radius in specified units if you want the result to have those units. Here is the same query specifying units of square kilometers:

```
a = areamat((topo>0),topolegend,almanac('earth','radius'))
a =
    1.4739e+08
```

3 Use the worldmtx data grid that codes countries and water to find the area of a specific country. Here you determine the area of the U.S., which is coded as 183 in this data grid:

```
load worldmtx
a = areamat((map==183),maplegend, almanac('earth','radius'))
a =
    7.6677e+006
```

The grid codes 7.67 million square kilometers of land area as belonging to the U.S.

4 You can construct more complex queries if you want to know the extent of coverages over portions of the earth's surface. Using the last example, you can compute what portion of the land area of the earth the U.S. occupies (water is coded with 2's):

```
usland=areamat ((map==183),maplegend)/areamat((map~=2),maplegend)
usland =
    0.045293
```

This indicates that the U.S. occupies roughly $4.5 \%$ of the Earth's land area. To interpret this graphically, remember that the logical data grid (topo>0) is binary. The following is a display of the grid with purple where the condition is true (i.e., the logical grid entry is 1 ) and orange where it is false ( 0 ). It is displayed in an equal-area cylindrical projection, which vertically shrinks rows near the poles to show their true relative area. The areamat command similarly compensates for the changes in area occupied by latitude bands (rows) in computing cell areas.


[^2]
## Data Grid Values Along a Path

A common application for gridded geodata is to calculate data values along a path, for example, the computation of terrain height along a transect, a road, or a flight path. The mapprofile function does this, based on numerical data defining a set of waypoints or by defining them interactively via graphic input from a map display. Values computed for the resulting profile can be displayed in a new plot or returned as output arguments for further analysis or display.

## Using the mapprofile Function

The following example computes the elevation profile along a straight line:
1 Load the Korean elevation data:

```
clear all; close all;
load korea
```

2 Get its latitude and longitude limits using limitm: and use them to set up a map frame via worldmap:
[latlim,lonlim] = limitm(map,maplegend); worldmap(latlim,lonlim, 'none')

3 Render the map and apply a digital elevation model (DEM) colormap to it:
meshm (map, maplegend, size (map), map)
demcmap (map)
4 Define endpoints for a straight-line transect through the region:
plat $=\left[\begin{array}{ll}40.5 & 30.7\end{array}\right]$;
plon = [121.5 133.5];
5 Now compute the elevation profile, defaulting the track type to great circle and the interpolation type to bilinear:
[z,rng,lat,lon] = mapprofile(map,maplegend,plat,plon);
6 Draw the transect in 3-D so it follows the terrain:
plot3m(lat,lon, z, 'w', 'LineWidth', 2)
7 Construct a plot of transect elevation and range:
figure; plot(rng,z,'r')


The mapprofile function has other useful options, including the ability to interactively define tracks and specify units of distance for them. For further information, see the mapprofile reference page.

## Data Grid Gradient, Slope, and Aspect

A map profile is often used to determine slopes along a path. A related application is the calculation of slope at all points on a matrix. The gradientm command uses a finite-difference approach to compute gradients for either a regular or a georeferenced data grid. The function returns the components of the gradient in the north and east directions (i.e., north-to-south, east-to-west), as well as slope and aspect. The gradient components are the change in the grid variable per meter of distance in the north and east directions. If the grid contains elevations in meters, the aspect and slope are the angles of the surface normal clockwise from north and up from the horizontal. Slope is defined as the change in elevation per unit distance along the path of steepest ascent or descent from a grid cell to one of its eight immediate neighbors, expressed as the arctangent. The angles are in units of degrees by default.

## Computing Gradient Data from a Regular Data Grid

The following example illustrates computation of gradient, slope, and aspect data grids for a regular data grid based on the MATLAB peaks function:

1 Construct a 100-by-100 grid using the MATLAB peaks function and construct a referencing vector for it:

```
clear all; close all;
datagrid = 500*peaks(100);
gridrv = [ 1000 0 0];
```

2 Use gradientm to generate grids containing aspect, slope, and gradients to north, and gradients to east:
[aspect,slope,gradN,gradE] = gradientm(datagrid,gridrv);
whos

| Name | Size | Bytes | Class |
| :--- | :---: | ---: | :--- |
|  |  |  |  |
| aspect | $100 \times 100$ | 80000 | double array |
| datagrid | $100 \times 100$ | 80000 | double array |
| gradE | $100 \times 100$ | 80000 | double array |
| gradN | $100 \times 100$ | 80000 | double array |
| gridrv | $1 \times 3$ | 24 | double array |
| slope | $100 \times 100$ | 80000 | double array |

Grand total is 50004 elements using 400024 bytes
3 Map the surface data in a cylindrical equal area projection. Start with the original elevations:

```
axesm eqacyl
meshm(datagrid,gridrv)
colormap (jet(64))
colorbar('vert');
```

4 Clear the frame and display the slope grid:
clma
meshm(slope,gridrv)
colorbar('vert');
5 Map the aspect grid:
clma
meshm(aspect,gridrv)
colorbar('vert');

6 Map the gradients to the north:
clma
meshm(gradN,gridrv)
colorbar('vert');
7 Finally, map the gradients to the east:

```
clma
meshm(gradE,gridrv)
colorbar('vert');
```

The maps of the peaks surface elevation and gradient data are shown below. See the gradientm reference page for additional information.

peaks: slope


# Using Map Projections and Coordinate Systems 

All geospatial data must be flattened onto a display surface in order to visually portray what exists where. The mathematics and craft of map projection is central to this process. Although there is no limit to the ways geodata can be projected, conventions, constraints, standards, and applications generally prescribe its usage. This chapter describes what map projections are, how they are constructed and controlled, their essential properties, and some possibilities and limitations.

What Is a Map Projection? (p. 8-3) Flattening the Earth to comprehend its features
Quantitative Properties of Map Projections (p. 8-4)

The Three Main Families of Map Projections (p. 8-6)

Projection Aspect (p. 8-10)
Projection Parameters (p. 8-18)

Visualizing and Quantifying Projection Distortions (p. 8-24)

Accessing, Computing, and Inverting Map Projection Data (p. 8-31)
Working with the UTM System (p. 8-44)

Summary and Guide to Projections (p. 8-53)

What properties of maps the geometric construction of map projections influences and constrains

Making maps by projecting the globe onto cylinders, cones, and planes

How the orientation vector affects map displays
What parameters projections can have and how they influence the appearance and properties of maps

Calculating and communicating the kinds of spatial error that map projections ca have

Projecting coordinates using objects and retrieving projected coordinates from figure objects

Understanding the Universal Transverse Mercator family of map projections

The properties of each projection supported by the Mapping Toolbox

If you are not acquainted with the types, properties, and uses of map projections, you should read the first four sections. When constructing maps - especially in an environment such as the Mapping

Toolbox, in which a variety of projections are readily available and easily substituted - it is important to understand how to evaluate projections to select one appropriate to the contents and purpose of a given map. The larger the area being mapped, the more important these choices are.

## What Is a Map Projection?

Human beings have known that the shape of the Earth resembles a sphere and not a flat surface since classical times, and possibly much earlier than that. If the world were indeed flat, cartography would be much simpler because map projections would be unnecessary.

To represent a curved surface such as the Earth in two dimensions, you must geometrically transform (literally, and in the mathematical sense, "map") that surface to a plane. Such a transformation is called a map projection. The term projection derives from the geometric methods that were traditionally used to construct maps, in the fashion of optical projections made with a device called camera obscura that Renaissance artists relied on to render three-dimensional perspective views on paper and canvas.

While many map projections no longer rely on physical projections, it is useful to think of map projections in geometric terms. This is because map projection consists of constructing points on geometric objects such as cylinders, cones, and circles that correspond to homologous points on the surface of the planet being mapped according to certain rules and formulas.

The following sections describe the basic properties of map projections, the surfaces onto which projections are developed, the types of parameters associated with different classes of projections, how projected data can be mapped back to the sphere or spheroid it represents, and details about one very widely used projection system, called Universal Transverse Mercator.

For more detailed information on specific projections, browse "Projections Reference" on page 11-1. For further reading, the "Bibliography" provides references to books and papers on map projection.

## Quantitative Properties of Map Projections

A sphere, unlike a polyhedron, cone, or cylinder, cannot be reformed into a plane. In order to portray the surface of a round body on a two-dimensional flat plane, you must first define a developable surface (i.e., one that can be cut and flattened onto a plane without stretching or creasing) and devise rules for systematically representing all or part of the spherical surface on the plane. Any such process inevitably leads to distortions of one kind or another. Five essential characteristic properties of map projections are subject to distortion: shape, distance, direction, scale, and area. No projection can retain more than one of these properties over a large portion of the Earth. This is not because a sufficiently clever projection has yet to be devised; the task is physically impossible. The technical meanings of these terms are described below.

- Shape (also called conformality)

Shape is preserved locally (within "small" areas) when the scale of a map at any point on the map is the same in any direction. Projections with this property are called conformal. In them, meridians (lines of longitude) and parallels (lines of latitude) intersect at right angles. An older term for conformal is orthomorphic (from the Greek orthos, straight, and morphe, shape).

- Distance (also called equidistance)

A map projection can preserve distances from the center of the projection to all other places on the map (but from the center only). Such a map projection is called equidistant. Maps are also described as equidistant when the separation between parallels is uniform (e.g., distances along meridians are maintained). No map projection maintains distance proportionality in all directions from any arbitrary point.

- Direction

A map projection preserves direction when azimuths (angles from the central point or from a point on a line to another point) are portrayed correctly in all directions. Many azimuthal projections have this property.

- Scale

Scale is the ratio between a distance portrayed on a map and the same extent on the Earth. No projection faithfully maintains constant scale over large areas, but some are able to limit scale variation to one or two percent.

## 8 Area (also called equivalence)

A map can portray areas across it in proportional relationship to the areas on the Earth that they represent. Such a map projection is called equal-area or equivalent. Two older terms for equal-area are homolographic or homalographic (from the Greek homalos or homos, same, and graphos, write), and authalic (from the Greek autos, same, and ailos, area), and equireal. Note that no map can be both equal-area and conformal.

For a complete description of the properties that specific map projections maintain, see "Summary and Guide to Projections" on page 8-53.

## The Three Main Families of Map Projections

Mapmakers have developed hundreds if not thousands of map projections, over hundreds if not thousands of years. Three large families of map projection, plus several smaller ones, are generally acknowledged. These are based on the types of geometric shapes that are used to transfer features from a sphere or spheroid to a plane. As described above, they are known as developable surfaces, and the three traditional families consist of cylinders, cones, and planes. They are used to classify the majority of projections, including some that are not analytically (geometrically) constructed. In addition, a number of map projections are based on polyhedra. While polyhedral projections have interesting and useful properties, they are not described here.

The following sections describe and illustrate the cylindrical, conic and azimuthal families of map projections.

## Cylindrical Projections

A cylindrical projection is produced by wrapping a cylinder around a globe representing the Earth. The map projection is the image of the globe projected onto the cylindrical surface, which is then unwrapped into a flat surface. When the cylinder aligns with the polar axis, parallels appear as horizontal lines and meridians as vertical lines. Cylindrical projections can be either equal-area, conformal, or equidistant. The following figure shows a regular cylindrical or normal aspect orientation in which the cylinder is tangent to the Earth along the Equator and the projection radiates horizontally from the axis of rotation. The projection method is diagrammed on the left, and an example is given on the right (Equal-area cylindrical projection, normal/equatorial aspect).


For a description of projection aspect, see "Projection Aspect" on page 8-10.
Some widely-used cylindrical map projections are

- Equal-area cylindrical projection
- Equidistant cylindrical projection
- Mercator projection
- Miller projection
- Plate carree projection
- Universal transverse Mercator projection


## Pseudocylindrical Map Projections

All cylindrical projections fill a rectangular plane. Pseudocylindrical projection outlines tend to be barrel-shaped rather than rectangular. However, they do resemble cylindrical projections, with straight and parallel latitude lines, and can have equally spaced meridians, but meridians are curves, not straight lines. Pseudocylindrical projections can be equal-area, but are not conformal or equidistant.

Some widely-used pseudocylindrical map projections are

- Ekert projections (I-VI)
- Goode homolosin projection
- Mollweide projection
- Quartic authalic projection
- Robinson projection
- Sinusoidal projection


## Conic Projections

A conic projection is derived from the projection of the globe onto a cone placed over it. For the normal aspect, the apex of the cone lies on the polar axis of the Earth. If the cone touches the Earth at just one particular parallel of latitude, it is called tangent. If made smaller, the cone will intersect the Earth twice, in which case it is called secant. Conic projections often achieve less distortion at mid- and high latitudes than cylindrical projections. A further elaboration is the polyconic projection, which deploys a family of tangent or secant cones to bracket a succession of bands of parallels to yield even less scale distortion. The following figure illustrates conic projection, diagramming its construction on the left, with an example on the right (Albers equal-area projection, polar aspect).


Some widely-used conic projections are:

- Albers Equal-area projection
- Equidistant projection
- Lambert conformal projection
- Polyconic projection


## Azimuthal Projections

An azimuthal projection is a projection of the globe onto a plane. In polar aspect, an azimuthal projection maps to a plane tangent to the Earth at one of the poles, with meridians projected as straight lines radiating from the pole, and parallels shown as complete circles centered at the pole. Azimuthal projections (especially the orthographic) can have equatorial or oblique aspects. The projection is centered on a point, that is either on the surface, at the center of the Earth, at the antipode, some distance beyond the Earth, or at infinity. Most azimuthal projections are not suitable for displaying the entire Earth in one view, but give a sense of the globe. The following figure illustrates azimuthal projection, diagramming it on the left, with an example on the right (orthographic projection, polar aspect).


Some widely used azimuthal projections are

- Equidistant azimuthal projection
- Gnomonic projection
- Lambert equal-area azimuthal projection
- Orthographic projection
- Stereographic projection
- Universal polar stereographic projection

For additional information on families of map projections and specific map projections, see "Projections Reference" on page 11-1.

## Projection Aspect

A map projection's aspect is its orientation on the page or display screen. If north or south is straight up, the aspect is said to be equatorial; for most projections this is the normal aspect. When the central axis of the developable surface is oriented east-west, the projection's aspect is transverse. Projections centered on the North Pole or the South Pole have a polar aspect, regardless of what meridian is up. All other orientations have an oblique aspect. So far, the examples and discussions of map displays have focused on the normal aspect, by far the most commonly used. This section discusses the use of transverse, oblique, and skew-oblique aspects.

Projection aspect is primarily of interest in the display of maps. However, this section also discusses how the idea of projection aspect as a coordinate system transformation can be applied to map variables for analytical purposes.

## The Orientation Vector

A map axes Origin property is a vector describing the geometry of the displayed projection. The Mapping Toolbox calls this property the orientation vector (prior versions called it the origin vector). The vector takes this form:

```
orientvec = [latitude longitude orientation]
```

The latitude and longitude represent the geographic coordinates of the center point of the display from which the projection is calculated. The orientation refers to the clockwise angle from straight up at which the North Pole points from this center point. The default orientation vector is [000]; that is, the projection is centered on the geographic point $\left(0^{\circ}, 0^{\circ}\right)$ and the North Pole is straight up from this point. Such a display is in a normal aspect. Changes to only the longitude value of the orientation vector do not change the aspect; thus, a normal aspect is one centered on the Equator in latitude with an orientation of $0^{\circ}$.

Both of these Miller projections have normal aspects, despite having different orientation vectors:


Origin at $\left(0^{\circ}, 0^{\circ}\right)$, with a $0^{\circ}$ Orientation. $\left(\right.$ orientation vector $\left.=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\right)$


Origin at $\left(0^{\circ}, 90^{\circ} \mathrm{W}\right)$, with a $0^{\circ}$ Orientation. $\left(\right.$ orientation vector $\left.=\left[\begin{array}{lll}0 & -90 & 0\end{array}\right]\right)$

This makes sense if you think about a simple, true cylindrical projection. This is the projection of the globe onto a cylinder wrapped around it. For normal aspects, this cylinder is tangent to the globe at the Equator, and changing the origin longitude simply corresponds to rotating the sphere about the longitudinal axis of the cylinder. If you continue with the wrapped-cylinder model, you can understand the other aspects as well.

Following this description, a transverse projection can be thought of as a cylinder wrapped around the globe tangent at the poles and along a meridian and its antipodal meridian. Finally, when such a cylinder is tangent along any great circle other than a meridian, the result is an oblique projection.

Here are diagrams of the four cylindrical map orientations, or aspects:

## Normal



## Transverse

Oblique


Skew-Oblique


Of course, few projections are true cylindrical projections, but the concept of the wrapped cylinder is nonetheless a convenient way to describe aspect.

## Exploring Projection Aspect

Perhaps the best way to gain an understanding of projection aspect is to experiment with orientation vectors. For the following exercise, use a pseudocylindrical projection, the sinusoidal.

1 Create a default map axes in a sinusoidal projection, turn on the graticule, and display the coast data set as filled polygons:

```
close all; clear all;
axesm sinusoid
framem on; gridm on; tightmap tight
load coast
patchm(lat, long,'g')
```

The continents and graticule appear in normal aspect, as shown below.


## Normal aspect: origin at $\left(0^{\circ}, 0^{\circ}\right)$, orientation $0^{\circ}$ (orientation vector $=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ )

2 Inspect the orientation vector from the map axes:

```
getm(gca,'Origin')
ans =
    0 0
```

By default, the origin is set at $\left(0^{\circ} \mathrm{E}, 0^{\circ} \mathrm{N}\right)$, oriented $0^{\circ}$ from vertical.
3 In the normal aspect, the North Pole is at the top of the image. To create a transverse aspect, imagine pulling the North Pole down to the center of the
display, which was originally occupied by the point $\left(0^{\circ}, 0^{\circ}\right)$. Do this by setting the first element of Origin parameter to a latitude of $90^{\circ} \mathrm{N}$ :

```
setm(gca,'Origin',[90 0 0])
```

The shape of the frame is unaffected; this is still a sinusoidal projection.


## Transverse aspect: origin at $\left(90^{\circ} \mathrm{N}, 0^{\circ}\right)$, orientation $0^{\circ}$ (orientation vector $=\left[\begin{array}{lll}90 & 0 & 0\end{array}\right]$ )

4 The normal and transverse aspects can be thought of as limiting conditions. Anything else is an oblique aspect. Conceptually, if you push the North Pole halfway back to its original position (to the position originally occupied by the point $\left(45^{\circ} \mathrm{N}, 0^{\circ} \mathrm{E}\right)$ in the normal aspect), the result is a simple oblique aspect.

```
setm(gca,'Origin',[45 0 0])
```

The oblique sinusoidal projection centered at $\left(45^{\circ} \mathrm{N}, 0^{\circ} \mathrm{E}\right)$ is shown below.


## Oblique aspect: origin at $\left(45^{\circ} \mathrm{N}, 0^{\circ}\right)$, orientation $0^{\circ}$ (orientation vector $=\left[\begin{array}{lll}45 & 0 & 0\end{array}\right]$ )

You can think of this as pulling the new origin $\left(45^{\circ} \mathrm{N}, 0^{\circ}\right)$ to the center of the image, the place that $\left(0^{\circ}, 0^{\circ}\right)$ occupied in the normal aspect.

5 The previous examples of projection aspect kept the aspect orientation at $0^{\circ}$. If the orientation is altered, an oblique aspect becomes a skew-oblique. Imagine the previous example with an orientation of $45^{\circ}$. Think of this as pulling the new origin $\left(45^{\circ} \mathrm{N}, 0^{\circ} \mathrm{E}\right)$, down to the center of the projection and then rotating the projection until the North Pole lies at an angle of $45^{\circ}$ clockwise from straight up with respect to the new origin.

```
setm(gca,'Origin',[45 0 45])
```

As in the previous example, the location $\left(45^{\circ} \mathrm{N}, 0^{\circ} \mathrm{E}\right)$ still occupies the center of the map.


Skew-oblique aspect: origin at $\left(45^{\circ} \mathbf{N}, 0^{\circ}\right)$, orientation $45^{\circ}$
(orientation vector $=[45 \mathbf{0} 45])$
Any projection can be viewed in alternate aspects. Some of these are quite useful. For example, the transverse aspect of the Mercator projection is widely used in cartography, especially for mapping regions with predominantly north-south extent. One candidate for such handling might be Chile. Oblique Mercator projections might be used to map long regions that run neither north and south nor east and west, such as New Zealand.

Note The projection aspect discussed in this section is different from the map axes Aspect property. The map axes Aspect property controls the orientation of the figure axes. For instance, if a map is in a normal setting with a landscape orientation, a switch to a transverse aspect rotates the axes by $90^{\circ}$, resulting in a portrait orientation. To display a map in the transverse aspect, combine the transverse aspect property with a $-90^{\circ}$ skew angle. The skew angle is the last element of the Origin parameter. For example, a [0-90] vector would produce a transverse map.

The base projection can be thought of as a standard coordinate system, and the normal aspect conforms to it. The features of a projection are maintained in any
aspect, relative to the base projection. As the preceding illustrations show, the outline (frame) does not change. Nondirectional projection characteristics also do not change. For example, the sinusoidal projection is equal-area, no matter what its aspect. Directional characteristics must be considered carefully, however. In the normal aspect of the sinusoidal projection, scale is true along every parallel and the central meridian. This is not the case for the skew-oblique aspect; however, scale is true along the paths of the transformed parallels and meridian.

## Projection Parameters

Every projection has at least one parameter that controls how it transforms geographic coordinates into planar coordinates. Some projections are rather fixed, and aside from the orientation vector and nominal scale factor, have no parameters that the user should vary, as to do so would violate the definition of the projection. For example, the Robinson projection has one standard parallel that is fixed by definition at $38^{\circ}$ North and South; the Cassini and Wetch projections cannot be constructed in other than Normal aspect. In general, however, projections have several variable parameters. The following section discusses map projection parameters and provides guidance for setting them.

## Projection Characteristics Maps Can Have

In addition to the name of the projection itself, the parameters that a map projection can have are:

- Aspect - Orientation of the projection on the display surface
- Center or Origin - Latitude and longitude of the midpoint of the display
- Scale Factor - Ratio of distance on the map to distance on the ground
- Standard Parallel(s) - Chosen latitude(s) where scale distortion is zero
- False Northing - Planar offset for coordinates on the vertical map axis
- False Easting - Planar offset for coordinates on the horizontal map axis
- Zone - Designated latitude-longitude quadrangle used to systematically partition the planet for certain classes of projections

While not all projections require all these parameters, there will always be a projection aspect, origin, and scale.
Other parameters are associated with the graphic expression of a projection, but do not define its mathematical outcome. These include

- Map latitude and longitude limits
- Frame latitude and longitude limits

However, as certain projections are unable to map an entire planet, or become very distorted over large regions, these limits are sometimes a necessary part of setting up a projection.

## Determining Projection Parameters

In the following exercise, you define a map axes and examine default parameters for a cylindrical, a conic, and an azimuthal projection.

1 Set up a default Mercator projection (which is cylindrical) and pass its handle to the getm function to query projection parameters:

```
close all; clear all;
h=axesm('Mapprojection','mercator','Grid','on','Frame','on',...
'MlabelParallel',0, 'PlabelMeridian',0, 'mlabellocation',60,...
'meridianlabel','on', 'parallellabel','on')
```

The graticule and frame for the default map projection are shown below.


2 Query the map axes handle using getm to inspect the properties that pertain to map projection parameters. The principal ones are aspect, origin, scalefactor, nparallels, mapparallels, falsenorthing, falseeasting, zone, maplatlimit, maplonlimit, rlatlimit, and flonlimit:

```
getm(h,'aspect')
```

ans $=$
normal
getm(h,'origin')
ans $=$
$0 \quad 0 \quad 0$
getm(h,'scalefactor')
ans $=$
1

```
getm(h,'nparallels')
ans =
    1
getm(h,'mapparallels')
ans =
    0
getm(h,'falsenorthing')
ans =
    0
getm(h,'falseeasting')
ans =
            O
getm(h,'zone')
ans =
    []
getm(h,'maplatlimit')
ans =
    -86 86
getm(h,'maplonlimit')
ans =
    -180 180
getm(h, 'Flatlimit')
ans =
    -86 86
getm(h, 'Flonlimit')
ans =
    -180 180
```

For more information on these and other map axes properties, see the reference page for axesm.

3 Reset the projection type to equal-area conic ('eqaconic'). The figure is redrawn to reflect the change. Determine the parameters the Mapping Toolbox changes in response:

```
setm(h,'Mapprojection', 'eqaconic')
getm(h,'aspect')
ans =
normal
getm(h,'origin')
ans =
```

```
    0 0 0
getm(h,'scalefactor')
ans =
    1
getm(h,'nparallels')
ans =
    2
getm(h,'mapparallels')
ans =
    15 75
getm(h,'falsenorthing')
ans =
    0
getm(h,'falseeasting')
ans =
    O
getm(h,'zone')
ans =
    []
getm(h,'maplatlimit')
ans =
    -86 86
getm(h,'maplonlimit')
ans =
    -135 135
getm(h, 'Flatlimit')
ans =
    -86 86
getm(h, 'Flonlimit')
ans =
    -135
        1 3 5
```

The eqaconic projection has two standard parallels, at $15^{\circ}$ and $75^{\circ}$. It also has reduced longitude limits (covering $270^{\circ}$ rather than $360^{\circ}$ ). The resulting eqaconic graticule is shown below.


4 Now set the projection type to Stereographic ('stereo') and examine the same properties as you did for the previous projections:

```
setm(h,'Mapprojection', 'stereo')
getm(h,'aspect')
ans =
normal
getm(h,'origin')
ans =
    0 0 0
getm(h,'scalefactor')
ans =
    1
getm(h,'nparallels')
ans =
    0
getm(h,'mapparallels')
ans =
    []
getm(h,'falsenorthing')
ans =
    0
getm(h,'falseeasting')
ans =
    0
getm(h,'zone')
ans =
    []
getm(h,'maplatlimit')
ans =
```

```
    -86 86
getm(h,'maplonlimit')
ans =
    -135 135
getm(h, 'Flatlimit')
ans =
    -86 86
getm(h, 'Flonlimit')
ans =
    -135 135
```

The stereographic projection, being azimuthal, does not have standard parallels, so none are indicated. The map limits do not change from the previous projection. The map figure is shown below.


Chapter 11, "Projections Reference," lists all map projections supported by the Mapping Toolbox, including suggestions for parameter usage.

## Visualizing and Quantifying Projection Distortions

Because no projection can preserve all directional and nondirectional geographic characteristics, it is useful to be able to estimate the degree of error in direction, area, and scale for a particular projection type and parameters used. The Mapping Toolbox provides several functions that map projection distortions, and one that computes distortion metrics for specified locations.

## Displays of Spatial Error in Maps

A standard method of visualizing the distortions introduced by the map projection is to display small circles at regular intervals across the globe. After projection, the small circles appear as ellipses of various sizes, elongations, and orientations. The sizes and shapes of the ellipses reflect the projection distortions. Conformal projections have circular ellipses, while equal-area projections have ellipses of the same area. This method was invented by Nicolas Tissot in the 19th century, and the ellipses are called Tissot indicatrices in his honor. The measure is a tensor function of location that varies from place to place, and reflects the fact that, unless a map is conformal, map scale is different in every direction at a location.

## Visualizing Projection Distortions via Tissot Indicatrices

As the following example illustrates, you can add the indicatrices to a map display with the command tissot and remove them with clmo tissot:

1 Set up a Sinusoidal projection in a skewed aspect, plotting the graticule:

```
close all; clear all;
axesm sinusoid
gridm on;framem on;
setm(gca,'Origin', [20 30 45])
```

2 Load the coast data set and plot it as green patches:

```
load coast
patchm(lat, long,'g')
```

3 Plot the default Tissot diagram, shown below:

```
tissot
```



Notice that the circles vary considerably in shape. This indicates that the Sinusoidal projection is not conformal. Despite the distortions, however, the circles all cover equal amounts of area on the map, because the projection has the equal-area property.

Default Tissot diagrams are drawn with blue unfilled 100-point circles spaced 30 degrees apart in both directions. The default circle radius is $1 / 10$ of the current radius of the referencing vector (by default that radius is 1 ).

4 Now clear the Tissot diagram, rotate the projection to a polar aspect, and plot a new Tissot diagram using circles paced 20 degrees apart, half as big as before, drawn with 20 points, and drawn in red:

```
clmo tissot
setm(gca, 'Origin', [90 0 45])
tissot([20 20 .05 20], 'Color','r')
```

The result is shown below. Note that circles are drawn faster because fewer points are computed for each one. Also note that the distortions are still smallest close to the map origin, and still greatest near the map frame.


Try changing the map projection to a conformal one such as Mercator or Stereographic to see what Tissot indicatrices look like on shape-preserving maps.

For further information, see the reference page for tissot.

## Visualizing Projection Distortions via Isolines

Most map projection distortions are rather orderly and vary continuously, making them suitable for display via isolines (contour lines). In addition to Tissot diagrams, the Mapping Toolbox enables you to plot isolines of variations of several parameters associated with map projections, using mdistort.

The mdistort function can plot variations in angles, areas, maximum and minimum scale, and scale along parallels and meridians, in units of percent deviation (except for angles, for which degrees are used). Use this function in selecting projections and projection parameters when you are concerned about keeping specific types of distortion within limits. Below are some examples of mdistort using the Hammer modified azimuthal projections and the Bonne pseudoconic projection.

1 Create a Hammer projection map axes in normal aspect, and plot a graticule, frame, and coastlines on it:

```
close all; clear all;
axesm('MapProjection','hammer','Grid', 'on', 'Frame','on')
```

2 Load the coast data set and plot it as green patches:

```
load coast
patchm(lat, long,'g')
```

3 Call mdistort to plot contours of minimum-to-maximum scale ratios:

```
mdistort('scaleratio')
```

Notice that the region of minimum distortion is centered around $(0,0)$.
4 Repeat this diagram with a Bonne projection in a new figure window:
figure;
axesm('MapProjection','bonne','Grid', 'on', 'Frame','on')
patchm(lat, long,'g')
mdistort('scaleratio')
Notice that the region of minimum distortion is centered around $(30,0)$, which is where the single standard parallel is.


Isolines of maximum/minimum scale ratio

5 You can toggle the isolines by typing mdistort or mdistort off. Look at some other types of distortion. The types you can request are

- area - Percent departures from equal area
- angles - Angular distortion of right angles
- scale or maxscale - Percent of maximum scale
- minscale - Percent of minimum scale
- parscale - Percent of scale along the parallels
- merscale - Percent of scale along the meridians
- scaleratio - Percent of maximum-to-minimum scale ratio

For further information see the reference page for mdistort.

## Quantifying Map Distortions at Point Locations

The tissot and mdistort functions described above provide synoptic visual overviews of different forms of map projection error. Sometimes, however, you need numerical estimates of error at specific locations in order to quantify or correct for map distortions. This is useful, for example, if you are sampling environmental data on a uniform basis across a map, and want to know precisely how much area is associated with each sample point, a statistic that will vary by location and be projection dependent. Once you have this information, you can adjust environmental density and other statistics you collect for areal variations induced by the map projection.

The Mapping Toolbox provides a function to return location-specific map error statistics from the current projection or an mstruct. The distortcalc function computes the same distortion statistics as mdistort does, but for specified locations provided as arguments. You provide the latitude-longitude locations one at a time or in vectors. The general form is

```
[areascale,angdef,maxscale,minscale,merscale,parscale] = ...
    distortcalc(mstruct,lat,long)
```

However, if you are evaluating the current map figure, omit the mstruct. You need not specify any return values following the last one of interest to you.

## Using distortcalc to Determine Map Projection Error

The following exercise uses distortcalc to compute the maximum area distortion for a map of Argentina from the worldlo data set.

1 Load worldlo, extract the outline of Argentina, and delete the rest:

```
close all; clear all;
load worldlo
[alat alon] = extractm(POpatch,'argentina');
clear P* D* d* g*
```

2 Set the spatial extent (map limits) to contain Argentina and also include an area closer to the South Pole:

```
mlatlim = [-72.0 -20.0];
mlonlim = [-75.0 -50.0];
```

3 Create a Mercator cylindrical conformal projection using these limits, specify a five-degree graticule, and then plot the outline for reference:

```
axesm('MapProjection','mercator', 'grid','on', ...
'MapLatLimit',mlatlim, 'MapLonLimit',mlonlim,...
'MLineLocation',5, 'PLineLocation',5)
plotm(alat,alon,'b')
```

4 Sample every tenth point of the patch outline for analysis:

```
alats = alat(1:10:numel(alat));
alons = alon(1:10:numel(alat));
```

5 Compute the area distortions (the first statistic returned by distortcalc) at the sample points:

```
aerr = distortcalc(alats, alons);
```

6 Find the range of area distortion across Argentina (percent of a unit area on, in this case, the Equator):

```
aerrmm = [min(aerr) max(aerr)]
aerrmm =
    1.1641 3.0317
```

As Argentina occupies mid southern latitudes, its area on a Mercator map is overstated, and the errors vary noticeably from North to South.

7 Plot the full set of error statistics as proportional circles using scatterm: scatterm(alats, alons,20*aerr, 'r','filled')

The resulting map is shown below:


8 The degree of area overstatement would be considerably larger if it extended farther toward the pole. To see how much larger, get the area distortion statistic for $50^{\circ} \mathrm{S}, 60^{\circ} \mathrm{S}$, and $70^{\circ} \mathrm{S}$ :

```
a=distortcalc(-50,-60)
a =
    2.4203
a=distortcalc(-60,-60)
a =
    4
>> a=distortcalc(-70,-60)
a =
```

    8.5485
    Note You can only use distortcalc to query locations that are within the current map frame or mstruct limits. Outside points yield NaN as a result.

9 You can also query distortion at arbitrary locations you select with the graphic curso,r using inputm, for example:

```
[plat plon] = inputm(1)
plat =
    -62.225
plon =
    -72.301
>> a=distortcalc(plat,plon)
a =
    4.6048
```

Naturally the answer you get will vary depending on what point you pick. Using this technique, you can write a simple script that lets you query a map repeatedly to determine any distortion statistic at any desired location.

Try changing the map projection or even the orientation vector to see how different projection errors can be. For further information, see the reference page for distortcalc.

## Accessing, Computing, and Inverting Map Projection Data

Most of the examples in this document assume that the end product of a map projection is a graphical representation as a map, and that the planar coordinates yielded by projection are of little interest. However, there might be times when you need access to projected coordinate data. You might also have projected data that you want to transform back to latitude and longitude (assuming you know its projection parameters). The following sections describe how to retrieve projected data, project it without displaying it, and invert projections.

| "Accessing Projected Coordinate | Where projected coordinates are stored and |
| :--- | :--- |
| Data" on page 8-31 | how to retrieve them |
| "Projecting Coordinates Without | Data structures and operations for |
| a Map Axes" on page 8-33 | projecting data in the workspace |
| "Inverse Map Projection" on | How to reverse-project plane coordinates <br> page 8-35 |
| onto the globe |  | on page 8-39

## Accessing Projected Coordinate Data

A MATLAB figure generally contains coordinate data only in its axes child object and in children of axes objects, such as line, patch, and surface objects. See the reference page for axes for an overview of this object hierarchy. Note that a map axes can have multiple patch children objects when created with patchesm.

You can retrieve projected data from a map axes, but you can also obtain it without having to plot the data or even creating a map axes. The following two exercises illustrate each of these approaches.

## Retrieving Projected Coordinates from a Figure

An easy way to retrieve the projected coordinates of a map occupying a figure window is with the MATLAB get command. The projected coordinates are stored in the object's XData and YData properties. The XData and YData can belong to a child object rather than to the axes themselves, however, as the following exercise demonstrates.

1 Create a Mollweide projection map axes and obtain its handle:

```
close all; clear all;
```

ha = axesm('mollweid')

2 Observe that the axes has no XData, YData, or children information:

```
get(ha,'XData')
??? Error using ==> get
Invalid axes property: 'XData'.
get(ha,'YData')
??? Error using ==> get
Invalid axes property: 'YData'.
get(ha,'children')
ans =
    Empty matrix: 0-by-1
```

3 Display a map frame for the Mollweide projection, obtaining its handle. Confirm that the frame is a child of the axes:

```
hf = framem
hf =
    105
get(ha,'children')
ans =
```

    105
    4 Use get to extract the $x-y$ coordinates of the map frame:

```
xf = get(hf,'XData');
yf = get(hf,'YData');
```

The xf and yf coordinates are 398-by-1 column vector arrays.
5 Load the coast data set and render it with plotm, obtaining a handle:
load coast
hl = plotm(lat,long)
hl =
106
get(ha, 'children')

Note that the line data is also a child of the axes.
6 Retrieve the projected coastline coordinates using handle hl :

```
xline = get(hl,'XData');
yline = get(hl,'YData');
```

The xline and yline coordinates are 1-by-9591 row vector arrays. Inspect their contents before proceeding.

7 The units for projected coordinates are established by the ellipsoid vector. By default, these units are Earth radii, but you can change them at any time using setm to control the geoid property. For example, set the units to kilometers on a spherical earth with

```
setm(gca,'Geoid', almanac('earth','sphere','kilometers'))
```

Repeat step 6 above to see how this affects coordinate values. For further information on specifying coordinate units and ellipsoids, see "The Ellipsoid Vector" on page 3-4.

## Projecting Coordinates Without a Map Axes

You do not need to display a map object to obtain its projected coordinates. You can perform the same projection computations that are done within the Mapping Toolbox display commands by calling the defaultm and mfwdtran functions.

## Using mfwdtran with a Geographic Data Structure

Before projecting the data, you must define projection parameters, just as you would prepare a map axes with axesm before displaying a map. The projection parameters are stored in a map projection structure that normally resides in the UserData property of a MATLAB axes object, but you can directly create and use the structure for projection computations.

1 Begin by starting afresh with the coast data set:

```
close all; clear all;
```

load coast
2 Use defaultm to create an empty map projection structure for a Sinusoidal projection:
mstruct = defaultm('sinusoid');
The structure mstruct appears in the workspace. Use the property editor to view its fields and contents.

3 Just as you can change the property settings of a map axes with setm, you can assign values to the entries of the map projection structure to control the projection properties. Change the map orientation to define a transverse aspect, and set the ellipsoid and coordinate units:

```
mstruct.origin = [-90 180 0];
mstruct.geoid = almanac('earth','grs80','kilometers');
```

4 Repopulate the rest of the structure fields with default property values.

```
mstruct = defaultm(sinusoid(mstruct));
```

You must invoke defaultm a second time (recursively) to ensure that any side effects of properties you change are properly handled. For example, changing the origin can constrict the map limits on some projections.

5 Having defined the map projection parameters, project the latitude and longitude vectors into plane coordinates with the Sinusoidal projection and display the result using nonmapping MATLAB graphic commands.

```
[x,y] = mfwdtran(mstruct,lat,long,[],'line');
plot(x,y); axis equal
```

The plot shows that resulting data are projected in the specified aspect.


For additional information, see the reference pages for defaultm and mfwdtran. It is also possible to reverse the process using minvtran, as the next section, "Inverse Map Projection" on page 8-35, describes. You may also use projfwd and projinv, which are newer Mapping Toolbox functions that use the proj. 4 map projection library to do forward and inverse projections, respectively. See the references pages for projfwd and projinv for details.

## Inverse Map Projection

The process of obtaining latitudes and longitudes from geodata with planar coordinates is called inverse projection. Most, but not all, map projections have inverses. The Mapping Toolbox transforms plane coordinates into geodetic coordinates with the minvtran function, a mirror image of mfwdtran, which is described in "Using mfwdtran with a Geographic Data Structure" on page 8-33. Like its twin, minvtran operates on a geographic data structure that you can explicitly create. If the coordinate data originates from outside the Mapping Toolbox, you need to know its correct projection parameters in order for inverse projection to be successful.

## Recovering Geodetic Coordinates with minvtran

In the following exercise exploring the use of minvtran, you again work with the coast data set, using the projected coordinates created in the previous exercise, "Using mfwdtran with a Geographic Data Structure" on page 8-33.

1 If you do not have the results of the previous exercise in the workspace, perform it now and go on to step 2. You have the following variables:

| Name | Size | Bytes Class |
| :--- | ---: | ---: |
| lat | $9589 \times 1$ | 76712 double array |
| long | $9589 \times 1$ | 76712 double array |
| mstruct | $1 \times 1$ | 7360 struct array |
| x | $9599 \times 1$ | 76792 double array |
| y | $9599 \times 1$ | 76792 double array |

Grand total is 38563 elements using 314368 bytes
The difference in size between lat and long and x and y are due to clipping the $x-y$ data to the map frame ( NaNs are inserted at clip locations).

2 Transform the projected $x-y$ data back into geographic coordinates with the inverse transformation function:
[lat2,long2] = minvtran(mstruct, $x, y$ );
3 In a new figure, plot the resulting latitudes and longitudes as if they were plane coordinates, and set the frame larger than default:

```
figure; plot(long2,lat2); axis equal
set(gca,'XLim',[-200 200],'YLim',[-100 100])
```



Notice the wraparound in Antarctica. This occurred because its coastline crosses the International Date Line. In the projection transformation
process, longitude data outside [-180 180] degrees is projected back into this range because angles differing by $360^{\circ}$ are geographically equivalent. The data from the inverse transformation process therefore jumps from $180^{\circ}$ to $-180^{\circ}$, as depicted by the horizontal lines in the figure above.

## Obtaining Angular Directions in a Projection Space

In addition to projecting geographic positions into Cartesian coordinates, you can project angles between the sphere and the plane. For cylindrical projections in normal aspect, north maps to up on the $y$-axis, and east maps to right on the $x$-axis. This is not necessarily true of other projection types. In the normal aspect of conic projections, for example, north may skew to the left or right of vertical, depending on longitude. The vfwdtran function, which takes latitudes, longitudes, and azimuths, computes angles that geographic vectors make on the projection plane.

To illustrate, define vectors pointing north $\left(0^{\circ}\right)$ and east $\left(90^{\circ}\right)$ at three locations and use vfwdtran to compute the angles of north and east in projected coordinates on an equidistant conic projection.

Note Geographic angles are measured clockwise from north, while projected angles are measured counterclockwise from the $x$-axis.

1 Set up an equidistant conic projection for the northern hemisphere:

```
close all; clear all;
axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel; tightmap
```

2 Define three locations along the equator:

```
lats = [0 0 0];
lons = [-45 0 45];
```

3 Define north and east azimuths for each point:

```
northazs = [0 0 0];
eastazs = [90 90 90];
```

4 Compute the projected direction of north for each location:

```
pnorth = vfwdtran(lats,lons,northazs)
ans =
    59.614 90 120.39
```

North varies from about $60^{\circ}$ from the $x$-axis, to vertical, to $120^{\circ}$ from the $x$-axis, quite symmetrically.

5 Compute projected direction of east for each location:

```
peast = vfwdtran(lats,lons,eastazs)
ans =
    -30.385 0.0001931 30.386
pnorth - peast
ans =
90
90
90
```

The projected east vectors show a similar symmetry, and as expected form complementary angles to north.

6 Use quiverm to plot the six vectors on the projection; note their plane angles:
quiverm(lats, lons, [0 0 0], [10 10 10], 0) quiverm(lats, lons, [10 10 10], [0 0 0], 0)


For more information, see the reference pages for vfwdtrans and quiverm.

## Coordinate Transformations

In "The Orientation Vector" on page 8-10, you explored the concept of altering the aspect of a map projection in terms of pushing the North Pole to new locations. Another way to think about this is to redefine the coordinate system, and then to compute a normal aspect projection based on the new system. For example, you might redefine a spherical coordinate system so that your home town occupies the origin. If you calculated a map projection in a normal aspect with respect to this transformed coordinate system, the resulting display would look like an oblique aspect of the true coordinate system of latitudes and longitudes.

This transformation of coordinate systems can be useful independent of map displays. If you transform the coordinate system so that your home town is the new North Pole, then the transformed coordinates of all other points will provide interesting information.

Note The types of coordinate transformations described here are appropriate for the spherical case only. Attempts to perform them on an ellipsoid will produce incorrect answers on the order of several to tens of meters.

When you place your home town at a pole, the spherical distance of each point from your hometown becomes $90^{\circ}$ minus its transformed latitude (also known as a colatitude). The point antipodal to your town would become the South Pole, at $-90^{\circ}$. Its distance from your hometown is $90^{\circ}-\left(-90^{\circ}\right)$, or $180^{\circ}$, as expected. Points $90^{\circ}$ distant from your hometown all have a transformed latitude of $0^{\circ}$, and thus make up the transformed equator. Transformed longitudes correspond to their respective great circle azimuths from your home town.

## Reorienting Vector Data with rotatem

The rotatem function uses an orientation vector to transform latitudes and longitudes into a new coordinate system. The orientation vector can be produced by the newpole or putpole functions, or can be specified manually.

As an example of transforming a coordinate system, suppose you live in Midland, Texas, at $\left(32^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\right)$. You have a brother in Tulsa $\left(36.2^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}\right)$ and a sister in New Orleans ( $30^{\circ} \mathrm{N}, 90^{\circ} \mathrm{W}$ ).

1 Define the three locations:

```
midl_lat = 32; midl_lon = -102;
tuls_lat = 36.2; tuls_lon = -96;
newo_lat = 30; newo_lon = -90;
```

2 Determine great circle distances of Tulsa and New Orleans from Midland:

```
dist2tuls = distance(midl_lat,midl_lon,tuls_lat,tuls_lon)
dist2tuls =
    6.5032
dist2newo = distance(midl_lat,midl_lon,newo_lat,newo_lon)
dist2newo =
    10.4727
```

Tulsa is about 6.5 degrees distant, New Orleans about 10.5 degrees distant.
3 Determine the great circle azimuths from Midland:

```
az2tuls = azimuth(midl_lat,midl_lon,tuls_lat,tuls_lon)
az2tuls =
    48.1386
az2neworl = azimuth(midl_lat,midl_lon,newo_lat,newo_lon)
az2neworl =
    97.8644
```

4 Compute the absolute difference in azimuth, a fact you will use later.

```
azdif = abs(az2tuls-az2neworl)
azdif =
    49.7258
```

5 Today, you feel on top of the world, so make Midland, Texas, the north pole of a transformed coordinate system. To do this, first determine the origin required to put Midland at the pole using newpole:

```
origin = newpole(midl_lat,midl_lon)
origin =
    58 78 0
```

The origin of the new coordinate system is $\left(58^{\circ} \mathrm{N}, 78^{\circ} \mathrm{E}\right)$. Midland is now at a new latitude of $90^{\circ}$.

6 Determine the transformed coordinates of Tulsa and New Orleans using the rotatem command. Because its units default to radians, be sure to include the degrees keyword:

```
[tuls_lat1,tuls_lon1] = rotatem(tuls_lat,tuls_lon,...
    origin,'forward','degrees')
tuls_lat1 =
    83.4968
tuls_lon1 =
    -48.1386
[newo_lat1,newo_lon1] = rotatem(newo_lat,newo_lon,...
    origin,'forward','degrees')
newo_lat1 =
    79.5273
newo_lon1 =
    -97.8644
```

7 Show that the new colatitudes of Tulsa and New Orleans equal their distances from Midland computed in step 2 above:

```
tuls_colat1 = 90-tuls_lat1
tuls_colat1 =
    6.5032
newo_colat1 = 90-newo_lat1
newo_colat1 =
    10.4727
```

8 Recall from step 4 that the absolute difference in the azimuths of the two cities from Midland was $49.7258^{\circ}$. Verify that this equals the difference in their new longitudes:

```
tuls_lon1-newo_lon1
ans =
    49.7258
```

You might note small numerical differences in the results (on the order of $10^{-6}$ ), due to roundoff error and trigonometric functions.

For further information, see the reference pages for rotatem, newpole, putpole, neworig, and org2pol.

## Reorienting Gridded Data with neworig

You can transform coordinate systems of data grids as well as vector data. When regular data grids are manipulated in this manner, distance and azimuth calculations with the map variable become row and column operations.

It is easy to transform a regular data grid to create a new one with its data rearranged to correspond to a new coordinate system using the neworig function. To demonstrate this, do the following:

1 Load the topo data set and transform it to a new coordinate system in which a point in Sri Lanka $\left(7^{\circ} \mathrm{N}, 80^{\circ} \mathrm{E}\right)$ is the north pole:

```
close all; clear all;
load topo
origin = newpole(7,80)
origin =
    83.0000 -100.0000 0
```

2 Reorient the data grid with neworig, using this orientation vector:

```
[map,lat,lon] = neworig(topo,topolegend,origin);
```

Note that the result, [map, lat, lon ], is a geolocated data grid, not a regular data grid like the original topo data.

3 Display the new map:

```
axesm miller
surfm(map,[30 30]); demcmap(topo)
```

4 This map is displayed in normal aspect, as its orientation vector shows:

```
mapprops = get(gca,'UserData');
mapprops.origin
ans =
    0 0 0
```



An interesting feature of this new grid is that every cell in its first row is $0^{\circ}-1^{\circ}$ distant from the point $\left(7^{\circ} \mathrm{N}, 80^{\circ} \mathrm{E}\right)$, and every cell in its second row is $1^{\circ}-2^{\circ}$ distant, etc. Another feature is that every cell in a particular column has the same great circle azimuth from the point.

## Working with the UTM System

So far, this chapter has described types and parameters of specific projections, treating each in isolation. The following section discusses how the Transverse Mercator and Polar Stereographic projections are used to organize a worldwide coordinate grid. This system of projections is generally called Universal Transverse Mercator (UTM). This system supports many military, scientific, and surveying applications.

The UTM system divides the world into a regular non-overlapping grid of quadrangles, called zones, each 8 by 6 degrees in extent. Each zone uses formulas for a transverse version of the Mercator projection with projection and ellipsoid parameters designed to limit distortion. The Transverse Mercator projection is defined between 80 degrees south and 84 degrees north. Beyond these limits, the Universal Polar Stereographic (UPS) projection applies.

The UPS has two zones only, north and south, which also have special projection and ellipsoid parameters.
In addition to the zone identifier - a grid reference in the form of a number followed by a letter (e.g., 31T) - each UTM zone has a false northing and a false easting. These are offsets (in meters) that enable each zone to have positive coordinates in both directions. For UTM, they are constant, as follows:

- False easting (for every zone): 500,000 m
- False northing (all zones in the Northern Hemisphere): 0 m
- False northing (all zones in the Southern Hemisphere): 1,000,000 m

For UPS (in both the north and south zones), the false northing and false easting are both $2,000,000$.

## Understanding UTM Parameters

You can create UTM maps with axesm, just like any other projection. However, you will note that unlike other projections, the map frame is limited to an 8-by-6 degree map window (the UTM zone), as the following steps illustrate.

1 First create a UTM map axes:

```
axesm utm
```

2 Get the map axes properties and inspect them in the Command Window or with the Array Editor. The first few illustrate the projection defaults:

```
h = getm(gca)
mapprojection: 'utm'
            zone: '31N'
        angleunits: 'degrees'
            aspect: 'normal'
    falsenorthing: 0
    falseeasting: 500000
        fixedorient: []
            geoid: [6.3782e+006 0.082483]
        maplatlimit: [0 8]
        maplonlimit: [0 6]
    mapparallels: []
        nparallels: 0
            origin: [0 3 0]
        scalefactor: 0.9996
            trimlat: [-80 84]
            trimlon: [-180 180]
                    frame: 'off'
            ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
            flatlimit: [0 8]
        flinewidth: 2
            flonlimit: [-3 3]
```

Note that the default zone is 31 N . This is selected because the map origin defaults to [ $\left.\begin{array}{lll}0 & 3 & 0\end{array}\right]$, which is on the equator and at a longitude of $3^{\circ} \mathrm{E}$. This is the center longitude of zone 31 N , which has a latitude limit of [ 088 ], and a longitude limit of [06].

3 Move the zone one to the east, and inspect the other parameters again:

```
setm(gca,'zone','32n')
h = getm(gca)
mapprojection: 'utm'
            zone: '32N'
    angleunits: 'degrees'
        aspect: 'normal'
```

```
falsenorthing: 0
    falseeasting: 500000
        fixedorient: []
            geoid: [6.3782e+006 0.082483]
        maplatlimit: [0 8]
        maplonlimit: [6 12]
    mapparallels: []
        nparallels: 0
            origin: [0 9 0]
        scalefactor: 0.9996
            trimlat: [-80 84]
            trimlon: [-180 180]
                    frame: 'off'
                    ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
            flatlimit: [0 8]
        flinewidth: 2
            flonlimit: [-3 3]
```

Note that the map origin and limits are adjusted for zone 32N.
4 Draw the map grid and label it:
setm(gca, 'grid','on','meridianlabel', on','parallellabel', 'on')
5 Load and plot the coast data set to see a close-up of the Gulf of Guinea and Bioko Island in UTM:

```
load coast
plotm(lat,long)
```



## Setting UTM Parameters with a GUI

The easiest way to use the UTM projection is through graphical user interfaces. You can create or modify a UTM area of interest with the axesmui projection control panel, and get further assistance form the utmzoneui control panel.

1 You can Shift+click on a map axes window, or type axesmui to display the projection control panel. Here you start from scratch:
close all; clear all;
axesm utm
axesmui
The Map Projection field is set to cyln: Universal Transverse Mercator (UTM).

Note For UTM and UPS maps, the Aspect field is set to normal and cannot be changed. If you attempt to specify transverse, an error results.

2 Click on the Zone button to open the utmzoneui panel. Click on the map near your area of interest to pick the zone:


Note that while you can open the utmzoneui control panel from the command line, you then have to manually update the figure with the zone name it returns with a setm command:

```
setm(gca,'zone',ans)
```

3 Click the Accept button.
The utmzoneui panel closes, and the zone field is set to the one you picked. The map limits are updated accordingly, and the geoid parameters are automatically set to an appropriate ellipsoid definition for that zone. You can override the default choice by selecting another ellipsoid from the list or by typing the parameters in the Geoid field.


4 Click Apply to close the projection control panel.
The projection is then ready for projection calculations or map display commands.

5 Now view basemap data from the worldhi high-resolution atlas data for the area within the zone that you just selected:

```
displaym(worldhi(getm(gca,'maplatlim'),getm(gca,'maplonlim')))
polcmap
framem
```



What you see depends on the zone you selected. The preceding display is for zone 31T, which contains the Sea of Marmara and part of the Black Sea.

You can also calculate projected UTM grid coordinates from latitudes and longitudes.

```
[x,y] = mfwdtran(40.5,-73.5)
x =
    627106.47
y =
```

    4484124.43
    
## Working in UTM Without a Map Axes

You can set up UTM to calculate coordinates without generating a map display, using the defaultm function. The utmzone and utmgeoid functions help you select a zone and an appropriate ellipsoid. In the following exercise, you generate UTM coordinate data for a location in New York City, using that point to define the projection itself.

1 Define a location in New York City:

```
close all; clear all;
p1 = [40.7, -74.0]
```

2 Obtain the UTM zone for this point:

```
z1 = utmzone(p1)
z1 =
18T
```

3 Obtain the suggested ellipsoid vector and name for this zone:

```
[ellipsoid,estr] = utmgeoid(z1)
ellipsoid =
    6.3782e+006 0.082272
estr =
clarke66
```

4 Set up the UTM projection based on this information:

```
utmstruct = defaultm('utm');
```

```
utmstruct.zone = '18T';
utmstruct.geoid = ellipsoid;
utmstruct = defaultm(utm(utmstruct));
```

5 Now you can calculate the grid coordinates, without a map display:

```
[x,y] = mfwdtran(utmstruct,p1(1),p1(2))
x =
    5.8448e+005
y =
    4.5057e+006
```

More on utmzone. You can also use the utmzone function to compute the zone limits for a given zone name. For example, using the preceding data, the latitude and longitude limits for zone 18 T are

```
utmzone('18T')
ans =
    40
```

Therefore, you can call utmzone recursively to obtain the limits of the UTM zone within which a point location falls:

```
[zonelats zonelons] = utmzone(utmzone(40.7, -74.0))
zonelats =
    40 48
zonelons =
    -78 -72
```

For further information, see the reference pages for utmzone, utmgeoid, and defaultm.

## Mapping Across UTM Zones

Because UTM is a zone-based coordinate system, it is designed to be used like a map series, selecting from the appropriate sheet. While it is possible to extend one zone's coordinates into a neighboring zone's territory, this is not normally done.

To display areas that extend across more than one UTM zone, it might be appropriate to use the Mercator projection in a transverse aspect. Of course, you do not obtain coordinates in meters that would match those of a UTM projection, but the results will be nearly as accurate. Here is an example of a
transverse Mercator projection appropriate to Chile. Note how the projection's line of zero distortion is aligned with the predominantly north-south axis of the country. The zero distortion line could be put exactly on the midline of the country by a better choice of the orientation vector's central meridian and orientation angle.

```
latlim = [-60 -15];centralMeridian = -70; width = 20;
axesm('mercator',...
    'Origin',[0 centralMeridian -90],...
    'Flatlimit',[-width/2 width/2],...
    'Flonlimit',sort(-latlim),...
    'Aspect','transverse')
displaym(worldlo('POline'));framem
gridm; setm(gca,'plinefill',1000)
tightmap
mdistort scale
```



## Summary and Guide to Projections

Cartographers often choose map projections by determining the types of distortion they want to minimize or eliminate. They can also determine which of the three projection types (cylindrical, conic, or azimuthal) best suits their purpose and region of interest. They can attach special importance to certain projection properties such as equal areas, straight rhumb lines or great circles, true direction, conformality, etc., further constricting the choice of a projection.

The Mapping Toolbox provides about 60 different map projections. To list them all, type maps. The following table also summarizes them and identifies their properties. Notes for Special Features are lovated at the end of the table.
Detailed information on all map projections provided by the Mapping Toolbox can be found in Chapter 11, "Projections Reference."

| Projection | Syntax | Type | $\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{1}{1} \\ & \hline 0 \\ & \frac{0}{4} \end{aligned}$ | $\begin{aligned} & \bar{\delta} \\ & \underline{E} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Balthasart | balthsrt | Cylindrical | $\bullet$ |  |  |  |
| Behrmann | behrmann | Cylindrical | - |  |  |  |
| Bolshoi Sovietskii Atlas Mira | bsam | Cylindrical |  |  |  |  |
| Braun Perspective | braun | Cylindrical |  |  |  |  |
| Cassini | cassini | Cylindrical |  |  | $\bullet$ |  |
| Central | ccylin | Cylindrical |  |  |  |  |
| Equal-Area Cylindrical | eqacylin | Cylindrical | $\bullet$ |  |  |  |
| Equidistant Cylindrical | eqdcylin | Cylindrical |  |  | $\bullet$ |  |
| Gall Isographic | giso | Cylindrical |  |  | - |  |
| Gall Orthographic | gortho | Cylindrical | - |  |  |  |


| Projection | Syntax | Type | $\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{1}{1} \\ & \frac{0}{0} \\ & \vec{W} \end{aligned}$ | O D 0 0 0 0 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gall Stereographic | gstereo | Cylindrical |  |  |  |  |
| Lambert Equal-Area Cylindrical | lambcyln | Cylindrical | - |  |  |  |
| Mercator | mercator | Cylindrical |  | - |  | 1 |
| Miller | miller | Cylindrical |  |  |  |  |
| Plate Carree | pcarree | Cylindrical |  |  | $\bullet$ |  |
| Trystan Edwards | trystan | Cylindrical | - |  |  |  |
| Universal Transverse Mercator (UTM) | utm | Cylindrical |  | $\bullet$ |  |  |
| Wetch | wetch | Cylindrical |  |  |  |  |
| Apianus II | apianus | Pseudocylindrical |  |  |  |  |
| Collignon | collig | Pseudocylindrical | - |  |  |  |
| Craster Parabolic | craster | Pseudocylindrical | - |  |  |  |
| Eckert I | eckert1 | Pseudocylindrical |  |  |  |  |
| Eckert II | eckert2 | Pseudocylindrical | $\bullet$ |  |  |  |
| Eckert III | eckert3 | Pseudocylindrical |  |  |  |  |
| Eckert IV | eckert4 | Pseudocylindrical | $\bullet$ |  |  |  |
| Eckert V | eckert5 | Pseudocylindrical |  |  |  |  |
| Eckert VI | eckert6 | Pseudocylindrical | $\bullet$ |  |  |  |
| Fournier | fournier | Pseudocylindrical | - |  |  |  |


| Projection | Syntax | Type | $\begin{aligned} & \text { D} \\ & \frac{0}{4} \\ & \frac{1}{0} \\ & \hline \mathbf{0} \\ & \mathbf{0} \end{aligned}$ | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Goode Homolosine | goode | Pseudocylindrical | $\bullet$ |  |  |  |
| Hatano Asymmetrical Equal-Area | hatano | Pseudocylindrical | - |  |  |  |
| Kavraisky V | kavrsky5 | Pseudocylindrical | $\bullet$ |  |  |  |
| Kavraisky VI | kavrsky6 | Pseudocylindrical | $\bullet$ |  |  |  |
| Loximuthal | loximuth | Pseudocylindrical |  |  |  | 2 |
| McBryde-Thomas Flat-Polar Parabolic | flatplrp | Pseudocylindrical | - |  |  |  |
| McBryde-Thomas Flat-Polar Quartic | flatplrq | Pseudocylindrical | - |  |  |  |
| McBryde-Thomas Flat-Polar Sinusoidal | flatplrs | Pseudocylindrical | - |  |  |  |
| Mollweide | mollweid | Pseudocylindrical | $\bullet$ |  |  |  |
| Putnins P5 | putnins5 | Pseudocylindrical |  |  |  |  |
| Quartic Authalic | quartic | Pseudocylindrical | - |  |  |  |
| Robinson | robinson | Pseudocylindrical |  |  |  |  |
| Sinusoidal | sinusoid | Pseudocylindrical | - |  |  |  |
| Tissot Modified Sinusoidal | modsine | Pseudocylindrical | - |  |  |  |
| Wagner IV | wagner4 | Pseudocylindrical | $\bullet$ |  |  |  |
| Winkel I | winkel | Pseudocylindrical |  |  |  |  |
| Albers Equal-Area Conic | eqaconic | Conic | $\bullet$ |  |  |  |
| Equidistant Conic | eqdconic | Conic |  |  | - |  |


| Projection | Syntax | Type | $\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{1}{1} \\ & \hline \mathbf{D} \\ & \mathbf{0} \end{aligned}$ | ס |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lambert Conformal Conic | lambert | Conic |  | - |  |  |
| Murdoch I Conic | murdoch1 | Conic |  |  | - | 3 |
| Murdoch III Minimum Error Conic | murdoch3 | Conic |  |  | $\bullet$ | 3 |
| Bonne | bonne | Pseudoconic | - |  |  |  |
| Werner | werner | Pseudoconic | $\bullet$ |  |  |  |
| Polyconic | polycon | Polyconic |  |  |  |  |
| Van Der Grinten I | vgrint1 | Polyconic |  |  |  |  |
| Breusing Harmonic Mean | breusing | Azimuthal |  |  |  |  |
| Equidistant Azimuthal | eqdazim | Azimuthal |  |  | - |  |
| Gnomonic | gnomonic | Azimuthal |  |  |  | 4 |
| Lambert Azimuthal Equal-Area | eqaazim | Azimuthal | - |  |  |  |
| Orthographic | ortho | Azimuthal |  |  |  |  |
| Stereographic | stereo | Azimuthal |  | - |  | 5 |
| Universal Polar Stereographic (UPS) | ups | Azimuthal |  | - |  | 5 |
| Vertical Perspective Azimuthal | vperspec | Azimuthal |  |  |  |  |
| Wiechel | wiechel | Pseudoazimuthal | $\bullet$ |  |  |  |
| Aitoff | aitoff | Modified Azimuthal |  |  |  |  |
| Briesemeister | bries | Modified Azimuthal | - |  |  |  |


| Projection | Syntax | Type |  | ㅎ E 0 0 0 0 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hammer | hammer | Modified Azimuthal | - |  |  |  |
| Globe | globe | Spherical | $\bullet$ | - | - | 6 |

1 Straight rhumb lines.
2 Rhumb lines from central point are straight, true to scale, and correct in azimuth.

3 Correct total area.
4 Straight line great circles.
5 Great and small circles appear as circles or lines.
6 Three-dimensional display (not a map projection).

## Mapping Applications

This chapter describes several types of numerical applications for geospatial data, including computing and spatial statistics, and calculating tracks, routes, and other information useful for solving navigation problems.

Geographic Statistics (p. 9-2)
Navigation (p. 9-11)

Basic spatial statistics for the sphere and plane
Functions for fixing, route planning, navigating, and reckoning

## Geographic Statistics

The Mapping Toolbox provides functions for computing basic geographical measures for spatial analysis and for filtering and conditioning data, described in the following sections:
"Geographic Means" on page 9-2 Mean location on a sphere or spheroid
"Geographic Standard
Deviation" on page 9-4
"Equal-Areas in Geographic Statistics" on page 9-6
"Geographically Filtering Datasets" on page 9-9

Dispersion around a geographic location

Equalizing areas for histograms and point pattern analysis
Selecting geographic points on the basis of values in a corresponding grid

Classical statistical formulas typically assume that data is one-dimensional (and, often, normally distributed). As this is not true for geospatial data, spatial analysts have developed statistical measures that extend conventional statistics to higher dimensions. However, such formulas often assume that data occupies a two-dimensional Cartesian coordinate system. Computing statistics for geospatial data with geographic coordinates as if it were in a Cartesian framework can give statistically inappropriate results. While this assumption can sometimes yield reasonable numerical approximations within small geographic regions, for larger areas it can lead to incorrect conclusions because of distance measures and area assumptions that are inappropriate for spheres and spheroids. The Mapping Toolbox provides functions for appropriately computing statistics for geospatial data, avoiding these potential pitfalls.

## Geographic Means

Consider the problem of calculating the mean position of a collection of geographic points. Taking the arithmetical mean of the latitudes and longitudes using the standard MATLAB mean function may seem reasonable, but doing this could yield misleading results.

Take two points at the same latitude, $180^{\circ}$ apart in longitude, for example $\left(30^{\circ} \mathrm{N}, 90^{\circ} \mathrm{W}\right)$ and $\left(30^{\circ} \mathrm{N}, 90^{\circ} \mathrm{E}\right)$. The mean latitude is $(30+30) / 2=30$, which seems right. Similarly, the mean longitude must be $(90+(-90)) / 2=0$. However, as one can also express $90^{\circ} \mathrm{W}$ as $270^{\circ} \mathrm{E},(90+270) / 2=180$ is also a valid mean
longitude. Thus there are two correct answers, the prime meridian and the dateline. This demonstrates how the sphericity of the Earth introduces subtleties into spatial statistics.

This problem is further complicated when some points are at different latitudes. Because a degree of longitude at the Arctic Circle covers a much smaller distance than a degree at the equator, distance between points having a given difference in longitude varies by latitude.

Is in fact $30^{\circ} \mathrm{N}$ the right mean latitude in the first example? The mean position of two points should be equidistant from those two points, and should also minimize the total distance. Does $\left(30^{\circ} \mathrm{N}, 0^{\circ}\right)$ satisfy these criteria?

```
dist1 = distance(30,90,30,0)
dist1 =
    75.5225
dist2 = distance(30, -90,30,0)
dist2 =
    75.5225
```

Consider a third point, (lat,lon), that is also equidistant from the above two points, but at a lesser distance:

```
dist1 = distance(30,90,lat,lon)
dist1 =
    60.0000
dist2 = distance(30,-90,lat,lon)
dist2 =
    6 0 . 0 0 0 0
```

What is this mystery point? The lat is $90^{\circ} \mathrm{N}$, and any lon will do. The North Pole is the true geographic mean of these two points. Note that the great circle containing both points runs through the North Pole (a great circle represents the shortest path between two points on a sphere).

The Mapping Toolbox function meanm determines the geographic mean of any number of points. It does this using three-dimensional vector addition of all the points. For example, try the following:

```
lats = [30 30];
longs = [-90 90];
[latbar,longbar] = meanm(lats,longs)
latbar =
```

This is the answer you now expect. This geographic mean can result in one oddity; if the vectors all cancel each other, the mean is the center of the planet. In this case, the returned mean point is ( $\mathrm{NaN}, \mathrm{NaN}$ ) and a warning is displayed. This phenomenon is highly improbable in real data, but can be easily constructed. For example, it occurs when all the points are equally spaced along a great circle. Try taking the geographic mean of ( $0^{\circ}, 0^{\circ}$ ), $\left(0^{\circ}, 120^{\circ}\right)$, and ( $0^{\circ}, 240^{\circ}$ ), which trisect the equator.

```
elats = [0 O 0];
elons = [60 120 240];
meanm(elats, elons)
ans =
    0 120.0000
```


## Geographic Standard Deviation

As you might now expect, the Cartesian definition of standard deviation provided in the standard MATLAB function std is also inappropriate for geographic data that is unprojected or covers a significant portion of a planet. Depending upon your purpose, you might want to use the separate geographic deviations for latitude and longitude provided by the function stdm, or the single standard distance provided in stdist. Both methods measure the deviation of points from the mean position calculated by meanm.

## The Meaning of stdm

The stdm function handles the latitude and longitude deviations separately.

```
[latstd,lonstd] = stdm(lat,lon)
```

The function returns two deviations, one for latitudes and one for longitudes.
Latitude deviation is a straightforward standard deviation calculation from the mean latitude (mean parallel) returned by meanm. This is a reasonable measure for most cases, since on a sphere at least, a degree of latitude always has the same arc length.

Longitude deviation is another matter. Simple calculations based on sum-of-squares angular deviation from the mean longitude (mean meridian)
are misleading. The arc length represented by a degree of longitude at extreme latitudes is significantly smaller than that at low latitudes.

The term departure is used to represent the arc length distance along a parallel of a point from a given meridian. For example, assuming a spherical planet, the departure of a degree of longitude at the Equator is a degree of arc length, but the departure of a degree of longitude at a latitude of $60^{\circ}$ is one-half a degree of arc length. The stdm function calculates a sum-of-squares departure deviation from the mean meridian.

If you want to plot the one-sigma lines for stdm, the latitude sigma lines are parallels. However, the longitude sigma lines are not meridians; they are lines of constant departure from the mean parallel.


This handling of deviation has its problems. For example, its dependence upon the logic of the coordinate system can cause it to break down near the poles. For this reason, the standard distance provided by stdist is often a better measure of deviation. The stdm handling is useful for many applications, especially when the data is not global. For instance, these potential difficulties would not be a danger for data points confined to the country of Mexico.

## The Meaning of stdist

The standard distance of geographic data is a measure of the dispersion of the data in terms of its distance from the geographic mean. Among its advantages are its applicability anywhere on the globe and its single value:

```
dist = stdist(lat,lon)
```

In short, the standard distance is the average, norm, or cubic norm of the distances of the data points in a great circle sense from the mean position. It is probably a superior measure to the two deviations returned by stdm except when a particularly latitude- or longitude-dependent feature is under examination.


## Equal-Areas in Geographic Statistics

A common error in applying two-dimensional statistics to geographic data lies in ignoring equal-area treatment. It is often necessary to bin-up data to statistically analyze it. In a Cartesian plane, this is easily done by dividing the space into equal $x-y$ squares. The geographic equivalent of this is to bin up the data in equal latitude-longitude squares. Since such squares at high latitudes cover smaller areas than their low-latitude counterparts, the observations in these regions are underemphasized. The result can be conclusions that are biased toward the equator.

## Geographic Histograms

The geographic histogram function histr allows you to display binned-up geographic observations. The histr function results in equirectangular binning. Each bin has the same angular measurement in both latitude and longitude, with a default measurement of 1 degree. The center latitudes and longitudes of the bins are returned, as well as the number of observations per bin:
[binlat, binlon, num] = histr(lats,lons)

As previously noted, these equirectangular bins result in counting bias toward the equator. Here is a display of the one-degree-by-one-degree binning of approximately 5,000 random data points in Russia. The relative size of the circles indicates the number of observations per bin:


This is a portion of the whole map, displayed in an equal-area Bonne projection. The first step in creating data displays without area bias is to choose an equal-area projection. The proportionally sized symbols are a result of the specialized display function scatterm.
You can eliminate the area bias by adding a fourth output argument to histr, that will be used to weight each bin's observation by that bin's area:

```
[binlat,binlon,num,wnum] = histr(lats,lons)
```

The fourth output is the weighted observation count. Each bin's observation count is divided by its normalized area. Therefore, a high-latitude bin will have a larger weighted number than a low-latitude bin with the same number of actual observations. The same data and bins look much different when they are area-weighted:


Notice that there are larger symbols to the north in this display. The previous display suggested that the data was relatively uniformly distributed. When equal-area considerations are included, it is clear that the data is skewed to the north. In fact, the data used is northerly skewed, but a simple equirectangular handling failed to demonstrate this.

The histr function, therefore, does provide for the display of area-weighted data. However, the actual bins used are of varying areas. Remember, the one-degree-by-one-degree bin near a pole is much smaller than its counterpart near the equator.

The hista function provides for actual equal-area bins.

## Converting to an Equal-Area Coordinate System

The actual data itself can be converted to an equal-area coordinate system for analysis with other statistical functions. It is easy to convert a collection of geographic latitude-longitude points to an equal-area $x-y$ Cartesian coordinate system. The grn2eqa function applies the same transformation used in calculating the Equal-Area Cylindrical projection:

$$
[x, y]=\operatorname{grn2eqa}(l a t, l o n)
$$

For each Greenwich lat - long pair, an equal-area $x-y$ is returned. The variables $x$ and $y$ can then be operated on under the equal-area assumption, using a variety of two-dimensional statistical techniques. Tools for such analysis can be found in the Statistics Toolbox and elsewhere. The results can then be converted back to Greenwich coordinates using the eqa2grn function:

$$
\text { [lat,lon] }=\text { eqa2grn }(x, y)
$$

Remember, when converting back and forth between systems, latitude corresponds to $y$ and longitude corresponds to $x$.

## Geographically Filtering Datasets

Often, a set of data containsunwanted data mixed in with the desired values. For example, your data might include points for the entire United States, but you only want to work with those points falling in Alabama, or perhaps the data set is untidy - out of 4,000 points, you notice that 3 or 4 obviously fall outside of reality (for example, one of your city points is in the middle of the ocean). It can be quite a chore to look at each data set element individually. Perhaps selecting a portion of the data is part of your analysis.

The filterm function works with a data grid to filter a vector data set. The form is the following:

```
[flats,flons] = filterm(lats,lons,datagrid,refvec,allowed]
```

Each location defined by lats and lons is compared to the value at that point in datagrid. If the value is allowed, that point is included in flats and flons.

The grid might be politically indexed, and the allowed values might be the code or codes corresponding to the states or countries desired (e.g., Alabama). The grid might also contain cardinal values, or a logical condition thereon,
and the allowed value might be 1 for true. Here's what an example might look like using the topo data grid:

```
[flats,flons] = filterm(lats,lons,topo>0,topolegend,1)
```

The result would be those points corresponding to land.

## Navigation

One field that makes extensive use of geographic information is navigational science and practice. The Mapping Toolbox includes specialized functions for navigation, which are described in the following sections:
"Conventions for Navigational Understanding standard units and terms Functions" on page 9-12 used in navigation
"Fixing Position" on page 9-13 Establishing a current position
"Planning" on page 9-25 Determining waypoints using different criteria
"Track Laydown - Displaying Navigational Tracks" on Creating compound tracks over long distances page 9-27
"Dead Reckoning" on page 9-29 Forecasting positions at or between fixes
"Drift Correction" on page 9-34 Applying vector analysis to course pertubations
"Time Notation" on page 9-36
"Time Zones" on page 9-38
Navigational time format and conversion Navigational $15^{\circ}$ time zones and local apparent noon

Navigating watercraft and aircraft involves a variety of tasks: establishing position, using known, fixed landmarks (piloting); using the stars, Sun, and Moon (celestial navigation); using technology to fix positions (inertial guidance, radio beacons, and satellite navigation, including GPS); or deducing net movement from a past known position (dead reckoning).

Another navigational task involves planning a voyage or flight, which includes determining a short route (great circle approximation), weather avoidance (optimal track routing), and setting out a plan of intended movement (track laydown). The Mapping Toolbox contains functions to support these navigational activities.

## Conventions for Navigational Functions

## Units

The Mapping Toolbox is, in general, very flexible in allowing a variety of angular and distance measurement units. The navigational support functions are

- dreckon
- gcwaypts
- legs
- navfix

To make these functions easy to use and to conform to common navigational practice, and for these specific functions only, certain conventions are used:

- angles are always in degrees
- distances are always in nautical miles
- speeds are always in knots (nautical miles per hour)

Related functions that do not carry this restriction include rhxrh, scxsc, gcxgc, gcxsc, track, timezone, and crossfix, because of their potential for application outside navigation.

## Navigational Track Format

Navigational track format requires column-vector variables for the latitudes and longitudes of track waypoints. A waypoint is a point through which a track passes, usually corresponding to a course (or speed) change. Navigational tracks are made up of the line segments connecting these waypoints, which are called legs. In this format, therefore, $n$ legs are described using $n+1$ waypoints, because an endpoint for the final leg must be defined. In Mapping Toolbox navigation functions, angle units are always in degrees.


Here, five track legs require six waypoints. In navigational track format, the waypoints are represented by two 6 -by- 1 vectors, one for the latitudes and one for the longitudes.

## Fixing Position

The fundamental objective of navigation is to determine at a given moment how to proceed to your destination, avoiding hazards on the way. The first step in accomplishing this is to establish your current position. Early sailors kept within sight of land to facilitate this. Today, navigation within sight (or radar range) of land is called piloting. Positions are fixed by correlating the bearings and/or ranges of landmarks. In real-life piloting, all sighting bearings are treated as rhumb lines, while in fact they are actually great circles.

Over the distances involved with visual sightings (up to 20 or 30 nautical miles), this assumption causes no measurable error and it provides the significant advantage of allowing the navigator to plot all bearings as straight lines on a Mercator projection.

The Mercator was designed exactly for this purpose. Range circles, which might be determined with a radar, are assumed to plot as true circles on a Mercator chart. This allows the navigator to manually draw the range arc with a compass.

These assumptions also lead to computationally efficient methods for fixing positions with a computer. The Mapping Toolbox includes the navfix function, which mimics the manual plotting and fixing process using these assumptions.

To obtain a good navigational fix, your relationship to at least three known points is considered necessary. A questionable or poor fix can be obtained with two known points.

## Some Possible Situations

In this imaginary coastal region, you take a visual bearing on the radio tower of $270^{\circ}$. At the same time, Gilligan's Lighthouse bears $0^{\circ}$. If you plot a $90^{\circ}-270^{\circ}$ line through the radio tower and a $0^{\circ}-180^{\circ}$ line through the lighthouse on your Mercator chart, the point at which the lines cross is a fix. Since you have used only two lines, however, its quality is questionable.


But wait; your port lookout says he took a bearing on Cape Jones of $300^{\circ}$. If that line exactly crosses the point of intersection of the first two lines, you will have a perfect fix.


Whoops. What happened? Is your lookout in error? Possibly, but perhaps one or both of your bearings was slightly in error. This happens all the time. Which point, 1,2 , or 3 , is correct? As far as you know, they are all equally valid.

In practice, the little triangle is plotted, and the fix position is taken as either the center of the triangle or the vertex closest to a danger (like shoal water). If the triangle is large, the quality is reported as poor, or even as no fix. If a fourth line of bearing is available, it can be plotted to try to resolve the ambiguity. When all three lines appear to cross at exactly the same point, the quality is reported as excellent or perfect.

Notice that three lines resulted in three intersection points. Four lines would return six intersection points. This is a case of combinatorial counting. Each intersection corresponds to choosing two lines to intersect from among $n$ lines.

The next time you traverse these straits, it is a very foggy morning. You can't see any landmarks, but luckily, your navigational radar is operating. Each of these landmarks has a good radar signature, so you're not worried. You get a
range from the radio tower of 14 nautical miles and a range from the lighthouse of 15 nautical miles.


Now what? You took ranges from only two objects, and yet you have two possible positions. This ambiguity arises from the fact that circles can intersect twice.

Luckily, your radar watch reports that he has Cape Jones at 18 nautical miles. This should resolve everything.


You were lucky this time. The third range resolved the ambiguity and gave you an excellent fix. Three intersections practically coincide. Sometimes the ambiguity is resolved, but the fix is still poor because the three closest intersections form a sort of circular triangle.

Sometimes the third range only adds to the confusion, either by bisecting the original two choices, or by failing to intersect one or both of the other arcs at all. In general, when $n$ arcs are used, $2 \times(n$-choose- 2 ) possible intersections result. In this example, it is easy to tell which ones are right.

Bearing lines and arcs can be combined. If instead of reporting a third range, your radar watch had reported a bearing from the radar tower of $20^{\circ}$, the ambiguity could also have been resolved. Note, however, that in practice, lines of bearing for navigational fixing should only be taken visually, except in desperation. A radar's beam width can be a degree or more, leading to uncertainty.


As you begin to wonder whether this manual plotting process could be automated, your first officer shows up on the bridge with a laptop and the Mapping Toolbox.

## Using navfix

The navfix function can be used to determine the points of intersection among any number of lines and arcs. Be warned, however, that due to the combinatorial nature of this process, the computation time grows rapidly with the number of objects. To illustrate this function, assign positions to the landmarks. Point A, Cape Jones, is at (latA,lonA). Point B, the radio tower, is at (latB,lonB). Point C, Gilligan's Lighthouse, is at (latC,lonC).

For the bearing-lines-only example, the syntax is:

$$
\begin{aligned}
& {[\text { latfix,lonfix] }=\text { navfix([latA latB latC], [lonA lonB lonC],... }} \\
& \qquad[3002700])
\end{aligned}
$$

This defines the three points and their bearings as taken from the ship. The outputs would look something like this, with actual numbers, of course:

| latfix $=$ |  |  |
| :---: | :---: | :---: |
| latfix1 | NaN | \% A intersecting B |
| latfix2 | NaN | \% A intersecting C |
| latfix3 | NaN | \% B intersecting C |
| lonfix $=$ |  |  |
| lonfix1 | NaN | \% A intersecting B |
| lonfix2 | NaN | \% A intersecting C |
| lonfix3 | NaN | \% B intersecting C |

Notice that these are two-column matrices. The second column consists of NaNs because it is used only for the two-intersection ambiguity associated with arcs.

For the range-arcs-only example, the syntax is

```
[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
    [16 14 15],[0 0 0])
```

This defines the three points and their ranges as taken from the ship. The final argument indicates that the three cases are all ranges.

The outputs have the following form:

```
latfix =
    latfix11 latfix12 % A intersecting B
    latfix21 latfix22 % A intersecting C
    latfix31 latfix32 % B intersecting C
lonfix =
    lonfix11 lonfix12 % A intersecting B
    lonfix21 lonfix22 % A intersecting C
    lonfix31 lonfix32 % B intersecting C
```

Here, the second column is used, because each pair of arcs has two potential intersections.

For the bearings and ranges example, the syntax requires the final input to indicate which objects are lines of bearing (indicated with a 1 ) and which are range arcs (indicated with a 0 ):

```
[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
    [20 14 15],[1 0 0])
```

The resulting output is mixed:

| latfix $=$ |  |  |
| ---: | ---: | :--- |
| latfix11 | NaN | \% Line B intersecting Arc B |
| latfix21 | latfix22 | \% Line B intersecting Arc C |
| latfix31 | latfix32 | \%Arc B intersecting Arc C |
| lonfix $=$ |  |  |
| lonfix11 | $N a N$ | \%Line B intersecting Arc B |
| lonfix21 | lonfix22 | \%Line B intersecting Arc C |
| lonfix31 | lonfix32 | \%Arc B intersecting Arc C |

Only one intersection is returned for the line from $B$ with the arc about $B$, since the line originates inside the circle and intersects it once. The same line intersects the other circle twice, and hence it returns two points. The two circles taken together also return two points.

Usually, you have an idea as to where you are before you take the fix. For example, you might have a dead reckoning position for the time of the fix (see below). If you provide navfix with this estimated position, it chooses from each pair of ambiguous intersections the point closest to the estimate. Here's what it might look like:

```
[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
    [20 14 15],[1 0 0],drlat,drlon)
latfix =
    latfix11 % the only point
    latfix21 % the closer point
    latfix31 % the closer point
lonfix =
    lonfix11 % the only point
    lonfix21 % the closer point
    lonfix31 % the closer point
```


## A Numerical Example of Using navfix

1 Define some specific points in the middle of the Atlantic Ocean. These are strictly arbitrary; perhaps they correspond to points in Atlantis:

```
lata = 3.1; lona = -56.2;
latb = 2.95; lonb = -55.9;
latc = 3.15; lonc = -55.95;
```

2 Plot them on a Mercator projection:

```
axesm('MapProjection','mercator','Frame','on',...
    'MapLatLimit',[2.8 3.3],'MapLonLimit',[-55.8 -56.3])
plotm([lata latb latc],[lona lonb lonc],...
    'LineStyle','none','Marker','pentagram',...
    'MarkerEdgeColor','b','MarkerFaceColor','b',...
    'MarkerSize',12)
```

Here is what it looks like (the labeling and imaginary coastlines are added after the fact for illustration).


3 Take three visual bearings: Point A bears $289^{\circ}$, Point B bears $135^{\circ}$, and Point C bears $026.5^{\circ}$. Calculate the intersections:

```
[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
                                    [289 135 26.5],[[1 1 1 1])
newlat =
\begin{tabular}{ll}
3.0214 & NaN \\
3.0340 & NaN \\
3.0499 & NaN
\end{tabular}
```

```
newlong =
    -55.9715 NaN
    -56.0079 NaN
    -56.0000 NaN
```

4 Add the bearing lines and intersection points to the map:

```
plotm(newlat,newlong,'LineStyle','none',...
    'Marker','diamond','MarkerEdgeColor','r',...
    'MarkerFaceColor','r','MarkerSize',9)
```



Notice that each pair of objects results in only one intersection, since all are lines of bearing.

5 What if instead, you had ranges from the three points, A, B, and C, of $13 \mathrm{nmi}, 9 \mathrm{nmi}$, and 7.5 nmi , respectively?

```
[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
```

                                    [13 9 7.5],[0 000\(]\) )
    newlat $=$
$3.0739 \quad 2.9434$

```
    3.2413 3.0329
    3.0443 3.0880
newlong =
    -55.9846 -56.0501
    -56.0355 -55.9937
    -56.0168 -55.8413
```

Here's what these points look like:


Three of these points look reasonable, three do not.
6 What if, instead of a range from Point A, you had a bearing to it of $284^{\circ}$ ? [newlat, newlong] = navfix([lata latb latc],[lona lonb lonc],... [284 9 7.5],[10 0 0 )
newlat =
$3.0526 \quad 2.9892$
3.05923 .0295

```
    3.0443 3.0880
newlong =
    -56.0096 -55.7550
    -56.0360 -55.9168
    -56.0168 -55.8413
```



Again, visual inspection of the results indicates which three of the six possible points seem like reasonable positions.

7 When using the dead reckoning position $\left(3.05^{\circ} \mathrm{N}, 56.0^{\circ} \mathrm{W}\right)$, the closer, more reasonable candidate from each pair of intersecting objects is chosen:
drlat = 3.05; drlon = -56;
[newlat, newlong] = navfix([lata latb latc],[lona lonb lonc],...
[284 9 7.5],[1 0 0],drlat,drlon)
newlat =
3.0526
3.0592
3.0443
newlong =
-56. 0096
-56.0360
-56.0168


## Planning

You know that the shortest path between two geographic points is a great circle. Sailors and aviators are interested in minimizing distance traveled, and hence time elapsed. You also know that the rhumb line is a path of constant heading, the natural means of traveling. In general, to follow a great circle path, you would have to continuously alter course. This is impractical. However, you can approximate a great circle path by rhumb line segments so that the added distance is minor and the number of course changes minimal.

Surprisingly, very few rhumb line track legs are required to closely approximate the distance of the great circle path.
Consider the voyage from Norfolk, Virginia ( $37^{\circ} \mathrm{N}, 76^{\circ} \mathrm{W}$ ), to Cape St. Vincent, Portugal ( $37^{\circ} \mathrm{N}, 9^{\circ} \mathrm{W}$ ), one of the most heavily trafficked routes in the Atlantic. A due-east rhumb line track is 3,213 nautical miles, while the optimal great circle distance is 3,141 nautical miles.

Although the rhumb line path is only a little more than $2 \%$ longer, this is an additional 72 miles over the course of the trip. For a 12 -knot tanker, this results in a 6-hour delay, and in shipping, time is money. If just three rhumb line segments are used to approximate the great circle, the total distance of the trip is 3,147 nautical miles. Our tanker would suffer only a half-hour delay compared to a continuous rhumb line course.


The Mapping Toolbox provides the function gcwaypts to quickly calculate waypoints in navigation track format in order to approximate a great circle with rhumb line segments. The syntax is simple:

```
[latpts,lonpts] = gcwaypts(lat1,lon1,lat2,lon2,numlegs)
```

All the inputs for this function are scalars. The numlegs input is the number of equa-length legs desired, which is 10 by default. The outputs are column vectors representing waypoints in navigational track format. The size of each of these vectors is [(numlegs+1) 1]. Here are the points for this example:

```
[latpts,lonpts] = gcwaypts(37, -76,37, -9,3)
latpts =
    37.0000
    41.5076
    41.5076
37.0000
lonpts =
    -76.0000
    -54.1777
    -30.8223
```

These points represent waypoints along the great circle between which the approximating path follows rhumb lines. Four points are needed for three legs, because the final point at Cape St. Vincent must be included.

## Track Laydown - Displaying Navigational Tracks

Navigational tracks are most useful when graphically displayed. Traditionally, the navigator identifies and plots waypoints on a Mercator projection and then connects them with a straightedge, which on this projection results in rhumb line tracks. In the previous example, waypoints were chosen to approximate a great circle route, but they can be selected for a variety of other reasons.

Let's say that after arriving at Cape St. Vincent, your tanker must traverse the Straits of Gibraltar and then travel on to Port Said, the northern terminus of the Suez Canal. On the scale of the Mediterranean Sea, following great circle paths is of little concern compared to ensuring that the many straits and passages are safely transited. The navigator selects appropriate waypoints and plots them.

To do this with the Mapping Toolbox, you can display a map axes with a Mercator projection, select appropriate map latitude and longitude limits to isolate the area of interest, plot coastline data, and interactively mouse-select the waypoints with the inputm function. The track function will generate points to connect these waypoints, which can then be displayed with plotm.

For illustration, assume that the waypoints are known (or were gathered using inputm). To learn about using inputm, see "Interacting with Displayed Maps" on page 4-42, or inputm in the Mapping Toolbox reference pages.

```
waypoints = [36 -5; 36 -2; 38 5; 38 11; 35 13; 33 30; 31.5 32]
waypoints =
    36.0000 -5.0000
    36.0000 -2.0000
    38.0000 5.0000
    38.0000 11.0000
    35.0000 13.0000
    33.0000 30.0000
    31.5000 32.0000
load coast
```

```
axesm('MapProjection','mercator',...
'MapLatLimit',[30 47],'MapLonLimit',[-10 37])
framem
plotm(lat,long)
[lttrk,lntrk] = track(waypoints);
plotm(lttrk,lntrk,'r')
```

Although these track segments are straight lines on the Mercator projection, they are curves on others:


The segments of a track like this are called legs. Each of these legs can be described in terms of course and distance. The function legs will take the waypoints in navigational track format and return the course and distance required for each leg. Remember, the order of the points in this format determines the direction of travel. Courses are therefore calculated from each waypoint to its successor, not the reverse.

```
[courses,distances] = legs(waypoints)
courses =
    90.0000
    70.3132
    90.0000
    151.8186
    98.0776
    131.5684
distances =
    145.6231
    356.2117
```

283.6839
204.2073
854.0092
135.6415

Since this is a navigation function, the courses are all in degrees and the distances are in nautical miles. From these distances, speeds required to arrive at Port Said at a given time can be calculated. Southbound traffic is allowed to enter the canal only once per day, so this information might be economically significant, since unnecessarily high speeds can lead to high fuel costs.

## Dead Reckoning

When sailors first ventured out of sight of land, they faced a daunting dilemma. How could they find their way home if they didn't know where they were? The practice of dead reckoning is an attempt to deal with this problem. The term is derived from deduced reckoning.

Briefly, dead reckoning is vector addition plotted on a chart. For example, if you have a fix at $\left(30^{\circ} \mathrm{N}, 10^{\circ} \mathrm{W}\right)$ at 0800 , and you proceed due west for 1 hour at 10 knots, and then you turn north and sail for 3 hours at 7 knots, you should be at $\left(30.35^{\circ} \mathrm{N}, 10.19^{\circ} \mathrm{W}\right)$ at 1200 .


However, a sailor shoots the sun at local apparent noon and discovers that the ship's latitude is actually $30.29^{\circ} \mathrm{N}$. What's worse, he lives before the invention of a reliable chronometer, and so he cannot calculate his longitude at all from this sighting. What happened?

Leaving aside the difficulties in speed determination and the need to tack off course, even modern craft have to contend with winds and currents. However, despite these limitations, dead reckoning is still used for determining position between fixes and for forecasting future positions. This is because dead reckoning provides a certainty of assumptions that estimations of wind and current drift cannot.

When navigators establish a fix from some source, be it from piloting, celestial, or satellite observations, they plot a dead reckoning (DR) track, which is a plot of the intended positions of the ship forward in time. In practice, dead reckoning is usually plotted for 3 hours in advance, or for the time period covered by the next three expected fixes. In open ocean conditions, hourly fixes are sufficient; in coastal pilotage, three-minute fixes are common.

Specific DR positions, which are sometimes called $D R \mathrm{~s}$, are plotted according to the Rules of $D R$ :

- DR at every course change
- DR at every speed change
- DR every hour on the hour
- DR every time a fix or running fix is obtained
- DR 3 hours ahead or for the next three expected fixes
- DR for every line of position (LOP), either visual or celestial

For example, the navigator plots these DRs:


Notice that the 1523 DR does not coincide with the LOP at 1523. Although note is taken of this variance, one line is insufficient to calculate a new fix.

The Mapping Toolbox includes the function dreckon, which calculates the DR positions for a given set of courses and speeds. The function provides DR positions for the first three rules of dead reckoning. The approach is to provide a set of waypoints in navigational track format corresponding to the plan of intended movement.

The time of the initial waypoint, or fix, is also needed, as well as the speeds to be employed along each leg. Alternatively, a set of speeds and the times for which each speed will apply can be provided. dreckon returns the positions and times required of these DRs:

- dreckon calculate the times for position of each course change, which will occur at the waypoints
- dreckon calculates the positions for each whole hour
- If times are provided for speed changes, dreckon calculates positions for these times if they do not occur at course changes

Imagine you have a fix at midnight at the point $\left(10^{\circ} \mathrm{N}, 0^{\circ}\right)$ :

```
waypoints(1,:) = [10 0]; fixtime = 0;
```

You intend to travel east and alter course at the point $\left(10^{\circ} \mathrm{N}, 0.13^{\circ} \mathrm{E}\right)$ and head for the point $\left(10.1^{\circ} \mathrm{N}, 0.18^{\circ} \mathrm{E}\right)$. On the first leg, you will travel at 5 knots, and on the second leg you will speed up to 7 knots.

```
waypoints(2,:) = [10 .13];
waypoints(3,:) = [10.1 .18];
speeds = [5;7];
```

To determine the DR points and times for this plan, use dreckon:

```
[drlat,drlon,drtime] = dreckon(waypoints,fixtime,speeds);
[drlat drlon drtime]
ans =
\begin{tabular}{llll}
10.0000 & 0.0846 & 1.0000 & \% Position at 1 am \\
10.0000 & 0.1301 & 1.5373 & \% Time of course change \\
10.0484 & 0.1543 & 2.0000 & \% Position at 2 am \\
10.1001 & 0.1801 & 2.4934 & \% Time at final waypoint
\end{tabular}
```

Here is an illustration of this track and its DR points:


However, you would like to get to the final point a little earlier to make a rendezvous. You decide to recalculate your DRs based on speeding up to 7 knots a little earlier than planned. The first calculation tells you that you were going to increase speed at the turn, which would occur at a time 1.5373 hours after midnight, or 1:32 a.m. (at time 0132 in navigational time format). What time would you reach the rendezvous if you increased your speed to 7 knots at 1:15 a.m. ( 0115 , or 1.25 hours after midnight)?

To indicate times for speed changes, another input is required, providing a time interval after the fix time at which each ordered speed is to end. The first speed, 5 knots, is to end 1.25 hours after midnight. Since you don't know when the rendezvous will be made under these circumstances, set the time for the second speed, 7 knots, to end at infinity. No DRs will be returned past the last waypoint.

```
spdtimes = [1.25; inf];
[drlat,drlon,drtime] = dreckon(waypoints,fixtime,...
    speeds,spdtimes);
[drlat,drlon,drtime]
ans =
    10.0000 0.0846 1.0000 % Position at 1 am
    10.0000 0.1058 1.2500 % Position at speed change
    10.0000 0.1301 1.4552 % Time of course change
    10.0570 0.1586 2.0000 % Position at 2 am
```



This following illustration shows the difference:


The times at planned positions after the speed change are a little earlier; the position at the known time ( $2 \mathrm{a} . \mathrm{m}$.) is a little farther along. With this plan, you will arrive at the rendezvous about $41 / 2$ minutes earlier, so you may want to consider a greater speed change.

## Drift Correction

Dead reckoning is a reasonably accurate method for predicting position if the vehicle is able to maintain the planned course. Aircraft and ships can be pushed off the planned course by winds and current. An important step in navigational planning is to calculate the required drift correction.
In the standard drift correction problem, the desired course and wind are known, but the heading needed to stay on course is unknown. This problem is well suited to vector analysis. The wind velocity is a vector of known magnitude and direction. The vehicle's speed relative to the moving air mass is a vector of known magnitude, but unknown direction. This heading must
be chosen so that the sum of the vehicle and wind velocities gives a resultant in the specified course direction. The ground speed can be larger or smaller than the air speed because of headwind or tailwind components. A navigator would like to know the required heading, the associated wind correction angle, and the resulting ground speed.


What heading puts an aircraft on a course of $250^{\circ}$ when the wind is 38 knots from $285^{\circ}$ ? The aircraft flies at an airspeed of 145 knots.

```
course = 250; airspeed = 145; windfrom = 285; windspeed = 38;
[heading,groundspeed,windcorrangle] = ...
driftcorr(course,airspeed,windfrom,windspeed)
heading =
    258.65
groundspeed =
    112.22
windcorrangle =
    8.65
```

The required heading is about $9^{\circ}$ to the right of the course. There is a 33-knot headwind component.

A related problem is the calculation of the wind speed and direction from observed heading and course. The wind velocity is just the vector difference of the ground speed and the velocity relative to the air mass.

```
[windfrom,windspeed] = ...
driftvel(course,groundspeed,heading,airspeed)
windfrom =
    285.00
windspeed =
    38.00
```


## Time Notation

## General Time Notation

Times can be represented as variables in the Mapping Toolbox in three ways: hours, seconds, and hours-minutes-seconds. The toolbox provides functions for converting among these formats.

Hours. This is the default time unit notation for the toolbox.
Hour notation is simply decimal notation in terms of hours. Two hours and fifteen minutes would be 2.25 .

Seconds. Seconds notation is simply decimal notation in terms of seconds. One hour would be 3600 .

Hours-Minutes-Seconds. Hours-minutes-seconds, or hms notation, is analogous to dms notation for angles. In text, an hms time would be hh:mm:ss. For example, 12:36:15 is 12 hours, 36 minutes, and 15 seconds. In the Mapping Toolbox, when hms times are represented by a single number, the format is hhmm.ss. For example, 12:36:15 is 1236.15.

The primary value of this notation is in entering data already in this format. The toolbox includes the mat2hms function to easily input hms data, which functions very similarly to the mat2dms function described in Converting Latitude and Longitude Notations (p. 7-2).

Note You must exercise care when working with the hms format; for example, two times in this format cannot simply be added. You should convert hms data to decimal hours before working extensively with it.

Converting Between Time Unit Formats. Time units can be converted using functions similar to those described for angle unit conversions. These include hr 2 sec and hms2hr, as well as a general conversion function, timedim, which works just like angledim.

## Navigational Time Notation

Navigational practice has its own peculiar notation for times. Time labels on navigation plots are always in a special format. Times are given in four digits, hours from 00 to 23 followed by minutes from 00 to 59. So, one minute before noon is 1159, or 1159Z or 1159Q, etc., based on time zone. Similarly, one minute after midnight is 0001 . When more precision is required, the seconds are rounded to the nearest quarter minute and zero, one, two or three apostrophes are suffixed to the time, one for each 15 -second block. So, 15 seconds before noon would be 1159"'; 14 seconds before noon would have the exact same notation.

The Mapping Toolbox includes the function time2str that returns a string in a variety of formats corresponding to a given time. These strings can then be plotted on map displays as desired. Two other clock formats are also allowed - the 12 -hour and the 24 -hour digital clock readouts. Consider some string notations for the time 13.21 hours after midnight. The default 24 -hour clock is

```
time2str(13.21)
ans =
13:12:36
```

The 12 -hour clock reads

```
time2str(13.21,'12')
ans =
01:12:36 PM
```

And the navigation format for this time is

```
time2str(13.21,'nav')
ans =
1312''
```

Each of these can be rounded to the nearest minute with the third argument hm (for hours-minutes - the default is hms)

```
time2str(13.21,'nav','hm')
```

ans =
1313

## Time Zones

Time zones used for navigation are uniform $15^{\circ}$ extents of longitude. The timezone function returns a navigational time zone, that is, one based solely on longitude with no regard for statutory divisions. So, for example, Chicago, Illinois, lies in the statutory U.S. Central time zone, which has irregular boundaries devised for political or convenience reasons. However, from a navigational standpoint, Chicago's longitude places it in the $S$ (Sierra) time zone. The zone's description is +6 , which indicates that 6 hours must be added to local time to get Greenwich, or $Z$ (Zulu) time. So, if it is noon, standard time in Chicago, it is $12+6$, or 6 p.m., at Greenwich.

Each $15^{\circ}$ navigational time zone has a distinct description and designating letter. The exceptions to this are the two zones on either side of the Date Line, $M$ and $Y$ (Mike and Yankee). These zones are only $7-1 / 2^{\circ}$ wide, since on one side of the Date Line, the description is +12 , and on the other, it is -12 .

Navigational time zones are very important for celestial navigation calculations. Although the Mapping Toolbox does not contain any functions designed specifically for celestial navigation, a simple example can be devised.


It is possible with a sextant to determine local apparent noon. This is the moment when the Sun is at its zenith from your point of view. At the exact center longitude of a time zone, the phenomenon occurs exactly at noon, local time. Since the Sun traverses a $15^{\circ}$ time zone in 1 hour, it crosses one degree every 4 minutes. So if you observe local apparent noon at 11:54, you must be $1.5^{\circ}$ east of your center longitude.

You must know what time zone you are in before you can even attempt a fix. This concept has been understood since the spherical nature of the Earth was first accepted, but early sailors had no ability to keep accurate time on ship, and so were unable to determine their longitude. The invention of accurate chronometers in the 18th century solved this problem.

The timezone function is quite simple. It returns the description, zd, an integer for use in calculations, a string, zltr, of the zone designator, and a string fully naming the zone. For example, the information for a longitude $123^{\circ} \mathrm{E}$ is the following:

```
[zd,zltr,zone] = timezone(123)
zd =
    -8
zltr =
H
zone =
    -8 H
```

Returning to the simple celestial navigation example, the center longitude of this zone is:

$$
\begin{aligned}
& -(z d * 15) \\
& \text { ans }=
\end{aligned}
$$ 120

This means that at our longitude, $123^{\circ} \mathrm{E}$, we should experience local apparent noon at 11:48 a.m., 12 minutes early.

Reference

## Guide to Reference Pages

The Mapping Toolbox reference material includes the following:

## Mapping Function Reference

- Functions - Categorical List
- Functions - Alphabetical List


## Projections Reference

- Map Projections - Alphabetical List


## GUI Reference

- Graphical User Interface Functions - Categorical List
- Graphical User Interface Functions - Alphabetical List


## Mapping Toolbox Data Reference

- Atlas Data


## Bibliography

## Geographic Terms

- Glossary


## Functions - Categorical List

The following table indexes categories of functions that are grouped together in tables below. Each function has a one-line description and a link to its reference page.

## Geospatial Data Import and Access

Standard File Formats
Gridded Terrain and Bathymetry Products
Vector Map Products
Miscellaneous Data Sets
Graphical User Interfaces for Data Import
File Reading Utilities
Ellipsoids, Radii, Areas, and Volumes
Atlas Data Functions
Atlas Data MAT-Files
Vector Map Data and Geographic Data Structures
Geographic Data Structures
Data Manipulation

## Georeferenced Images and Data Grids

Spatial Referencing
Visibility in Terrain
Other Analysis/Access
Construction and Modification
Initialization

## Map Projections and Coordinates

Available Map Projections
Map Projection Transformations
Angles, Scales, and Distortions
Visualizing Map DistortionsCylindrical Projections
Pseudocylindrical Projections
Conic Projections
Polyconic and Pseudoconic Projections
Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections
UTM and UPS Systems
Three-Dimensional Globe Display
Longitude Wrapping
Rotating Coordinates on the Sphere
Trimming and Clipping
Map Display and Interaction
Map Creation and High-Level Display
Vector Symbolization
Automated Base Map Creation
Displaying Lines and Contours
Displaying Patch Data
Displaying Data Grids
Displaying Light Objects and Lighted Surfaces
Dislaying Thematic Maps
Annotating Map Displays
Colormaps for Map Displays
Interactive Map Positions
Interactive Track and Circle Definition
Graphical User Interfaces
Map Object and Projection Properties

Controlling Map Appearance<br>Clearing Map Displays/Managing Visibility<br>Geographic Calculations<br>Geometry of Sphere and Ellipsoid<br>Ellipsoids and Latitudes<br>Intersections in the Cartesian Plane<br>Geographic Statistics<br>Navigation<br>\section*{Utilities}<br>Map Trimming<br>Data Precision<br>Conversion Factors for Angles and Distances<br>Angle Conversions<br>Distance Conversions<br>Time Conversions

## Geospatial Data Import and Access

## Standard File Formats

| arcgridread | Read a gridded data set in Arc ASCII Grid <br> Format. |
| :--- | :--- |
| geotiffinfo | Information about a GeoTIFF file. |
| geotiffread | Read a georeferenced image from GeoTIFF file. |
| getworldfilename | Derive a worldfile name from an image file name |
| sdtsdemread | Read data from an SDTS raster/DEM data set. |
| sdtsinfo | Information about an SDTS data set. |
| shapeinfo | Information about a shapefile. |
| shaperead | Read vector feature coordinates and attributes <br> from a shapefile. |
| worldfileread | Read a worldfile and return a referencing matrix. |
| worldfilewrite | Construct a worldfile from a referencing matrix. |

## Gridded Terrain and Bathymetry Products

dted
dteds
etopo5
globedem
globedems
gtopo30

Read U.S. Dept. of Defense Digital Terrain Elevation Data (DTED).
Return DTED data file names covering a latitude-longitude box.

Read 5-minute gridded terrain/bathymetry from global ETOPO5 data set.
Read Global Land One-km Base Elevation (GLOBE) elevation data.

Return GLOBE data file names covering a latitude-longitude box.

Read 30-arc-second global digital elevation model (GTOPO30).

| gtopo30s | Return GTOPO30 data file names covering a <br> latitude-longitude box. |
| :--- | :--- |
| satbath | Read 2-minute global terrain/bathymetry from <br> Smith and Sandwell. |
| tbase | Read 5-minute global terrain elevations from <br> TerrainBase. |
| usgs24kdem | Read a USGS 7.5-minute (30-meter) Digital <br> Elevation Model. |
| usgsdem | Read a USGS 1-degree (3-arc-second) Digital <br> Elevation Model. |
| usgsdems | Return USGS 1-degree DEM file names covering <br> a latitude-longitude box. |

## Vector Map Products

| dcwdata | Read selected data from the Digital Chart of the <br> World. |
| :--- | :--- |
| dcwgaz | Search for entries in a Digital Chart of the World <br> gazette file. |
| dcwrdx | Read the Digital Chart of the World index file. |
| dcwread | Read a Digital Chart of the World file. <br> Read Digital Chart of the World file headers. |
| dcwrhead | Read the name file used to index the TIGER <br> thinned boundary files. |
| gshns | Read Global Self-Consistent Hierarchical <br> High-Resolution Shoreline. |
| tgrline | Read TIGER/Line data. |
| tigermif | Read a TIGER MIF thinned boundary file. |
| tigerp | Read TIGER p and pa thinned boundary files. |
| vmap0data | Read selected data from the Vector Map Level 0 <br> CD-ROMs. |


| vmapOrdx |  |
| :--- | :--- |
| vmapOread |  |
| vmapOrhead | Read the Vector Map Level 0 index file. <br> Read a Vector Map Level 0 file. |
| Miscellaneous Data Sets | Read Vector Map Level 0 file headers. |
| avhrrgoode | Read AVHRR data product stored in Goode <br> projection. |
| avhrrlambert | Read AVHRR data product stored in Lambert <br> projection. |
| egm96geoid | Read 15-minute gridded geoid heights from <br> EGM96 global geoid model. |
| readfk5 | Read the Fifth Fundamental Catalog of stars and <br> its extension. |

## Graphical User Interfaces for Data Import

demdataui
vmap0ui

Interactively select elevation data from external sources.

Extract selected data from Vector Map Level 0 CD-ROMs.

## File Reading Utilities

grepfields
readfields
readmtx
spcread

Identify matching records in fixed record length files.

Read fields or records from a fixed format file. Read a matrix stored in a file.

Read columns of data from an ASCII text file.

## Ellipsoids, Radii, Areas, and Volumes

almanac

## Atlas Data Functions

```
country2mtx
usahi
usalo
worldhi
worldlo
```

Create a raster map grid of a country from worldlo data.

Return high-resolution vector data for the United States.

Return vector data for the United States.
Return high-resolution vector data for the world.
Return vector data for the world or oceans.

## Atlas Data MAT-Files

See Appendix A for descriptions of these data sets.
coast World coastline latitude and longitude arrays.
geoid Global geoid height grid in meters at one cell/degree.
oceanlo Ocean mask patches.
usahi High-resolution United States vector data.
usalo United States vector data.
usamtx Data grid at 5 cells/degree for states in the USA.
worldhi High-resolution world vector data.
worldlo World vector data.
worldmtx Data grid at one cell/degree for countries of the world.
worldmtxmed Data grid at 4 cells/degree for countries of the world.

## Vector Map Data and Geographic Data Structures

## Geographic Data Structures

```
extractfield
extractm
```

updategeostruct

## Data Manipulation

bufferm
flatearthpoly
interpm
intrplat
intrplon
nanclip
polybool
polycut
polyjoin
polymerge
polysplit
polyxpoly
reducem

Extract the field values from a structure.
Extract coordinates from a v1 geographic data structure.

Update a geographic data structure.

Compute buffer zones for vector data.
Insert points along the date line to the pole.
Interpolate vector data to a specified data separation.
Interpolate a latitude for a given longitude.
Interpolate a longitude for a given latitude.
Clip vector data with NaNs at specified pen-down locations.

Perform Boolean operations on polygons.
Compute branch cuts for holes in polygons.
Convert polygon segments from cell array to vector format.

Merge line segments with matching endpoints.
Extract segments of NaN -delimited polygon vectors to cell arrays.

Compute line or polygon intersection points.
Reduce the density of points in vector data.

## Georeferenced Images and Data Grids

## Spatial Referencing

| latlon2pix | Convert latitude-longitude coordinates to pixel <br> coordinates. |
| :--- | :--- |
| limitm | Calculate latitude/longitude bounds for a regular <br> data grid. |
| makerefmat | Construct an affine spatial-referencing matrix. |
| map2pix | Convert map coordinates to pixel coordinates. <br> Compute bounding box of a georeferenced image <br> or data grid. |
| mapoutline | Compute outline of a georeferenced image or data <br> grid. |
| meshgrat | Construct a graticule for a surface map object. <br> pix2latlon <br> convert pixel coordinates to latitude-longitude <br> coordinates. |
| pix2map | Convert pixel coordinates to map coordinates. <br> Compute pixel centers for georeferenced image or |
| refmat2vec | data grid. <br> Convert a referencing matrix to a referencing <br> vector. |
| refvec2mat | Convert a referencing vector to a referencing <br> matrix. |
| setltln | Convert data grid rows and columns to <br> latitude-longitude. |
| setpostn | Convert latitude-longitude to data grid rows and <br> columns. |

## Visibility in Terrain

| viewshed | Areas visible from a point on a digital elevation <br> model. |
| :--- | :--- |
| los2 | Line of sight visibility between two points in <br> terrain. |

## Other Analysis/Access

areamat
findm
gradientm
ltln2val
mapprofile

Surface area covered by nonzero values in regular data grid.
Return latitude/longitude of nonzero data grid elements.

Calculate gradient, slope, and aspect of data grid.
Extract data grid values for specified locations.
Interpolate between waypoints on a regular data grid.

## Construction and Modification

| changem | Substitute values in a data array. |
| :--- | :--- |
| encodem | Fill in regular data grid from seed values and <br> locations. |
| geoloc2grid | Convert a geolocated data array to a regular data <br> grid. |
| imbedm | Encode data points into a regular data grid. |
| neworig | Rotate a regular data grid on the sphere. |
| resizem | Resize a regular data grid. <br> Row and column dimension needed for a regular <br> data grid. |
| sec2mtx | Convert latitude-longitude vectors to a regular <br> data grid. |

## Initialization

nanm
onem
spzerom
zerom

Construct a regular data grid of all NaNs.
Construct a regular data grid of all ones.
Construct a sparse regular data grid of all zeros.
Construct a regular data grid of all zeros.

## Map Projections and Coordinates

## Available Map Projections

maps
maplist
projlist

List available map projections and verify names.
Return a structure containing the map projections available in the Mapping Toolbox.

List map projections supported by projfwd and projinv.

## Map Projection Transformations

| mfwdtran | Process forward transformation. |
| :--- | :--- |
| minvtran | Process inverse transformation. |
| projfwd | Forward map projection using the PROJ.4 library. |
| projinv | Inverse map projection using the PROJ.4 library. |

## Angles, Scales, and Distortions

| vfwdtran | Transform azimuth to direction angle on map <br> plane. |
| :--- | :--- |
| vinvtran | Transform direction angle from map plane to <br> azimuth. |
| distortcalc | Calculate distortion parameters for a map <br> projection. |

## Visualizing Map Distortions

| mdistort | Display contours of constant map distortion. |
| :--- | :--- |
| tissot | Project Tissot indicatrices on a map. |

## Cylindrical Projections

| balthsrt | Balthasart Projection. |
| :--- | :--- |
| behrmann | Behrmann Projection. |
| bsam | Bolshoi Sovietskii Atlas Mira Projection. |
| braun | Braun Perspective Projection. |
| cassini | Cassini Projection. |
| ccylin | Central Cylindrical Projection. |
| eqacylin | Equal Area Projection. |
| eqdcylin | Equidistant Projection. |
| giso | Gall Isographic Projection. |
| gortho | Gall Orthographic Projection. |
| gstereo | Gall Stereographic Projection. |
| lambcyln | Lambert Projection. |
| mercator | Mercator Projection. |
| miller | Miller Projection. |
| pcarree | Plate Carrée Projection. |
| tranmerc | Transverse Mercator Projection. |
| trystan | Trystan Edwards Projection. |
| wetch | Wetch Projection. |

## Pseudocylindrical Projections

| apianus | Apianus II Projection. |
| :--- | :--- |
| collig | Collignon Projection. |
| craster | Craster Parabolic Projection. |
| eckert1 | Eckert I Projection. |
| eckert2 | Eckert II Projection. |
| eckert3 | Eckert III Projection. |
| eckert4 | Eckert IV Projection. |
| eckert5 | Eckert V Projection. |
| eckert6 | Eckert VI Projection. |
| flatplrp | Flat-Polar Parabolic Projection. |
| flatplrq | Flat-Polar Quartic Projection. |
| flatplrs | Flat-Polar Sinusoidal Projection. |
| fournier | Fournier Projection. |
| goode | Goode Homolosine Projection. |
| hatano | Hatano Assymmetrical Equal Area Projection. |
| kavrsky5 | Kavraisky V Projection. |
| kavrsky6 | Kavraisky VI Projection. |
| loximuth | Loximuthal Projection. |
| modsine | Modified Sinusoidal Projection. |
| mollweid | Mollweide Projection. |
| putnins5 | Putnins P5 Projection. |
| quartic | Quartic Authalic Projection. |
| robinson | Robinson Projection. |
| sinusoid | Sinusoidal Projection. |


| wagner4 | Wagner IV Projection. |
| :--- | :--- |
| winkel | Winkel I Projection. |

## Conic Projections

| eqaconic | Albers Equal Area Conic Projection. |
| :--- | :--- |
| eqdconic | Equidistant Conic Projection. |
| lambert | Lambert Conformal Conic Projection. |
| murdoch1 | Murdoch I Conic Projection. |
| murdoch3 | Murdoch III Minimum Error Conic Projection. |

## Polyconic and Pseudoconic Projections

```
bonne Bonne Projection.
polycon Polyconic Projection.
vgrint1 Van Der Grinten I Projection.
werner Werner Projection.
```


## Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections

aitoff
breusing
bries
eqaazim
eqdazim
gnomonic
hammer
ortho
stereo

Aitoff Projection.
Breusing Harmonic Mean Projection.
Briesemeister's Projection.
Lambert Equal Area Azimuthal Projection.
Equidistant Azimuthal Projection.
Gnomonic Azimuthal Projection.
Hammer Projection.
Orthographic Azimuthal Projection.
Stereographic Azimuthal Projection.

| vperspec | Vertical Perspective Azimuthal Projection. |
| :--- | :--- |
| wiechel | Weichel Equal Area Projection. |

## UTM and UPS Systems

| ups | Universal Polar Stereographic (UPS) Projection. |
| :--- | :--- |
| utm | Universal Transverse Mercator (UTM) |
| Projection. |  |
| utmgeoid | Select ellipsoid for a given UTM zone. |
| utmzone | Select a UTM zone. |

## Three-Dimensional Globe Display

globe Render Earth as a sphere in 3-D graphics.

## Longitude Wrapping

eastof Wrap longitudes to values east of a meridian.
npi2pi Wrap latitudes to the [-180 180] degree interval.
smoothlong Remove discontinuities in longitude data.
westof Wrap longitudes to values west of a meridian.
zero22pi Wrap longitudes to the [0360) degree interval.

## Rotating Coordinates on the Sphere

newpole
org2pol Compute location of the North Pole in a rotated map.
Compute origin vector to rotate North Pole to a specific point.

## Trimming and Clipping

clipdata
trimdata
undoclip
undotrim

Clip map data at the -pi to pi border of a display.
Trim map data exceeding projection limits.
Remove object clips introduced by CLIPDATA.
Remove object trims introduced by TRIMDATA.

## Map Display and Interaction

## Map Creation and High-Level Display

axesm
displaym
geoshow
grid2image
mapshow
mapview

Create a new map axes/define a map projection.
Project features from a v1 geographic data structure.

Display map latitude and longitude data.
Display a regular data grid as an image.
Display map data.
Interactive map viewer.

## Vector Symbolization

makesymbolspec

## Automated Base Map Creation

usamap
worldmap

Map the United States of America using atlas data.

Map a country, region, or the world using atlas data.

## Displaying Lines and Contours

contourm
contour3m
contourfm
linem
plotm
plot3m

Project a contour plot of map data.
Project a contour plot of map data in 3-D space.
Project a filled contour plot of map data.
Create and project a line.
Project lines and points.
Project lines and points in 3-D space.

## Displaying Patch Data

fillm
fill3m
patchesm
patchm

Project filled 2-D map polygons.
Project filled 3-D map polygons in 3-D space.
Project patches as individual objects.
Project patch objects.

## Displaying Data Grids

meshm
pcolorm
surfacem
surfm

Warp a regular data grid to a projected graticule mesh.

Project a regular data grid in the $\mathrm{z}=0$ plane.
Warp geolocated data to a projected graticule mesh.

Project a geolocated data grid on a map axes.

## Displaying Light Objects and Lighted Surfaces

| lightm | Project a light source onto the current map. |
| :--- | :--- |
| meshlsrm | Project 3-D lighted shaded relief for regular data <br> grid. |
| surflm | Project a geolocated data grid with lighting. |
| surflsrm | Project 3-D lighted shaded relief for geolocated <br> data. |
| shaderel | Construct cdata and colormap for colored shaded <br> relief. |

## Dislaying Thematic Maps

cometm
Project a 2-D comet plot.
comet3m
Project a 3-D comet plot.
quiverm
Project a $2-\mathrm{D}$ quiver plot.
quiver3m
Project a 3-D quiver plot.

```
scatterm Project point markers with variable color and area.
stem3m Project a stem map.
symbolm Project point markers with variable size.
```


## Annotating Map Displays

clabelm
clegendm
degchar
framem
gridm
lcolorbar
mlabel
mlabelzero22pi
northarrow
plabel
rotatetext
scaleruler
textm

Add contour labels to a map contour plot.
Add legend labels to a map contour plot.
Return the LaTeX degree symbol character.
Toggle and control the display of the map frame.
Toggle and control the display of the map grid.
Append a colorbar with text labels.
Toggle and control the display of meridian labels.
Convert meridian labels to the range $[0,360$ ] degrees.

Add graphic element pointing to the geographic North Pole.

Toggle and control the display of parallel labels.
Rotate text to the projected graticule.
Add graphic scale.
Project text annotation on a map.

## Colormaps for Map Displays

| contourcmap | Create a contour colormap for a projected data <br> grid. |
| :--- | :--- |
| demcmap | Create a colormap appropriate to terrain <br> elevation data. |
| polcmap | Create a colormap appropriate to a political map. |

## Interactive Map Positions

| gcpmap | Get current mouse point from the map. |
| :--- | :--- |
| gtextm | Place text on a 2-D map using a mouse. |
| inputm | Return latitudes and longitudes of mouse click <br> positions. |

## Interactive Track and Circle Definition

scircleg
sectorg
trackg

Display a small circle defined via mouse input.
Display a small circle sector defined via mouse input.
Display a great circle or rhumb line by mouse input.

## Graphical User Interfaces

axesmui
clrmenu
cmapui
colorm
colorui
getseeds
lightmui
maptrim
maptool
mlayers
mobjects
originui
panzoom

Interactively define map axes properties.
Add a colormap menu to a figure window.
Create custom colormap.
Create index map colormaps.
Interactively define an RGB color.
Get seed locations and values for encoding maps.
Control position of lights on a globe or 3-D map.
Customize map data sets.
Add menu activated tools to a map figure.
Manipulate map layers defined with structure data.

Manipulate object sets displayed on an axes.
Interactively modify map origin.
Pan and zoom on a 2 -D plot.

| parallelui | Interactively modify map parallels. |
| :--- | :--- |
| qrydata | Create queries associated with map axes. |
| rootlayr | Construct mlayer cell array input for user <br> workspace. |
| scirclui | Interactively add small circles to a map. |
| seedm | Seed regular matrix maps. |
| trackui | Interactively add great circles and rhumb lines to <br> a map. |
| uimaptbx | Process button down callbacks in Mapping <br> Toolbox. <br> Choose or identify a UTM zone by clicking on a <br> map. |
| utmzoneui | mat |

## Map Object and Projection Properties

```
cart2grn Transform from projected coordinates to
    Greenwich frame.
gcm
geotiff2mstruct
getm
handlem
ismap
ismapped
makemapped
namem
project
restack
rotatem
setm
tagm
zdatam
```

```
defaultm
```

```
defaultm
```

Transform from projected coordinates to Greenwich frame.
Initialize or reset projection properties to default values.

Get current map projection structure.
Convert GeoTIFF info to a map projection structure.

Get map object properties.
Get handle of displayed map objects.
True if axes have a map projection defined.
True if object is projected on a map axes.
Make an object a mapped object.
Determine the names for valid graphics objects.
Project a displayed graphics object.
Restack objects within the axes.
Transform map data to new origin and orientation.

Set and modify properties of a map.
Assign a name to a graphics object using the tag property.

Adjust the $z$ plane of displayed map objects.

## Controlling Map Appearance

axesscale
camposm
camtargm

Resize axes for equivalent scale.
Set axes camera position using geographic coordinates.

Set axes camera target using geographic coordinates.

| camupm | Set axes camera up vector using geographic <br> coordinates. |
| :--- | :--- |
| daspectm | Set the figure DataAspectRatio property for a <br> map. |
| paperscale | Set the figure paper size for a given map scale. |
| previewmap | Preview map at printed size. |
| tightmap | Remove white space around a map. |


| Clearing Map Displays/Managing Visibility |  |
| :--- | :--- |
| clma | Clear current map axes. |
| clmo | Clear specified graphic objects from map axes. |
| hidem | Hide specified graphic objects on map axes. |
| showaxes | Toggle display of map coordinate axes. |
| showm | Show specified graphic objects. |
| trimcart | Trim graphic objects to the map frame. |

## Geographic Calculations

## Geometry of Sphere and Ellipsoid

antipode
areaint
areaquad
azimuth
departure
distance
elevation
ellipse1
gc2sc
gcxgc
gexsc
reckon

Point on the opposite side of the globe.
Surface area of a polygon on a sphere or ellipsoid.
Surface area of a latitude-longitude quadrangle.
Azimuth between points on a sphere/ellipsoid.
Compute departure of longitudes at specific latitudes.

Distance between points on a sphere/ellipsoid.
Elevation angle between points on a sphere/ellipsoid.
Construct ellipse from center, semimajor axes, eccentricity, and azimuth.

Compute center and radius of a great circle.
Compute intersection points between great circles.

Compute intersection points between great and small circles.

Point at specified azimuth, range on a sphere/ellipsoid.

| rhxrh | Compute intersection points between rhumb <br> lines. |
| :--- | :--- |
| scircle1 | Construct small circle from center, range, and <br> azimuth. |
| scircle2 | Construct small circle from center and perimeter. |
| scxsc | Compute intersection points between small <br> circles. |
| track1 | Construct track lines from starting point, <br> azimuth, and range. |
| track2 | Construct track lines from starting and ending <br> points. |


| Ellipsoids and Latitudes |  |
| :--- | :--- |
| axes2ecc | Compute eccentricity from semimajor and <br> semiminor axes. |
| convertlat | Convert between geodetic and auxiliary <br> latitudes. <br> Compute flattening of an ellipse from <br> eccentricity. |
| ecc2flat | Compute parameter n of an ellipse from <br> eccentricity. |
| ecc2n | Compute eccentricity of an ellipse from <br> flattening. |
| flat2ecc | Compute semimajor axis from semiminor axis <br> and eccentricity. |
| majaxis | Compute semiminor axis from semimajor axis <br> and eccentricity. |
| minaxis | Compute eccentricity of an ellipse from <br> parameter n. <br> n2ecc |
| rcurve | Compute radii of curvature for an ellipsoid. |
| rsphere | Compute radi for auxiliary spheres. |
| Intersections in the Cartesian Plane |  |
| circcirc |  |
| Intersections of circles in a Cartesian plane. |  |


| grn2eqa | Convert Greenwich coordinates to equal-area <br> coordinates. |
| :--- | :--- |
| hista | Histogram for geographic points with equal-area <br> bins. |
| histr | Histogram for geographic points with <br> equirectangular bins. |
| meanm | Compute mean for geographic point locations. <br> stdist |
| compute standard distance for geographic point |  |
| locations. |  |
| Compute standard deviation for geographic point |  |
| locations. |  |

Navigation<br>crossfix<br>dreckon<br>driftcorr<br>driftvel<br>gewaypts<br>legs<br>navfix<br>timezone<br>track

## Utilities

## Map Trimming

maptriml Trim a line map to a specified region.
maptrimp
maptrims
Trim a patch map to a specified region.
Trim surface map to a specified region.

## Data Precision

| epsm | Return accuracy in angle units of certain map <br> computations. |
| :--- | :--- |
| roundn | Round to specified power of 10. |

## Conversion Factors for Angles and Distances

unitsratio
Unit conversion factors.

## Angle Conversions

angl2str
angledim
deg2dm
deg2dms
deg2rad
dms2deg
dms2dm
dms2mat
dms2rad
mat2dms
rad2deg
rad2dm
rad2dms
str2angle

Format an angle string.
Convert angles from one unit or format to another.

Convert angles from degrees to deg:min vector format.

Convert angles from degrees to deg:min:sec vector format.

Convert angles from degrees to radians.
Convert angles from deg:min:sec to degrees.
Convert angles from deg:min:sec to deg:min vector format.

Convert a dms vector format to a [deg min sec] matrix.

Convert angles from deg:min:sec to radians.
Convert a [deg min sec] matrix to vector format. Convert angles from radians to degrees.

Convert angles from radians to deg:min vector format.

Convert angles from radians to deg:min:sec vector format.

Convert formatted DMS angle strings to numbers.

## Distance Conversions

deg2km
deg2nm
deg2sm
dist2str

Convert distances from degrees to kilometers. Convert distances from degrees to nautical miles. Convert distances from degrees to statute miles. Format a distance string.

| distdim | Convert distances from one unit or format to another. |
| :---: | :---: |
| km2deg | Convert distances from kilometers to degrees. |
| km2nm | Convert distances from kilometers to nautical miles. |
| km2rad | Convert distances from kilometers to radians. |
| km2sm | Convert distances from kilometers to statute miles. |
| nm2deg | Convert distances from nautical miles to degrees. |
| nm2km | Convert distances from nautical miles to kilometers. |
| nm2rad | Convert distances from nautical miles to radians. |
| nm2sm | Convert distances from nautical miles to statute miles. |
| rad2km | Convert distances from radians to kilometers. |
| rad2nm | Convert distances from radians to nautical miles. |
| rad2sm | Convert distances from radians to statute miles. |
| sm2deg | Convert distances from statute miles to degrees. |
| sm2km | Convert distances from statute miles to kilometers. |
| sm2nm | Convert distances from statute miles to nautical miles. |
| sm2rad | Convert distances from statute miles to radians. |
| Time Conversions |  |
| hms2hm | Convert time from hrs:min:sec to hr:min vector format. |
| hms2hr | Convert time from hrs:min:sec to hours. |


| hms2mat | Convert a hms vector format to a [hrs min sec] <br> matrix. |
| :--- | :--- |
| hms2sec | Convert time from hrs:min:sec to seconds. <br> hr2hm <br> hr2hms |
| hr2sec | Convert time from hours to hrs:min format. <br> format. |
| mat2hms from hours to hrs:min:sec vector |  |
| sec2hm | Convert time from hours to seconds. |
| sec2hms | Convert a [hrs min sec] matrix to vector format. <br> Convert time from seconds to hrs:min vector |
| fec2hr | Convert time from seconds to hrs:min:sec vector <br> format. |
| time2str | Convert time from seconds to hours. |
| timedim | Format a time string. |

## Functions - Alphabetical List

This section provides reference entries with detailed descriptions of all the Mapping Toolbox functions, listed alphabetically.

The following headings are used in this section. Not every function will have descriptions for all of these entries, but the information that is given will be ordered as shown.

## Purpose

Syntax
Background
Description
Axes Definition
Examples
Object Properties
Limitations
Remarks
See Also

## Purpose

Display planetary data for the nine planets, the Sun, and the Moon

Syntax<br>Description

almanac
almanac (body)
data = almanac (body,parameter)
data = almanac(body,parameter,units)
data = almanac (body, parameter,units,referencebody)
almanac displays the names of the celestial objects available in the almanac.
almanac (body) lists the options, or parameters, available for each celestial body. Valid body strings are

```
'earth' 'pluto'
'jupiter' 'saturn'
'mars' 'sun'
'mercury' 'uranus'
'moon' 'venus'
'neptune'
```

data $=$ almanac (body, parameter) returns the value of the requested parameter for the celestial body specified by body.

Valid parameter strings are 'radius' for the planetary radius, 'ellipsoid' or 'geoid' for the two-element ellipsoid vector, 'surfarea' for the surface area, and 'volume' for the planetary volume.

For the Earth, parameter can also be any valid predefined ellipsoid string. In this case, the two-element ellipsoid vector for that ellipsoid model is returned. Valid ellipsoid definition strings for the Earth are

| 'everest' | 1830 Everest ellipsoid |
| :--- | :--- |
| 'bessel' | 1841 Bessel ellipsoid |
| 'airy ' | 1849 Airy ellipsoid |
| 'clarke66' | 1866 Clarke ellipsoid |
| 'clarke80' | 1880 Clarke ellipsoid |
| 'international' | 1924 International ellipsoid |
| 'krasovsky ' | 1940 Krasovsky ellipsoid |

## almanac

| 'wgs60' | 1960 World Geodetic System ellipsoid |
| :--- | :--- |
| 'iau65' | 1965 International Astronomical Union ellipsoid |
| 'wgs66' | 1966 World Geodetic System ellipsoid |
| 'iau68' | 1968 International Astronomical Union ellipsoid |
| 'wgs72' | 1972 World Geodetic System ellipsoid |
| 'grs80' | 1980 Geodetic Reference System ellipsoid |

For the Earth, the parameter strings 'ellipsoid' and 'geoid' are equivalent to 'grs80'.
data = almanac (body, parameter, units) specifies the units to be used for the output measurement, where units is any valid distance units string. Note that these are linear units, but the result for surface area is in square units, and for volume is in cubic units. The default units are 'kilometers'.
data = almanac (parameter, units,referencebody) specifies the source of the information. This sets the assumptions about the shape of the celestial body used in the calculation of volumes and surface areas. A referencebody string of 'actual' returns a tabulated value rather than one dependent upon a ellipsoid model assumption. Other possible referencebody strings are 'sphere' for a spherical assumption and 'ellipsoid' for the default ellipsoid model. The default reference body is 'sphere'.

For the Earth, any of the preceding predefined ellipsoid definition strings can also be entered as a reference body.

For Mercury, Pluto, Venus, the Sun, and the Moon, the eccentricity of the ellipsoid model is zero, that is, the 'ellipsoid' reference body is actually a sphere.

Examples The radius of the Earth (treated as a sphere) in kilometers is

```
almanac('earth','radius')
ans =
    6 3 7 1
```

The default ellipsoid model for the Earth ([semimajor axis eccentricity]) is almanac('earth','ellipsoid')

```
ans =
    1.0e+03 *
        6.3781 0.0001
```

Note that the radius returned for any ellipsoid model reference body is the semimajor axis:

```
almanac('earth','radius','kilometers','ellipsoid')
Warning: Semimajor axis returned for radius parameter
ans =
    6.3781e+03
```

Compare the tabulated values of the Earth's surface area with a spherical assumption and with the 1966 World Geodetic System ellipsoid model:

```
almanac('earth','surfarea','statutemiles','actual')
ans =
    1.969499232704451e+008
almanac('earth','surfarea','statutemiles','sphere')
ans =
    1.969362058529953e+008
almanac('earth','surfarea','statutemiles','wgs66')
ans =
    1.969371331484438e+008
```

Note that these values are so close that long notation is required to differentiate them.

Some lunar measurements are
almanac('moon', 'radius')
ans =

1738

```
almanac('moon','surfarea')
```

ans =
$3.7959 \mathrm{e}+07$
almanac('moon','volume')
ans =

## almanac

## $2.1991 e+10$

## Remarks

| See Also | distance | Distance between points |
| :--- | :--- | :--- |
| distdim | Convert distance units |  |

Take care when using angular arc length units for distance measurements. All planets have a radius of 1 radian, for example, and an area unit of square degrees indicates unit squares, 1 degree of arc length on a side, not 1 -degree-by-1-degree quadrangles.

## Purpose

Syntax

Description

## Examples

Convert angular values to strings
str $=$ angl2str(angin) converts the input vector of angles, angin, to a string matrix.
str $=$ angl2str(angin,format) uses the format string to specify the notation to be used with the string matrix. The default, 'none ', results in simple numerical representation (no indicator for positive angles, minus signs for negative angles); 'pm ' (for plus-minus) adds a + for positive angles; 'ns ' (for north-south) appends an S for negative angles and an N for positive angles; ' ew' (for east-west) appends a W for negative angles and an E for positive angles.
str $=$ angl2str(angin,format,units) uses the input units to define the angle units of the angin input. units is any valid angle string ('degrees ' are the default). The units input also determines the unit symbol to suffix to the output strings.
str = angl2str(angin,format,units,digits) determines how many digits to display. digits is the power of 10 representing the last place of significance in the resulting output. For example, if digits $=2$, the hundreds slot is the last significant figure. In general, the $10^{\text {digits }}$ slot is the last significant figure, rounded appropriately depending upon the value in the $10^{\text {digits }-1}$ slot. digits is -2 by default.

The purpose of this function is to make angular-valued variables into strings suitable for map display.

Create a string matrix to represent a series of values in dms units, using the north-south format:

```
a = -3:1.5:3;
str = angl2str(deg2dms(a),'ns','dms')
str =
3^{\circ} 00' 00.00" S
1^{\circ} 30' 00.00" S
0^{\circ} 00' 00.00"
1^{\circ} 30' 00.00" N
3^{\circ} 00' 00.00" N
```

These LaTeX strings are displayed (using either text or textm) as

## angl2str

```
3'00' 00.00" S
1\circ}30'00.00" S
000' 00.00"
10 30' 00.00" N
3'00' 00.00" N
```

See Also
str2angle Convert strings containing DMS formatted angles to numbers
angledim Convert angle units
dist2str Convert distance values to strings
time2str Convert time values to strings

## Purpose

Syntax

## Examples

See Also

Convert angles between different units
anglout = angledim(anglin,from,to) returns the value of the input angle anglin, which is in units specified by the valid angle units string from, in the desired units given by the valid angle units string to. Valid angle units strings are

```
'degrees' for decimal degrees
'radians' for radians
'dms' for degrees-minutes-seconds
'dm' for degrees-minutes
```

Convert from degrees to radians:

```
angledim(23.45134,'degrees','radians')
ans =
    0.4093
```

What is the difference between dms and dm? (best displayed in bank format)
format bank
angledim(23.45134,'degrees', 'dms')
ans =
2327.05
angledim(23.45134,'degrees','dm')
ans $=$
2327.00

The dm answer is the dms answer correctly rounded to whole minutes (that is, rounded based on 60 seconds per minute, not 100).
angl2str Convert angle values to strings
azimuth Angular relationship between points
deg2dms Direct angle conversion functions
dms2rad
deg2rad
distdim Convert distance units
timedim Convert time units

## antipode

## Purpose Determine the antipodes of a geographic point

Syntax $\quad \begin{aligned} & \text { [newlat, newlong] = antipode (lat, long) returns the geographic coordinates } \\ & \text { of the points exactly opposite on the globe from the input points given by lat }\end{aligned}$ and long.
[newlat, newlong] = antipode(lat,long,units) specifies the standard angle units string, where units is any valid angle units string. The default value is 'degrees '.

Given a point $\left(43^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}\right)$, find its antipode:

```
[newlat,newlong] = antipode(43,15)
newlat =
    -43
newlong =
    -165
```

or $\left(43^{\circ} \mathrm{S}, 165^{\circ} \mathrm{W}\right)$. Perhaps the most obvious antipodal points are the North and South Poles. The function antipode demonstrates this:

```
[newlat,newlong] = antipode(90,0,'degrees')
newlat =
    -90
newlong =
    1 8 0
```

Note that in this case longitudes are irrelevant because all meridians converge at the poles.

## Purpose

Syntax

Example

See Also

Read a gridded data set in Arc ASCII Grid Format
$[Z, R]=$ arcgridread(filename) reads a grid from a file in Arc ASCII Grid format. Z is a 2-D array containing the data values. R is a referencing matrix (see makrefmat). NaN is assigned to elements of V corresponding to null data values in the grid file.

```
[Z,R] = arcgridread('MtWashington-ft.grd');
mapshow(Z,R,'DisplayType','surface');
xlabel('x (easting in meters)'); ylabel('y (northing in meters)')
colormap(demcmap(Z))
% View the terrain in 3D
axis normal; view(3); axis equal; grid on
zlabel('elevation in feet')
```


makerefmat, mapshow, sdtsdemread

## areaint

## Purpose Calculate spherical surface area enclosed by a polygon

Syntax

## Description

area $=$ areaint (lats, longs) returns the surface area enclosed by the polygon defined by the column vectors lats and longs. Multiple polygons can be delineated by NaNs. The output area is a fraction of the unit sphere's area of $4 \pi$, so the result ranges from 0 to 1 .
area $=$ areaint(lats,longs,ellipsoid) allows the specification of the ellipsoid model with the two-element ellipsoid vector ellipsoid. When an ellipsoid is input, the resulting area is given in terms of the (squared) units of the ellipsoid. For example, if the ellipsoid almanac('earth', 'ellipsoid', 'kilometers') is used, the resulting area is in $\mathrm{km}^{2}$. The default ellipsoid is the unit sphere.
area $=$ areaint(lats,longs,ellipsoid,units) specifies the units of the inputs lats and longs, which are 'degrees' by default.

This function allows the measurement of areas enclosed by arbitrary polygons. This is a numerical estimate, using a line integral based on Green's Theorem. As such, it is limited by the accuracy and resolution of the input data.


Arbitrarily shaped polygons can be measured.

## Examples

Consider the area enclosed by a $30^{\circ}$ lune from pole to pole and bounded by the prime meridian and $30^{\circ} \mathrm{E}$. You can use the function areaquad to get an exact solution:

```
area = areaquad(90,0,-90,30)
```

```
area =
    0.0833
```

This is $1 / 12$ the spherical area. The more points used to define this polygon, the more integration steps areaint takes, improving the estimate. This first attempt takes a point every $30^{\circ}$ of latitude:

```
lats = [-90:30:90,60:-30:-60]';
longs = [zeros(1,7),30*ones(1,5)]';
area = areaint(lats,longs)
area =
    0.0792
```

Now, a little finer, perhaps one point every $1^{\circ}$ of latitude:

```
lats = [-90:1:90,89:-1:-89]';
longs = [zeros(1,181),30*ones(1,179)]';
area = areaint(lats,longs)
area =
    0.0833
```


## Limitations

As noted above, this is a line integral estimation, only as good as the accuracy and the density of the polygon vertex data. However, given sufficient data, the areaint function is the best method for determining the areas of complex polygons, such as continents, cloud cover, and other natural or derived features. The calculations in this function employ a spherical Earth assumption. For nonspherical ellipsoids, the latitude data is converted to the auxiliary authalic sphere.

| See Also | almanac <br> areamat <br> areaquad | Planetary data |
| :--- | :--- | :--- |
|  | Other area calculations |  |

Purpose
Determine geographic area of matrix element

Syntax

## Examples

```
area =
    0.2411
```

Approximately $24 \%$ of the Earth has an altitude greater than 127 meters. What is the surface area of this portion of the Earth in square kilometers if a spherical ellipsoid is assumed? (Use the almanac function with the sphere as its reference body.)

```
earthgeoid = almanac('earth','ellipsoid','km','sphere');
area = areamat((topo>127),topolegend,earthgeoid)
area =
    1.2299e+08
```

To illustrate the areavec output, consider a smaller map:

```
map = ones(9,18);
refvec = [.05 90 0] % each cell 20x20 degrees
[area,areavec] = areamat(map,refvec)
area =
    1.0000
areavec =
    0.0017
    0.0048
    0.0074
    0.0091
    0.0096
    0.0091
    0.0074
    0.0048
    0.0017
```

Each entry of areavec represents the portion of the unit sphere's total area a cell in that row of map would contribute. Since the column extends from pole to pole in this case, it is symmetric.

## Remarks

This calculation is based on the areaquad function and is therefore limited only by the granularity of the cellular data resolution and the spherical Earth assumption. For nonspherical ellipsoids, the latitude data is converted to the auxiliary authalic sphere.

## areamat

| See Also | almanac | Planetary data |
| :--- | :--- | :--- |
| areaint |  |  |
| areaquad |  |  |$\quad$| Other area calculations |
| :--- |

## Purpose

Syntax

## Description

Compute area of a latitude-longitude quadrangle
area $=$ areaquad (lat1,lon1,lat2,lon2) returns the surface area bounded by the parallels lat1 and lat2 and the meridians lon1 and lon2. The output area is a fraction of the unit sphere's area of $4 \pi$, so the result ranges from 0 to 1 .
area $=$ areaquad(lat1,lon1,lat2,lon2,ellipsoid) allows the specification of the ellipsoid model with the two-element ellipsoid vector ellipsoid. When a ellipsoid is input, the resulting area is given in terms of the (squared) units of the ellipsoid. For example, if the ellipsoid almanac('earth', 'ellipsoid', 'kilometers') is used, the resulting area is in $\mathrm{km}^{2}$. The default ellipsoid is the unit sphere.
area $=$ areaquad(lat1,lon1,lat2,lon2,ellipsoid,units) specifies the units of the inputs, which are 'degrees' by default.

A latitude-longitude quadrangle is a region bounded by two meridians and two parallels. In spherical geometry, it is the intersection of a lune (a section bounded by two meridians) and a zone (a section bounded by two parallels).


What fraction of the Earth's surface lies between $30^{\circ} \mathrm{N}$ and $45^{\circ} \mathrm{N}$, and also between $25^{\circ} \mathrm{W}$ and $60^{\circ} \mathrm{E}$ ?

## areaquad

```
area = areaquad(30,-25,45,60)
area =
    0.0245
```

About 2.5\%. What is the surface area of the Earth in square kilometers if a spherical ellipsoid is assumed (use the almanac function with the sphere as its reference body)?

```
earthellipsoid = almanac('earth','ellipsoid','km','sphere');
area = areaquad(-90,-180,90,180,earthellipsoid)
area =
    5.1006e+08
```

For comparison,

```
almanac('earth','surfarea','km')
ans =
    5.1006e+08
```


## Remarks

## See Also

almanac Planetary data
areaint Other area calculations areamat

This calculation is exact, being based on simple spherical geometry. For nonspherical ellipsoids, the data is converted to the auxiliary authalic sphere.

## Purpose

Read AVHRR data stored in the Goode Projection

## Syntax

[latgrat, longrat, z] = avhrrgoode reads data from an AVHRR data set with a nominal resolution of 1 km . These files have 17347 rows and 40031 columns of data, or somewhat more than the capacity of one CD-ROM. The file is selected interactively. Data is returned as a general data grid with the graticule matrices in units of degrees.
avhrrgoode (region) reads data from a file with data covering the specified region. Valid regions are 'g' or 'global', 'af' or 'africa', 'ap' or 'australia/pacific', 'ea' or 'eurasia', 'na' or 'north america', and 'sa' or 'south america'. The file is selected interactively. If omitted, 'global' is assumed.
avhrrgoode(region, filename) uses the provided filename.
avhrrgoode(region, filename, scalefactor) uses the integer scalefactor to downsample the data. A scale factor of 1 returns every point. A scale factor of 10 returns every 10 th point. If omitted, 100 is assumed.
avhrrgoode(region, filename, scalefactor, latlim, lonlim) returns data for the specified region. The returned data will extend somewhat beyond the requested area. If omitted, the entire area covered by the data file is returned. The limits are two-element vectors in units of degrees, with latlim in the range [-90 90] and lonlim in the range [-180 180].
avhrrgoode(region, filename, scalefactor, latlim,lonlim, gsize) controls the size of the graticule matrices. gsize is a two-element vector containing the number of rows and columns desired. If omitted or empty, a graticule the size of the grid is returned.
avhrrgoode(region, filename, scalefactor, latlim,lonlim,gsize, fnrows, fncols) overrides the standard file format for the selected region. This is useful for data stored on CD-ROM, which might have been truncated to fit. Some data was distributed with 16347 rows and 40031 columns of data on CD-ROMs. Nondimensional vegetation index data at 8 km spatial resolution has 2168 rows and 5004 columns.
avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,fnrows, fncols, resolution) reads a data set with the spatial resolution specified in

## avhrrgoode

meters. If omitted, the full resolution of 1000 meters is assumed. Data is also available at 8000 meter resolution.
avhrrgoode(region, filename,scalefactor,latlim,lonlim,gsize,fnrows, fncols, resolution, precision) reads a data set with the integer precision specified. If omitted, 'uint8' is assumed. 'uint16' is appropriate for some files. Check the data's README file for specification of the file format and contents.

## Background

## Remarks

The United States plans to build a family of satellite-based sensors to measure climate change under the Earth Observing System (EOS) program. Early precursors to the EOS data are the data sets produced by NOAA and NASA under the Pathfinder program. These are data derived from the Advanced High Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites, NOAA-7, -9 , and -11 , and have spatial resolutions of about 1 km . The data from the AVHRR sensor is processed into separate land, sea, and atmospheric indices. Land area data is processed to a nondimensional vegetation index or land cover classification and stored in binary files in the Plate Carrée, Goode, and Lambert projections. Sea data is processed to surface temperatures and stored in HDF formats. This function reads land data saved in the Goode projection with global and continental coverage at 1 km . It can also read 8 km data with global coverage.

The AVHRR project and data sets are described in

```
    http://daac.gsfc.nasa.gov/DATASET_DOCS/avhrr_dataset.html
http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/FTP_SITE/readmes/pal.html
    http://edcwww.cr.usgs.gov/landdaac/1KM/1kmhomepage.html
    http://edcwww.cr.usgs.gov/landdaac/glcc/glcc_na.html
```

Some sources for the data include

```
ftp://daac.gsfc.nasa.gov/data/avhrr/
ftp://edcftp.cr.usgs.gov/pub/data/glcc/
```

This function reads the binary files as is. You should not use byte-swapping software on these files.

## Examples

Read a 1 km Global Land Cover Classification (GLCC) file using the default parameters. Select the file 'gusgs1_2.img ' interactively. This file is available from
[ftp://edcftp.cr.usgs.gov/pub/data/glcc/globe/gusgs1_2.img.gz](ftp://edcftp.cr.usgs.gov/pub/data/glcc/globe/gusgs1_2.img.gz).
[latgrat,longrat,z] = avhrrgoode;
Read the same file at full resolution for just the island of Cyprus.
[latgrat,longrat, z] = avhrrgoode('g','gusgs1_2.img',1,...
[34.2 35.9],[32 35]);
Read the GLCC urban areas file covering North America in the Goode projection for just the area of eastern Massachusetts. This file is available from [ftp://edcftp.cr.usgs.gov/pub/data/glcc/na/goode/naurbang.img.gz](ftp://edcftp.cr.usgs.gov/pub/data/glcc/na/goode/naurbang.img.gz).
[latgrat,longrat,z] = avhrrgoode('north america',...
'naurban.img',1,[41.13 42.75],[-71.7 -69.8]);
Read the global data on the "Global Land 1-km AVHRR Data Set - Vegetation Index 6/21-30, 1992" CD-ROM (distributed by the Land Processes Distributed Active Archive Center, EROS Data Center, Sioux Falls, South Dakota, 57198, USA). Sample every 100th point for the entire globe, returning one lat and long for value. Provide the nonstandard number of rows and columns in the file.

```
[latgrat,longrat,z] = avhrrgoode('global','NDVI.IMG',...
    100,[-90 90],[-180 180],[],16347,40031);
```

Read the global 8 km resolution nondimensional vegetation index available from
<ftp://daac.gsfc.nasa.gov/data/avhrr/global_8km/.1994_1997/1994/ju n/avhrrpf.ndvi.1ntfgl.940621.gz>. Sample every 10th point for the entire globe, returning one lat and long for value. Provide the nonstandard number of rows, columns, and resolution in the file.

```
[latgrat,longrat,z] = avhrrgoode('global',...
    'avhrrpf.ndvi.1ntfgl.940621',10,[-90 90],...
    [-180 180],[],2168,5004,8000);
```

Read the global 8 km resolution data for AVHRR sensor channel 4 available from
<ftp://daac.gsfc.nasa.gov/data/avhrr/global_8km/.1981_1985/1984/fe b/avhrrpf.ch4.1ntfgl.840201.gz>. Read at the full 8 km resolution for the

## avhrrgoode

island of Cyprus, returning one lat and long for value. Provide the nonstandard number of rows, columns, resolution, and integer precision in the file.

```
[latgrat,longrat,z] = avhrrgoode('global',...
    'avhrrpf.ch4.1ntfgl.840201',10,[34.2 35.9],...
    [32 35],[],2168,5004,8000,'uint16');
```


## Limitations

See Also
avhrrlambert Read AVHRR data in the Lambert Azimuthal
Read AVHRR data in the Lambert Azimuthal
Equal-Area projection

Most files store the data in scaled integers. Though this function returns the data as double, the scaling from integer to float is not performed. Check the data's README file for the appropriate scaling parameters.

Subsets of the land cover data are available in both the Goode and the uninterrupted Lambert azimuthal projections. Data can be read more quickly from the Lambert projection using avhrrlambert.

This function does not have the proper projection parameters to read the regional 8 km resolution data sets.

Purpose
Syntax

Read AVHRR data stored in the Lambert Azimuthal Projection
[latgrat,longrat, z] = avhrrlambert(region) reads data from an Advanced Very High Resolution Radiometer (AVHRR) data set with a nominal resolution of 1 km that is stored in the Lambert projection. Data of this type includes the Global Land Cover Characteristics (GLCC). The region specifies the coverage of the file. Valid regions are 'g' or 'global', 'af' or 'africa', 'ap' or 'australia/pacific', 'e' or 'europe', 'a' or 'asia', 'na' or 'north america', 'sa' or 'south america'. Data is returned as a geolocated data grid with the graticule matrices in units of degrees.
avhrrlambert(region,filename) uses the provided filename.
avhrrlambert(region, filename, scalefactor) uses the integer scalefactor to downsample the data. A scale factor of 1 returns every point. A scale factor of 10 returns every 10 th point. If omitted, 100 is assumed.

## avhrrlambert

avhrrlambert(region,filename, scalefactor, latlim, lonlim) returns data for the specified region. The returned data will extend somewhat beyond the requested area. If omitted, the entire area covered by the data file is returned. The limits are two-element vectors in units of degrees, with latlim in the range [-90 90] and lonlim in the range [-180 180].
avhrrlambert(region,filename, scalefactor, latlim, lonlim,gsize) controls the size of the graticule matrices. gsize is a two-element vector containing the number of rows and columns desired. If omitted or empty, a graticule the size of the grid is returned.
avhrrlambert(region,filename, scalefactor, latlim, lonlim,gsize, precision) reads a data set with the integer precision specified. If omitted, 'uint8' is assumed. 'uint16' is appropriate for some files. Check the data's README file for specification of the file format and contents.

Background

Remarks

The United States plans to build a family of satellite-based sensors to measure climate change under the Earth Observing System (EOS) program. Early precursors to the EOS data are the data sets produced by NOAA and NASA under the Pathfinder program. These are data derived from the Advanced High Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites, NOAA-7, -9 , and -11 with a spatial resolution of about 1 km . The data from the AVHRR sensor is processed into separate land, sea, and atmospheric indices. Land area data is processed to a nondimensional vegetation index or land cover classification and stored in binary files in the Plate Carrée, Goode, and Lambert projections. Sea data is processed to surface temperatures and stored in HDF formats. This function reads land cover data for the continents saved in the Lambert azimuthal projection at 1 km .

The AVHRR project and data sets are described in
http://daac.gsfc.nasa.gov/DATASET_DOCS/avhrr_dataset.html
http://edcwww.cr.usgs.gov/landdaac/1KM/1kmhomepage.html
The Global Land Cover Characteristics data set is described in
http://edcwww.cr.usgs.gov/landdaac/glcc/glcc_na.html
The data can be obtained from
ftp://edcftp.cr.usgs.gov/pub/data/glcc/

This function reads the binary files as is. You should not use byte-swapping software on these files.

## Example

See Also
avhrrgoode Read AVHRR data in the Goode projection

## Purpose Calculate eccentricity from semimajor and semiminor axes

```
Syntax eccentricity = axes2ecc(semimajor,semiminor)
eccentricity = axes2ecc(axes)
```

Description Eccentricity, the second element of the standard ellipsoid vector in the Mapping Toolbox, can be determined given both the semimajor and semiminor axes.
eccentricity = axes2ecc(semimajor,semiminor) returns the eccentricity associated with the input axes.
eccentricity $=$ axes2ecc(axes) allows the axes inputs to be packed into a single two-column input of the form [semimajor, semiminor].

## Examples

See Also

Using the axes for the default GRS 80 Earth model,

```
ecc = axes2ecc(6378.1370,6356.7523)
ecc =
    0.08181921804834
```

This is the eccentricity returned by almanac('earth', 'ellipsoid').
almanac Planetary data
ecc2n majaxis Related conversion functions
minaxis

## Purpose Define map axes and set map properties

Syntax

| axesm, with no input arguments, initiates the map axes graphical user |
| :--- |
| interface, which can be used to set map axes properties. This is detailed on the |
| axesm, axesmui reference page in Chapter 12, "GUI Reference." |

axesm (handle) makes the map axes with the given handle the current map
axes.
axesm (PropertyName, PropertyValue, ...) creates map axes with the
specified property values. The MapProjection property must be the first input
pair.
axesm (ProjectionFile, PropertyName, PropertyValue, ...) allows omission
of the MapProjection property name. The first input must be the identifying
string of an available projection.

Axes Definition Map axes are standard MATLAB axes with different default settings for some properties and with a map data structure in the UserData slot. The main differences are

- Axes properties XGrid, YGrid, XTick, YTick are set to 'off'.
- The properties XColor, YColor, and ZColor are set to the background color.
- The hold mode is on.

The map structure is assigned to the UserData property. Do not overwrite this entry if map axes are desired. The map structure contains the map axes properties, which, in addition to the special standard axes settings described here, constitute a map axes. The map axes properties are described later.

## Examples <br> Create map axes for a Mercator projection, with selected latitude limits:

```
axesm('MapProjection','mercator','FLatLimit',[-70 80])
```


## Object Properties

In the preceding example, all properties not explicitly addressed in the call are set to either fixed or calculated defaults. The M-file mercator.m is a projection file, so the same result could have been achieved with the function

```
axesm('mercator','FLatLimit',[-70 80])
```

A projection file includes default data for all properties. Any following property name/property value pairs are treated as overrides.

In either of the above examples, data displayed in the given map axes is in a Mercator projection. Any data falling outside the prescribed frame limits is not displayed.

Note The names of projection files are case sensitive. The projection files included in the Mapping Toolbox use only lowercase letters and Arabic numerals.

## Properties That Control the Map

MapProjection projection_name \{no default\}
Map projection - Sets the projection, and hence all transformation calculations, for the map axes object. It is required in the creation of map axes. The projection name is a string corresponding to an M-file appropriate to the projection. It must be a member of the recognized projection set, which you can list by typing getm('MapProjection') or maps. For more information on projections, see the Mapping Toolbox User's Guide documentation. Some projections set their own defaults for other properties, such as parallels and trim limits.

Zone ZoneSpec | \{[] or 31N\}
Zone for certain projections - Specifies the zone for certain projections. A zone is a region on the globe that has a special set of projection parameters. In the Universal Transverse Mercator Projection, the world is divided into quadrangles that are generally 6 degrees wide and 8 degrees tall. The number in the zone designation refers to the longitude range, while the letter refers to the latitude range. Most projections use the same parameters for the entire globe, and do not require a zone.

AngleUnits $\quad$ \{degrees $\} \mid$ radians | dms
Angular unit of measure - Controls the units of measure used for angles (including latitudes and longitudes) in the map axes. All input data are assumed to be in the given units; 'degrees ' is the default. For a more detailed description of the angle unit options, see the Mapping Toolbox User's Guide documentation.

## Aspect \{normal\} | transverse

Display aspect - Controls the orientation of the base projection of the map. When the aspect is 'normal' (the default), north in the base projection is up. In a transverse aspect, north is to the right. A cylindrical projection of the whole world would look like a landscape display under a 'normal' aspect, and like a portrait under a 'transverse' aspect. Note that this property is not the same as projection aspect, which is controlled by the Origin property vector discussed later.

FalseEasting scalar \{0\}
Coordinate shift for projection calculations - Modifies the position of the map within the axes. The projected coordinates are shifted in the $x$-direction by the amount of FalseEasting. The FalseEasting is in the same units as the projected coordinates, that is, the units of the first element of the Geoid map axes property. False eastings and northings are sometimes used to ensure nonnegative values of the projected coordinates. For example, the Universal Transverse Mercator uses a false easting of 500,000 meters.

## FalseNorthing scalar \{0\}

Coordinate shift for projection calculations - Modifies the position of the map within the axes. The projected coordinates are shifted in the $y$-direction by the amount of FalseNorthing. The FalseNorthing is in the same units as the projected coordinates, that is, the units of the first element of the Geoid map axes property. False eastings and northings are sometimes used to ensure nonnegative values of the projected coordinates. For example, the Universal Transverse Mercator uses a false northing of 0 in the northern hemisphere and $10,000,000$ meters in the southern.

FixedOrient scalar \{[]\} (read-only)
Projection-based orientation - This read-only property fixes the orientation of certain projections (such as the Cassini and Wetch). When empty, which is true
for most projections, the user can alter the orientation of the projection using the third element of the Origin property. When fixed, the fixed orientation is always used.

```
Geoid [semimajor_axis eccentricity]
```

Planet ellipsoid definition - Sets the ellipsoid for calculating the projections of any displayed map objects. In the Mapping Toolbox, the ellipsoid is approximated by a spheroid. The default ellipsoid is a sphere with a radius of 1. This is represented as [1 0]. Any semimajor axis, in any distance units, can be entered; eccentricity lies between 0 and 1 .

## MapLatLimit [south north] | [north south]

Latitude limits of the displayed map - Sets the north and south latitude limits of the map data. This information is useful for two purposes. The default extents for the texture mapping functions meshm, surfm, surfacem, surflm, and pcolorm are set for the map axes; if the latitude limits match the actual data grid data limits, no graticule definitions are required when calling the above functions. Secondly, establishing map latitude limits sets the absolute limit on the extent of displayed meridians, regardless of the values of the meridian limits or the meridian exceptions. For nonazimuthal projections in the normal aspect, the map limits are truncated to the smaller of the map and frame limits. The default map latitude limits for most projections are at the poles, [-90 90].

## MapLonLimit [east west] | [west east]

Longitude limits of the displayed map - Sets the east and west longitude limits of the map data. This information is useful for two purposes. The default extents for the texture mapping functions meshm, surfm, surfacem, surflm, and pcolorm are set for the map axes; if the longitude limits match the actual data grid data limits, no graticule definitions are required when calling the above functions. Secondly, establishing map longitude limits sets the absolute limit on the extent of displayed parallels, regardless of the values of the parallel limits or the parallel exceptions. For nonazimuthal projections in the normal aspect, the map limits are truncated to the smaller of the map and frame limits. The default map longitude limits for most projections are at the International Date Line, [-180 180].

MapParallels [lat] | [lat1 lat2]
Projection standard parallels - Sets the standard parallels of projection. It can be an empty, one-, or two-element vector, depending upon the projection. The
elements are in the same units as the map axes AngleUnits. Many projections have specific, defining standard parallels. When a map axes object is based upon one of these projections, the parallels are set to the appropriate defaults. For conic projections, the default standard parallels are set to $15^{\circ} \mathrm{N}$ and $75^{\circ} \mathrm{N}$, which biases the projection towards the northern hemisphere.

For projections with one defined standard parallel, setting the parallels to an empty vector forces recalculation of the parallel to the middle of the map latitude limits. For projections requiring two standard parallels, setting the parallels to an empty vector forces recalculation of the parallels to one-sixth the distance from the latitude limits (e.g., if the map latitude limits correspond to the northern hemisphere [0 90], the standard parallels for a conic projection are set to [15 75]). For azimuthal projections, the MapParallels property always contains an empty vector and cannot be altered.

See the Mapping Toolbox User's Guide documentation for more information on standard parallels.

Parallels 0, 1, or 2 (read-only, projection-dependent)
Number of standard parallels - This read-only property contains the number of standard parallels associated with the projection. See the Mapping Toolbox User's Guide documentation for more information on standard parallels.

Origin [latitude longitude orientation]
Origin and orientation for projection calculations - Sets the map origin for all projection calculations. The latitude, longitude, and orientation should be in the map axes AngleUnits. Latitude and longitude refer to the coordinates of the map origin; orientation refers to an angle of skewness or rotation about the axis running through the origin point and the center of the earth. The default origin is $0^{\circ}$ latitude and a longitude centered between the map longitude limits. If a scalar is entered, it is assumed to refer to the longitude; if a two-element vector is entered, the default orientation is $0^{\circ}$, a normal projection. If an empty origin vector is entered, the origin is centered on the map longitude limits. For more information on the origin, see the Mapping Toolbox User's Guide documentation.

ScaleFactor scalar $\{1\}$
Scale factor for projection calculations - Modifies the size of the map in projected coordinates. The geographic coordinates are transformed to

Cartesian coordinates by the map projection equations and multiplied by the scale factor. Scale factors are sometimes used to minimize the scale distortion in a map projection. For example, the Universal Transverse Mercator uses a scale factor of 0.996 to shift the line of zero scale distortion to two lines on either side of the central meridian.

TrimLat [south north] (read-only, projection-dependent)
Latitude trimming for certain projections - This read-only property indicates the limits in latitude beyond which no plotting is attempted. This property is set by the projection and is usually used to avoid blowups to infinity. For example, the Mercator projection trims all data outside the range [-86 86]. TrimLat is [-90 90] for most projections.

```
TrimLon [west east] (read-only, projection-dependent)
```

Longitude trimming for certain projections - This read-only property indicates the limits in longitude beyond which no plotting is attempted. This property is set by the projection and is usually used to avoid blowups to infinity. It is less commonly used than the latitude trimming and is [-180 180] for most projections.

## Properties That Control the Frame

Frame on | \{off\}
Frame visibility - Controls the visibility of the display frame box. When the frame is 'off' (the default), the frame is not displayed. When the frame is ' on ', an enclosing frame is visible. The frame is a patch that is plotted as the lowest layer of displayed map objects. Regardless of its display status, the frame always operates in terms of trimming map data.

FFill scalar plotting point density \{100\}
Frame plotting precision - Sets the number of points to be used in plotting the frame for display. The default value is 100 , which for a rectangular frame results in a plot with 100 points for each side, or a total of 400 points. The number of points required for a reasonable display varies with the projection. Cylindrical projections such as the Miller require very few. Projections resulting in more complex frames, such as the Werner, look better with higher densities. The default value is generally sufficient.

FEdgeColor ColorSpec | \{[0lll $0 \quad 0 \quad 0]\}$
Color of the displayed frame edge - Specifies the color used for the displayed frame. You can specify a color using a vector of RGB values or one of the MATLAB predefined names. By default, the frame edge is displayed in black ([0 0 0 ]).

FFaceColor ColorSpec | \{none\}
Color of the displayed frame face - Specifies the color used for the displayed frame face. You can specify a color using a vector of RGB values or one of the MATLAB predefined names. By default, the frame face is 'none ', meaning no face color is filled in. Another useful color is ' cyan ' ([ $\left.\begin{array}{lll}0 & 1 & 1\end{array}\right]$ ), which looks like water.

FLatLimit [south north] | [north south]
Latitude limits of the base projection frame - Sets the north and south latitude limits of the map frame. Latitudes refer to the base projection, and are [-90 90] by default for most projections. The frame latitude limits determine where data is trimmed in a north-south sense. Data lying outside the latitude limits is not displayed. These limits also determine the latitude positions of the frame for its own display.

For nonazimuthal projections in the normal aspect, the frame limits are truncated to the smaller of the map and frame limits. Frame limits for nonazimuthal projections are specified in Cartesian coordinates with respect to the map origin specified in the Origin property. Frame latitude limits for azimuthal projections are specified by - Inf and a radius in polar coordinates with respect to the map origin specified in the Origin property.

## FLineWidth scalar \{2\}

Frame edge line width — Sets the line width of the displayed frame edge. The value is a scalar representing points, which is 2 by default.

FLonLimit [east west] | [west east]
Longitude limits of the base projection frame - Sets the east and west longitude limits of the map frame. Longitudes refer to the base projection, and are [-180 180] by default for most projections. The frame longitude limits determine where data is trimmed in an east-west sense. Data lying outside the longitude limits is not displayed. These limits also determine the longitude positions of the frame for its own display.

For nonazimuthal projections in the normal aspect, the frame limits are truncated to the smaller of the map and frame limits. Frame limits for nonazimuthal projections are specified in Cartesian coordinates with respect to the map origin specified in the Origin property. Frame longitude limits are ignored for azimuthal projections.

## Properties That Control the Grid

Grid on | \{off\}
Grid visibility - Controls the visibility of the display grid. When the grid is 'off' (the default), the grid is not displayed. When the grid is 'on ', meridians and parallels are visible. The grid is plotted as a set of line objects.

GAltitude scalar z-axis value \{Inf\}
Grid $z$-axis setting - Sets the $z$-axis location for the grid when displayed. Its default value is infinity, which is displayed above all other map objects. However, you can set this to some other value for stacking objects above the grid, if desired.

GColor ColorSpec | \{[0 0 0 0 \}
Color of the displayed grid - Specifies the color used for the displayed grid. You can specify a color using a vector of RGB values or one of the MATLAB predefined names. By default, the map grid is displayed in black ([llll $\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ ).

GLineStyle LineStyle \{: \}
Grid line style - Determines the style of line used when the grid is displayed. You can specify any line style supported by the MATLAB line function. The default line style is a dotted line (that is, ' ${ }^{\prime}$ ).

GLineWidth scalar $\{0.5\}$
Grid line width - Sets the line width of the displayed grid. The value is a scalar representing points, which is 0.5 by default.

MLineException vector of longitudes \{[]\}
Exceptions to grid meridian limits - Allows specific meridians of the displayed grid to extend beyond the grid meridian limits to the poles. The value must be a vector of longitudes in the appropriate angle units. For longitudes so specified, grid lines extend from pole to pole regardless of the existence of any grid meridian limits. This vector is empty by default.

## MLineFill scalar plotting point density \{100\}

Grid meridian plotting precision - Sets the number of points to be used in plotting the grid meridians. The default value is 100 points. The number of points required for a reasonable display varies with the projection. Cylindrical projections such as the Miller require very few. Projections resulting in more complex shapes, such as the Werner, look better with higher densities. The default value is generally sufficient.

## MLineLimit [north south] | [south north] \{[]\}

Grid meridian limits - Establishes latitudes beyond which displayed grid meridians do not extend. By default, this property is empty, so the meridians extend to the poles. There are two exceptions to the meridian limits. No meridian extends beyond the map latitude limits, and exceptions to the meridian limits for selected meridians are allowed (see above).

MLineLocation scalar interval or specific vector $\left\{30^{\circ}\right\}$
Grid meridian interval or specific locations - Establishes the interval between displayed grid meridians. When a scalar interval is entered in the map axes MLineLocation, meridians are displayed, starting at $0^{\circ}$ longitude and repeating every interval in both directions, which by default is $30^{\circ}$.
Alternatively, you can enter a vector of longitudes, in which case a meridian is displayed for each element of the vector.

PLineException vector of latitudes \{[]\}
Exceptions to grid parallel limits - Allows specific parallels of the displayed grid to extend beyond the grid parallel limits to the International Date Line. The value must be a vector of latitudes in the appropriate angle units. For latitudes so specified, grid lines extend from the western to the eastern map limit, regardless of the existence of any grid parallel limits. This vector is empty by default.
PLineFill scalar plotting point density \{100\}
Grid parallel plotting precision - Sets the number of points to be used in plotting the grid parallels. The default value is 100 . The number of points required for a reasonable display varies with the projection. Cylindrical projections such as the Miller require very few. Projections resulting in more complex shapes, such as the Bonne, look better with higher densities. The default value is generally sufficient.

## PLineLimit [east west] | [west east] \{[]\}

Grid parallel limits - Establishes longitudes beyond which displayed grid parallels do not extend. By default, this property is empty, so the parallels extend to the date line. There are two exceptions to the parallel limits. No parallel extends beyond the map longitude limits, and exceptions to the parallel limits for selected parallels are allowed (see above).

PLineLocation scalar interval or specific vector $\left\{15^{\circ}\right\}$
Grid parallel interval or specific locations - Establishes the interval between displayed grid parallels. When a scalar interval is entered in the map axes PLineLocation, parallels are displayed, starting at $0^{\circ}$ latitude and repeating every interval in both directions, which by default is $15^{\circ}$. Alternatively, you can enter a vector of latitudes, in which case a parallel is displayed for each element of the vector.

## Properties That Control Grid Labeling

FontAngle \{normal\} | italic | oblique
Select italic or normal font for all grid labels - Selects the character slant for all displayed grid labels. 'normal' specifies nonitalic font. 'italic' and 'oblique ' specify italic font.

FontColor ColorSpec | \{black\}
Text color for all grid labels - Sets the color of all displayed grid labels. ColorSpec is a three-element vector specifying an RGB triple or a predefined MATLAB color string.

```
FontName courier | {helvetica} | symbol | times
```

Font family name for all grid labels - Sets the font for all displayed grid labels. To display and print properly, FontName must be a font that your system supports.

FontSize scalar in units specified in FontUnits \{9\}
Font size - An integer specifying the font size to use for all displayed grid labels, in units specified by the FontUnits property. The default point size is 9 .

## FontUnits $\quad$ points $\mid$ normalized | inches | centimeters | pixels

Units used to interpret the FontSize property - When set to normalized, the toolbox interprets the value of FontSize as a fraction of the height of the axes. For example, a normalized FontSize of 0.1 sets the text characters to a font whose height is one-tenth of the axes' height. The default units (points) are equal to $1 / 72$ of an inch.

## FontWeight bold | \{normal\}

Select bold or normal font - The character weight for all displayed grid labels.

```
LabelFormat {compass} | signed | none
```

Labeling format for grid - Specifies the format of the grid labels. If ' compass ' is employed (the default), meridian labels are suffixed with an ' E ' for east and a 'W' for west, and parallel labels are suffixed with an ' N ' for north and an ' S ' for south. If 'signed ' is used, meridian labels are prefixed with a ' + ' for east and a ' - ' for west, and parallel labels are suffixed with a ' + ' for north and a ' - ' for south. If 'none' is selected, straight latitude and longitude numerical values are employed, so western meridian labels and southern parallel labels will have a '-', but no symbol precedes eastern and northern (positive) labels.

```
LabelRotation on | {off}
```

Label Rotation - Determines whether the meridian and parallel labels are displayed without rotation (the default), or rotated to align to the graticule.

```
LabelUnits {degrees} | radians | dms | dm
```

Specify units for labels - Grid labels are displayed in the desired angular units as specified in LabelUnits, regardless of the map axes AngleUnits. The default value, however, does match the AngleUnits property.

```
MeridianLabel on | {off}
```

Toggle display of meridian labels - Specifies whether the meridian labels are visible or not.

MLabelLocation scalar interval or vector of longitudes
Specify meridians for labeling - Meridian labels need not coincide with the displayed meridian lines. Labels are displayed at intervals if a scalar in the map axes MLabelLocation is entered, starting at the prime meridian and repeating at every interval in both directions. If a vector of longitudes is
entered, labels are displayed at those meridians. The default locations coincide with the displayed meridian lines, as specified in the MLineLocation property.

MLabelParallel \{north\} | south | equator | scalar latitude
Specify parallel for meridian label placement - Specifies the latitude location of the displayed meridian labels. If a latitude is specified, all meridian labels are displayed at that latitude. If 'north' is specified, the maximum of the MapLatLimit is used; if 'south' is specified, the minimum of the MapLatLimit is used. If 'equator' is specified, a latitude of $0^{\circ}$ is used.

## MLabelRound integer scalar \{0\}

Specify significant digits for meridian labels - Specifies to which power of ten the displayed labels are rounded. For example, if mLabelRound is -1 , labels are displayed down to the tenths. The default value of MLabelRound is 0 ; that is, displayed labels have no decimal places, being rounded to the ones column $\left(10^{0}\right)$.

## ParallelLabel on | \{off\}

Toggle display of parallel labels - Specifies whether the parallel labels are visible or not.

PLabelLocation scalar interval or vector of latitudes
Specify parallels for labeling - Parallel labels need not coincide with the displayed parallel lines. Labels are displayed at intervals if a scalar in the map axes PLabelLocation is entered, starting at the equator and repeating at every interval in both directions. If a vector of latitudes is entered, labels are displayed at those parallels. The default locations coincide with the displayed parallel lines, as specified in the PLineLocation property.

PLabelMeridian east | \{west\} | prime | scalar longitude
Specify meridian for parallel label placement - Specifies the longitude location of the displayed parallel labels. If a longitude is specified, all parallel labels are displayed at that longitude. If 'east' is specified, the maximum of the MapLonLimit is used; if 'west ' is specified, the minimum of the MapLonLimit is used. If 'prime' is specified, a longitude of $0^{\circ}$ is used.

PLabelRound integer scalar \{0\}
Specify significant digits for parallel labels - Specifies to which power of ten the displayed labels are rounded. For example, if PLabelRound is -1 , labels are displayed down to the tenths. The default value of PLabelRound is 0 ; that is,
displayed labels have no decimal places, being rounded to the ones column $\left(10^{0}\right)$.

| See Also | gcm | Get current map structure |
| :--- | :--- | :--- |
| getm | Get map object properties |  |
| setm | Set map object properties |  |

## Purpose Make scale the same between axes

Syntax axesscale resizes all axes in the current figure to have the same scale as the current axes (gca). In this context, scale means the relationship between axes $x$ - and $y$-coordinates and figure and paper coordinates. When axesscale is used, a unit of length in $x$ and $y$ is printed and displayed at the same size in all the affected axes. The XLimMode and YLimMode of the axes are set to 'manual' to prevent autoscaling from changing the scale.
axesscale (hbase) uses the axes hbase as the reference axes, and rescales the other axes in the current figure.
axesscale(hbase, hother) uses the axes hbase as the base axes, and rescales only the axes in hother.

## Examples

Display the conterminous United States, Alaska, and Hawaii in separate axes.

```
hconus = usamap('conus'); tightmap
halaska= axes; usamap('alaskaonly'); tightmap;
framem off; mlabel off; plabel off
hhawaii = axes; usamap('hawaiionly'); tightmap;
framem off; mlabel off; plabel off
% Arrange the axes as desired
set(hconus,'Position',[0.1 0.25 0.85 0.6])
set(halaska,'Position',[0.019531 -0.020833 0.2 0.2])
set(hhawaii,'Position',[0.5 0 .2 .2])
```

Make the axes have the same scale.
axesscale(hconus) \% resize alaska and hawaii axes hidem([halaska hhawaii])


# Limitations The equivalence of scales holds only as long as no commands are issued that can change the scale of one of the axes. For example, changing the units of the ellipsoid or the scale factor in one of the axes would change the scale. <br> <br> Remarks 

 <br> <br> Remarks}

## See Also

Figure paper size for a given map scale

## Purpose Compute azimuth between two points on the globe

Syntax az = azimuth(pt1, pt2) calculates the great circle azimuths from pt1 to pt2. These two-column matrices should be of the form [latitude longitude].
az = azimuth(lat1,lon1,lat2,lon2) performs the same calculation for two pairs of latitude and longitude matrices.
az = azimuth(pt1,pt2, ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a unit sphere, which is sufficient for most applications.
az = azimuth(pt1,pt2,units) specifies the standard angle unit string. The default value is 'degrees'.
az $=$ azimuth(track, pt1, ...) specifies whether great circle azimuths or rhumb line azimuths are desired. Great circle azimuths, the default, are indicated with the standard track string ' gc'. Rhumb line azimuths are indicated with the standard track string 'rh'.

## Background

## Examples

Azimuths are the bearings, or directions, between pairs of points. Azimuths are measured as angles, clockwise from true north. The North Pole has an azimuth of $0^{\circ}$ from every other point on the globe.

Azimuth can be calculated in two ways. For great circles, the azimuth is the angle made between true north and the great circle passing through the two points at the first point. For rhumb lines, the azimuth is the constant angle made between true north and the entire rhumb line passing through the two points. For more information on this distinction, see the Mapping Toolbox User's Guide documentation.

Consider two points on the same parallel, for example, $\left(10^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}\right)$ and $\left(10^{\circ} \mathrm{N}, 40^{\circ} \mathrm{E}\right)$. The azimuth between these two points depends upon the track string selected. Using the pt1, pt2 notation, the two cases result in

```
az = azimuth('gc',[10,10],[10,40])
az =
    87.3360
az = azimuth('rh',[10,10],[10,40])
az =
    90
```

10-114

The great circle path begins on an azimuth north of east to take the shortest route to the second point; the rhumb line proceeds along the parallel, on a constant due east heading.

Rhumb lines and great circles coincide along meridians and the equator. Consider two points on the same meridian, say ( $10^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}$ ) and ( $40^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}$ ), this time using the lat1, lon1, lat2, lon2 notation:

```
az = azimuth(10,10,40,10) % great circle sense
az =
    O
az = azimuth('rh',10,10,40,10)
az =
    0
```

The azimuths are the same because the paths coincide.

| See Also | distance | Distance between points |
| :--- | :--- | :--- |
| elevation | Elevation angle to a point |  |
| reckon | New point from an azimuth |  |
|  | track | Tracing paths on the globe |
| track1 |  |  |

## Purpose Compute buffer zones for vector data

Syntax

Examples
[latb,lonb] = bufferm(lat,lon, dist,direction) computes the buffer zone around a polygon. A buffer zone for a closed polygon is defined as the locus of points that are a certain distance in or out of the polygon. A buffer zone for an open polygon is the locus of points a certain distance out from the polygon. The polygon is specified as vectors of latitude and longitude in units of degrees. The distance is a scalar specified in degrees of arc along the surface. Valid direction strings are 'in' and 'out'. The result is returned as NaN-clipped vectors in units of degrees.
[latb,lonb] = bufferm(lat,lon, dist,direction, npts) controls the number of points used to construct circles about the vertices of the polygon. A larger number of points produces smoother buffers, but requires more time. If omitted, 13 points per circle are used.
[latb,lonb] = bufferm(lat,lon, dist,direction, npts,outputformat) controls the format of the returned buffer zones. outputformat 'vector' returns NaN-clipped vectors. outputformat 'cutvector' returns NaN-clipped vectors with cuts connecting holes to the exterior of the polygon. outputformat ' cell ' returns cell arrays in which each element of the cell array is a separate polygon. Each polygon can consist of an outer contour followed by holes separated with NaNs.

Extract the coastline for Italy from the low-resolution database and reduce the polygon. Construct a buffer polygon 1.5 degrees of arc along the earth's surface out from the Italian coast. Display the result on a base map of the Italian peninsula along with the original polygon.

```
[lat,lon]=extractm(worldlo('POpatch'),'italy');
[lat,lon]=reducem(lat,lon);
[latb,lonb] = bufferm(lat,lon,1.5,'out')
worldmap('lo','italy','lineonly')
hp = patchesm(latb,lonb,'y'); zdatam(hp,-2)
set(hp(2),'facecolor','w'); zdatam(hp(2),1) % hole
hp2 = geoshow(updategeostruct(worldlo('POpatch'),'italy'), ...
'FaceColor','green')
```



See Also
polybool
Perform polygon Boolean operations

Purpose
Syntax

## Examples

## See Also

Camera position in geographic coordinates
camposm(lat, long, alt) sets the axes CameraPosition property of the current map axes to the position specified in geographic coordinates. The inputs lat and long are assumed to be in the angle units of the current map axes.
$[x, y, z]=$ camposm(lat,long, alt) returns the camera position in the projected Cartesian coordinate system.

Look at northern Australia from a point south and one Earth radius above New Zealand:

```
figure; axesm('globe','galt',0); gridm('glinestyle','-')
load topo; meshm(topo,topolegend,size(topo)); demcmap(topo)
displaym(worldlo('POline'))
camlight; material(0.6*[ 1 1 1])
plat = -50; plon = 160; tlat = -10; tlon = 130;
camtargm(tlat,tlon,0); camposm(plat,plon,1); camupm(tlat,tlon)
set(gca,'CameraViewAngle',75)
```


camtargm Camera target from geographic coordinates
camupm CameraUpVector from geographic coordinates

| campos | Camera position |
| :--- | :--- |
| camva | Camera view angle |

## Purpose

Syntax

## Examples

Camera target in geographic coordinates
camtargm (lat, long, alt) sets the axes CameraTarget property of the current map axes to the position specified in geographic coordinates. The inputs lat and long are assumed to be in the angle units of the current map axes.
$[x, y, z]=$ camtargm(lat,long, alt) returns the camera target in the projected Cartesian coordinate system.

Look down the spine of the Andes from a location three Earth radii above the surface:

```
figure; axesm('globe','galt',0); gridm('glinestyle','-')
load topo; meshm(topo,topolegend,size(topo)); demcmap(topo)
displaym(worldlo('POline'))
lightm(-80,-180); material(0.6*[ 1 1 1])
plat = 10; plon = -65; tlat = -30; tlon = -70;
camtargm(tlat,tlon,0); camposm(plat,plon,3);
camupm(tlat,tlon); camva(20)
set(gca,'CameraViewAngle',30)
```


camposm
camupm

Camera position from geographic coordinates CameraUpVector from geographic coordinates

| camtarget | Camera target |
| :--- | :--- |
| camva | Camera view angle |

Purpose

Syntax

## Examples

Camera up vector in geographic coordinates
camupm(lat,long) sets the axes CameraUpVector property of the current map axes to the position specified in geographic coordinates. The inputs lat and long are assumed to be in the angle units of the current map axes.
$[x, y, z]=$ camupm(lat,long) returns the camera position in the projected Cartesian coordinate system.

Look at northern Australia from a point south of and one Earth radius above New Zealand. Set CameraUpVector to the antipode of the camera target for that down under view:

```
figure; axesm('globe','galt',0); gridm('glinestyle','-')
load topo; meshm(topo,topolegend,size(topo)); demcmap(topo)
displaym(worldlo('POline'))
camlight; material(0.6*[[ 1 1 1])
plat = -50; plon = 160; tlat = -10; tlon = 130;
[alat,alon] = antipode(tlat,tlon);
camtargm(tlat,tlon,0); camposm(plat,plon,1); camupm(alat,alon)
set(gca,'CameraViewAngle',80)
```



| See Also | camtargm | Camera target from geographic coordinates |
| :--- | :--- | :--- |
| camposm | Camera position from geographic coordinates |  |
| camup | Camera up vector |  |
| camva | Camera view angle |  |

Purpose Return Greenwich coordinates for displayed map objects

```
Syntax [lat,lon,alt] = cart2grn
[lat,lon,alt] = cart2grn(hndl)
[lat,lon,alt] = cart2grn(hndl,mstruct)
```

Description When objects are projected and displayed on map axes, they are plotted in Cartesian coordinates appropriate for the selected projection. This function transforms those coordinates back into the Greenwich frame.
[lat,lon,alt] = cart2grn returns the latitude, longitude, and altitude data in Greenwich coordinates of the current map object, removing any clips or trims introduced during the display process from the output data.
[lat,lon, alt] = cart2grn(hndl) specifies the displayed map object desired with its handle hndl. The default handle is gco.
[lat,lon, alt] = cart2grn(hndl, mstruct) specifies the map structure associated with the object. The map structure of the current axes is the default.

## See Also

gcm
mfwdtran
minvtran Inverse map projection transformation
project Project existing graphics objects onto a map axes

## Purpose

Syntax

Description

## Examples

Substitute values in a data array
$B=$ changem(A, newval), for scalar newval, replaces all zero-valued entries in A with newval.
$B=$ changem(A, newval, oldval) replaces all occurrences of newval(k) in A with oldval(k). newval and oldval must match in size.
mapout $=$ changem(map, newcode, oldcode) returns a data grid mapout identical to the input data grid, except that each element of map with a value contained in the vector oldcode is replaced by the corresponding element of the vector newcode.
oldcode is 0 (scalar) by default, in which case newcode must be scalar. Otherwise, newcode and oldcode must be the same size.

Invent a map:

```
A = magic(3)
A =
            8 1 6
            3 5 7
            4 9 2
```

Replace instances of 8 or 9 with 0 's:
$B=$ changem(A,[00],[98])
$B=$

| 0 | 1 | 6 |
| :--- | :--- | :--- |
| 3 | 5 | 7 |
| 4 | 0 | 2 |

## circcirc

Purpose Find the intersections of two circles in Cartesian space
Syntax [xout, yout] = circcirc $(x 1, y 1, r 1, x 2, y 2, r 2)$ finds the points of intersection (if any), given two circles, each defined by center and radius in $x-y$ coordinates. In general, two points are returned. When the circles do not intersect or are identical, NaNs are returned.

When the two circles are tangent, two identical points are returned. All inputs must be scalars.

## See Also <br> linecirc

## Purpose <br> Label map contours

Syntax

Description
$\mathrm{h} 1=\mathrm{clabelm}(\mathrm{c}, \mathrm{h})$ rotates the labels and inserts them in line with the contour lines. The handles of the labels can be returned in h 1 .
$\mathrm{h} 1=\mathrm{clabelm}(\mathrm{c}, \mathrm{h}, \mathrm{v})$ creates inline labels only for those levels specified in the vector v .
h1 = clabelm(c, h, 'manual') places contour labels at locations you select with a mouse. You press the left mouse button (the only mouse button on a single-button mouse), or the space bar to label a contour at the closest location beneath the center of the cursor. Press the Return key while the cursor is within the figure window to terminate labeling. The labels are inserted in line with the contour lines.
$\mathrm{h} 1=\mathrm{clabelm}(\mathrm{c}), \mathrm{h} 1=\mathrm{clabelm}(\mathrm{c}, \mathrm{v})$, and $\mathrm{h} 1=$ clabelm(c,'manual') operate as above, except that instead of rotating the labels and placing them in line with the contours, the labels are upright, and a + indicates the contour line the label is annotating.

The clabelm function adds height labels to a two-dimensional contour plot. By default, clabelm labels all displayed contours and randomly selects label positions.
c is the contour matrix as described on the contourm reference page of this guide; $h$ is the vector of handles for the displayed contours.

## clabelm

## Examples

```
axesm miller
framem
tightmap
[c,h] = contourm(geoid,geoidlegend,-100:50:80);
clabelm(c,h)
```



See Also

| clegendm | Display a legend for a contour plot of map data |
| :--- | :--- |
| contourm | Project a contour plot of map data |
| contour3m | Project a 3-D contour plot of map data |
| clabel | Contour plot elevation labels (see the online MATLAB |
|  | Function Reference documentation) |

## Purpose

## Syntax clegendm(cs,h)

clegendm(cs,h,pos)
clegendm(..., unitstr)
clegendm(...,str)
The clegendm function displays a legend for a displayed contour map.
clegendm(cs,h) displays a legend for the contour map defined by the two-column contour definition matrix, cs, and the handle(s) h. Both of these inputs are produced as the outputs of either contourm or contour3m.
clegendm(cs, h, pos) allows you to specify the position of the legend in the display. The input pos can be any of the following integers, with the indicated result:

0 Automatic placement (this is the default)
1 Upper right corner
2 Upper left corner
3 Lower left corner
4 Lower right corner
-1 To the right of the plot
clegendm (. . . , unitstr) appends the character string unitstr to each entry in the legend.
clegendm(...,str) uses the strings specified in cell array str to label the legend. The cell array must have same number of entries as $h$.

## Examples

## clegendm



```
% Example showing legend string usage
% Load topographic data measured in meters
load topo;
axesm robinson; framem
[cs,h] = contorm(topo,topolegend,3);
% Create Legend with user specified string
str = {'low altitude','medium altitude','high altitude'}
clegendm(cs,h,2,str);
```

| -_ Iow altitude |
| :--- |
| -_ high altitude |



\author{

See Also <br> \begin{tabular}{ll}
clabelm \& Label a contour plot of map data <br>
contourm \& Project a contour plot of map data <br>
contour3m \& Project a 3-D contour plot of map data <br>

contourc \& | Low-level contour plot computation (see the online |
| :--- | <br>

\& MATLAB Function Reference documentation)
\end{tabular}

}

## clipdata

Purpose Clip map data at the -pi to pi border of a display

## Syntax

Description The input data must be in radians and properly transformed for the particular aspect and origin so that it fits in the specified clipping range.

The output data is in radians, with clips placed at the proper locations. The output variable splitpts returns the row and column indices of the clipped elements (columns 1 and 2 respectively). These indices are necessary to restore the original data if the map parameters or projection are ever changed.

Allowable object strings are:

- surface for clipping graticules
- light for clipping lights
- line for clipping lines
- patch for clipping patches
- text for clipping text object location points
- point for clipping point data
- none to skip all clipping operations

See Also trimdata, undoclip, undotrim

10-132

## Purpose

Syntax

See Also

Purpose Clear specified graphics object
Syntax $\quad$ clmo deletes all displayed graphics objects on the current axes.
clmo (handle) deletes those objects specified by their handles.
clmo (object) deletes those objects with names identical to the input string.
This can be any string recognized by the handlem function, including entries in
the Tag property of each object, or the object Type if the Tag property is empty.

See Also

| clma | Clear current map |
| :--- | :--- |
| handlem | Return handles of displayed map objects |

hidem Hide specified graphics objects
namem Determine names of valid graphics objects
showm Show specified graphics objects
tagm Assign name to graphics object tag property

Purpose
Syntax
Description

Examples

See Also

A GUI to generate colormaps by interactively picking colors

```
cmap5 = cmapui
cmap32 = cmapui(32)
```

cmapui is a graphical user interface to create a colormap. The default size is five colors.

You select color slots in the colormap by clicking in the colorbar on the right side of the panel. The current color slot is outlined in black. The color components for that color in HSV space are shown by the position of the dot in the color wheel and of the red bar in the value slider. To change the color, use the mouse to drag the dot and/or the red bar. To close the GUI and return the matrix of colors as RGB components, click the Accept button. Clicking Cancel closes the GUI and returns an empty matrix.
cmapui is a modal GUI. There is no access to the MATLAB command line while cmapui is active.

```
cmap = cmapui(20);
cmap = cmapui(colorcube(10));
```

colormapeditor MATLAB colormap editor

## combntns

## Purpose Determine combinations of a set of values

Syntax combos = combntns(set, subset) returns a matrix whose rows are the various combinations that can be taken of the elements of the vector set of length subset. Many combinatorial applications can make use of a vector $1: n$ for the input set to return generalized, indexed combination subsets.

Description The combntns function provides the combinatorial subsets of a set of numbers. It is similar to the mathematical expression a choose b, except that instead of the number of such combinations, the actual combinations are returned. In combinatorial counting, the ordering of the values is not significant.

The numerical value of the mathematical statement $a$ choose $b$ is size(combos,1).

## Examples

How can the numbers 1 to 5 be taken in sets of three (that is, what is 5 choose 3)?

```
combos = combntns(1:5,3)
combos =
        1 2 
        1 2 4
        1 2 5
        1 3 4
        1 3 5
        1 4 5
        2 3 4
        2 3 5
        2 4 5
        3 4 5
    size(combos,1) % "5 choose 3"
    ans =
        10
```

Note that if a value is repeated in the input vector, each occurrence is treated as independent:

```
combos = combntns([2 2 5],2)
combos =
    2
    2 5
    2 5
```


## Remarks <br> This is a recursive function.

Purpose Project three-dimensional comet plot on map axes
Syntax
Description

Examples

## See Also

comet3m(lat,lon, z) traces a comet plot through the points specified by the input latitude, longitude, and altitude vectors.
comet3m(lat,lon, $\mathrm{z}, \mathrm{p}$ ) specifies a comet body of length $p *$ length(lat). The input $p$ is 0.1 by default.

A comet plot is an animated graph in which a circle (the comet head) traces the data points on the screen. The comet body is a trailing segment that follows the head. The tail is a solid line that traces the entire function.

Create a 3-D comet plot of the coastlines data:

```
load coast
z = (1:length(lat))'/3000;
axesm miller
framem; gridm;
setm(gca,'galtitude',max(z)+.5)
view(3)
comet3m(lat,long, z,0.01)
```

comet3
cometm

## Purpose

Project two-dimensional comet plot on map axes
cometm(lat,lon) traces a comet plot through the points specified by the input latitude and longitude vectors.
cometm(lat, lon, p) specifies a comet body of length $p$ *length (lat). The input $p$ is 0.1 by default.

Description

## Examples

See Also
comet
Comet-like trajectories (see the online MATLAB Function Reference documentation)
comet3m Three-dimensional comet plot projected on map axes

Purpose Project a contour plot of map data in 3-D space
Syntax contour3m(lat, lon, map) produces a 3-D contour plot of map data projected onto the current map axes. The input latitude and longitude vectors can be the size of map (as in a geolocated data grid), or can specify the corresponding row and column dimensions for the map.
contour 3 m (map, refvec) produces a contour plot of map data in a regular data grid.
contour3m(lat, lon, map,LineSpec) uses any valid LineSpec string to draw the contour lines.
contour3m(lat, lon, map, PropertyName, PropertyValue, ...) uses the line properties specified to draw the contours.
contour3m(lat, lon, map, $n, \ldots$ ) draws $n$ contour levels, where $n$ is a scalar. contour3m(lat,lon,map, $v, \ldots$ ) draws contours at the levels specified by the input vector $v$.
contour3m(map, refvec, ...) takes any of the optional arguments described above.
c = contour3m(...) returns a standard contour matrix, with the first row representing longitude data and the second row representing latitude data.
$[\mathrm{c}, \mathrm{h}]=$ contour3m(...) returns the contour matrix and the handles to the contour lines drawn.
contour3m, without any inputs, activates a GUI to project contour lines onto the current map axes.

## Examples

```
load topo
axesm robinson; framem; view(3)
contour3m(topo,topolegend)
set(gca,'DataAspectRatio',[11 1 3000])
```



See Also

| clabelm | Label a contour plot of map data |
| :--- | :--- |
| clegendm | Display a legend for a contour plot of map data |
| contourc | Contour computation (see the online MATLAB |
|  | Function Reference documentation) |
| contourm | Project a contour plot of map data |

Purpose Project a contour plot of map data
Syntax contourm(lat,lon, map) produces a contour plot of map data projected onto the current map axes. The input latitude and longitude vectors can be the size of map (as in a geolocated data grid), or can specify the corresponding row and column dimensions for the map.
contourm(map, refvec) produces a contour plot of map data in a regular data grid.
contourm(lat, lon, map, LineSpec) uses any valid LineSpec string to draw the contour lines.
contourm(lat,lon,map, PropertyName, PropertyValue,...) uses the line properties specified to draw the contours.
contourm(lat, lon, map, $n, \ldots$ ) draws $n$ contour levels, where $n$ is a scalar.
contourm(lat,lon, map, $\mathrm{v}, \ldots$ ) draws contours at the levels specified by the input vector v .
contourm(map, refvec, ...) takes any of the optional arguments described above.
c = contourm (...) returns a standard contour matrix, with the first row representing longitude data and the second row representing latitude data.
$[\mathrm{c}, \mathrm{h}]=$ contourm (...) returns the contour matrix and the handles to the contour lines drawn.
contourm, without any inputs, activates a GUI to project contour lines onto the current map axes.

## Examples

```
load topo
axesm robinson; framem
contourm(topo,topolegend)
```



See Also
clabelm
clegendm
contourc
contour3m

Label a contour plot of map data
Display a legend for a contour plot of map data
Contour computation (see the online MATLAB Function Reference documentation)

Project a 3-D contour plot of map data

## Purpose Contour colormap and colorbar for surfaces

## Syntax

contourcmap (cdelta, cmap) creates a contour colormap for the current axes. A contour colormap is a colormap with color changes aligned to the color data. If cdelta is a scalar, contours are generated at multiples of cdelta. If cdelta is a vector of evenly spaced values, contours are generated at those values. The string input cmap is the name of the colormap function used in the surface. Valid entries for cmap include 'pink', 'hsv', 'jet', or any similar colormap function.
contourcmap (cdelta, cmap, property, value, ...) allows you to add a colorbar and control the colorbar's properties. You turn the colorbar on with the property-value pair 'Colorbar' and 'on'. The location of the colorbar is controlled by the 'Location ' property. Valid entries for Location are 'vertical' (the default) or 'horizontal'. Properties 'TitleString', 'XLabelString', 'YLabelString' and 'ZLabelString' set the respective strings. Property 'ColorAlignment ' controls whether the colorbar labels are centered on the color bands or the color breaks. Valid values for ColorAlignment are 'center' or 'ends'. Property 'SourceObject' controls which object is used to determine the color limits for the colormap. The SourceObject value is the handle of a currently displayed object. If omitted, gca is used. Other valid property-value pairs are any properties and values that can be applied to the title and labels of the colorbar axes.
hcb $=$ contourcmap (...) returns a handle to the colorbar.
Example
Create a colormap and set color limits to make the color changes occur at multiples of one for the peaks surface.

```
surf(peaks)
contourcmap(1,'jet')
view(90,0)
shading interp
camlight
```



Add a colorbar, controlling the labels and font properties.

```
h = contourcmap(1,'jet','colorbar','on', ...
'YLabelString', 'Value', 'FontSize', 6)
```



## contourcmap

Delete the colorbar. delete(h)

See Also
contourfm Filled contour map
lcolorbar Labeled color bar
demcmap Digital elevation data color map

## Purpose

Syntax

## Examples

```
load geoid
figure
axesm eckert4
framem;gridm
load coast
plotm(lat,long,'k')
caxis([-120 100]);colormap(jet(11));colorbar
contourfm(geoid,geoidlegend, -120:20:100);
```



You can reproduce the filled contour display by using a surface instead of the patches created by contourfm.

```
figure
axesm eckert4
framem;gridm
load coast
plotm(lat,long,'k')
meshm(geoid,geoidlegend,size(geoid),'Facecolor','interp')
contourcmap(20,'jet');colorbar
```



Surfaces also allow use of lighting to bring out the smaller variations in the data.

```
clmo surface
meshm(geoid,geoidlegend,size(geoid),geoid,'Facecolor','interp')
light;lighting phong; material(0.6*[ 1 1 1])
set(gca,'dataaspectratio',[ 1 1 200])
gridm reset
zdatam(handlem('line'),max(geoid(:)))
```


## contourfm



## Limitations

Remarks
contourfm might not fill properly with azimuthal projections.
The patches are drawn at a range of z-levels $<0$ to ensure proper display. Contours are displayed with no edge colors. To combine contour fill with contour lines, use both contourfm and contourm.

In most circumstances, contour plots made with surfaces are preferable to the filled patches created by contourfm. Surfaces are rendered more quickly and take less time to project and reproject. The use of surfaces also allows surface lighting to create shaded 3-D maps.

## See Also

contourm Project a contour plot of data onto the current map axes
contour3m Project a 3-D contour plot of data onto the current map axes
clabelm Add contour labels to a map contour plot

## Purpose

Syntax [map, refvec] = country2mtx (countryname, scale) constructs a regular data grid of a country in the worldlo POpatch database. The scale factor represents the number of matrix entries per degree of latitude and longitude (e.g., 10 entries per degree, 100 entries per degree). The scale input must be scalar. The returned matrix has values of 0 in the interior of the country, 1 on the border, and 2 in the exterior.
[map,refvec] = country2mtx(countryname,scalelatlim,lonlim) uses the two-element vector latitude and longitude limits to define the extent of the map. If omitted, the limits are computed automatically.
[map, refvec] = country2mtx(countryname, map1, refvec1) uses the limits of the provided map.

## Examples

```
[map,refvec] = country2mtx('greece',50);
worldmap('greece');
meshm(map,refvec)
```



```
load russia
[map2,refvec2] = country2mtx('russia',map,refvec);
figure
```


## country2mtx

```
worldmap('russia');
meshm(map2,refvec2)
polcmap
```



## See Also

vec2mtx
Regular data grid from vector data
ltln2val Return map code value associated with positions
imbedm Encode data points into a regular data grid
encodem Fill in indexed maps with specified seeds
interpm Interpolate vector data to a specified data separation

## Purpose

Convert between geodetic and auxiliary latitudes

| Syntax | latout = convertlat(ellipsoid, latin, from, to, units) converts latitude values in latin from type from to type to. ellipsoid is a 1-by-2 ellipsoid vector of the form [semimajoraxis eccentricity]. (The almanac function offers a set of built-in ellipsoids covering most widely available map data.) |  |
| :---: | :---: | :---: |
| Description | latin is an array of input latitude values. from and to are each one of the latitude type strings listed below (or unambiguous abbreviations). latin has the angle units specified by units: either 'degrees', 'radians', or unambiguous abbreviations. The output array, latout, has the same size and units as latin. |  |
|  | Latitude Type | Description |
|  | geodetic | The geodetic latitude is the angle that a line perpendicular to the surface of the ellipsoid at the given point makes with the equatorial plane. |
|  | authalic | The authalic latitude maps an ellipsoid to a sphere while preserving surface area. Authalic latitudes are used in place of the geodetic latitudes when projecting the ellipsoid using an equal area projection. |
|  | conformal | The conformal latitude maps an ellipsoid conformally onto a sphere. Conformal latitudes are used in place of the geodetic latitudes when projecting the ellipsoid with a conformal projection. |
|  | geocentric | The geocentric latitude is the angle that a line connecting a point on the surface of the ellipsoid to its center makes with the equatorial plane. |
|  | isometric | The isometric latitude is a nonlinear function of the geodetic latitude. |

## Latitude Type

parametric The parametric latitude of a point on the ellipsoid is the latitude on a sphere of radius a, where a is the semimajor axis of the ellipsoid, for which the parallel has the same radius as the parallel of geodetic latitude.
rectifying The rectifying latitude is used to map an ellipsoid to a sphere in such a way that distance is preserved along meridians.

To properly project rectified latitudes, the radius must also be scaled to ensure the equal meridional distance property. This is accomplished by rsphere.

## Example

```
% Plot the difference between the auxiliary latitudes
% and geocentric latitude, from equator to pole,
% using the GRS 80 ellipsoid. Avoid the polar region with
% the isometric latitude, and scale down the difference
% by a factor of 200.
grs80 = almanac('earth','ellipsoid','m','grs80');
geodetic = 0:2:90;
authalic = ...
convertlat(grs80,geodetic,'geodetic','authalic', 'deg');
conformal = ...
convertlat(grs80,geodetic,'geodetic','conformal', 'deg');
geocentric = ...
convertlat(grs80,geodetic,'geodetic','geocentric','deg');
parametric = ...
convertlat(grs80,geodetic,'geodetic','parametric','deg');
rectifying = ...
convertlat(grs80,geodetic,'geodetic','rectifying','deg');
isometric = ...
convertlat(grs80,geodetic(1:end-5), ...
'geodetic','isometric','deg');
plot(geodetic, (authalic - geodetic),...
geodetic, (conformal - geodetic),...
geodetic, (geocentric - geodetic),...
geodetic, (parametric - geodetic),...
geodetic, (rectifying - geodetic),...
geodetic(1:end-5), (isometric - geodetic(1:end-5))/200);
```

```
title('Auxiliary Latitudes vs. Geodetic')
xlabel('geodetic latitude, degrees')
ylabel('departure from geodetic, degrees');
legend('authalic','conformal','geocentric', ...
'parametric','rectifying', 'isometric/200');
```

See Also
almanac, rsphere

## Purpose Determine cross fix positions from bearings and ranges

Syntax
[newlat, newlon] = crossfix(lat,long,az) returns the intersection points of all pairs of great circles passing through the points given by the column vectors lat and long that have azimuths az at those points. The outputs are two-column matrices newlat and newlon in which each row represents the two intersections of a possible pairing of the input great circles. If there are $n$ input objects, there will be $n$ choose 2 pairings.
[newlat, newlon] = crossfix(lat,long, az_range, case) allows the input az_range to specify either azimuths or ranges. Where the vector case equals 1 , the corresponding element of az_range is an azimuth; where case is 0 , az_range is a range. The default value of case is a vector of ones (azimuths).
[newlat, newlon] = crossfix(lat,long,az_range, case,drlat,drlong) resolves the ambiguities when there is more than one intersection between two objects. The scalar-valued drlat and drlong provide the location of an estimated (dead reckoned) position. The outputs newlat and newlong are column vectors in this case, returning only the intersection closest to the estimated point. When this option is employed, if any pair of objects fails to intersect, no output is returned and the warning No Fix is displayed.

```
[newlat,newlon] = crossfix(lat,long,az,units),
[newlat,newlon] = crossfix(lat,long,az_range,case,units),
[newlat,newlon] = crossfix(lat,long,az_range,drlat,drlong,units),
and [newlat,newlon] =
crossfix(lat,long,az_range,case,drlat,drlong,units) allow the
specification of the angle units to be used for all angles and ranges, where
units is any valid angle units string. The default value of units is 'degrees'.
mat = crossfix(...) returns the output in a two- or four-column matrix mat.
```


## Description

## Examples

This function calculates the points of intersection between a set of objects taken in pairs. Given great circle azimuths and/or ranges from input points, the locations of the possible intersections are returned. This is different from the navigational function navfix in that crossfix uses great circle measurement, while navfix uses rhumb line azimuths and nautical mile distances.

Where do the small circles defined as all points $8^{\circ}$ in distance from the points $\left(0^{\circ}, 0^{\circ}\right),\left(5^{\circ} \mathrm{N}, 5^{\circ} \mathrm{E}\right)$, and $\left(0^{\circ}, 10^{\circ} \mathrm{E}\right)$ " intersect?

```
[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',[8 8 8]',[0 0 0]')
newlat =
    7.5594 -2.5744
    6.2529 -6.2529
    7.5594 -2.5744
newlong =
    -2.6260 7.5770
    5.0000 5.0000
    12.6260 2.4230
```

Here is an illustration to show why there are six intersections:


If a dead reckoning position is provided, say $\left(0^{\circ}, 5^{\circ} \mathrm{E}\right)$, then one from each pair is returned (the closest):

```
[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',...
    [8 8 8]',[0 0 0]',0,5)
newlat =
    -2.5744
    6.2529
    -2.5744
newlong =
    7.5770
    5.0000
    2.4230
```

See Also
gexgc
gexsc scxsc rhxrh polyxpoly
navfix Mercator-based navigational fixing

Purpose
Syntax

## Examples

Control vertical exaggeration in a map display
daspectm(zunits) sets the figure 'DataAspectRatio' property so that the $z$-axis is in proportion to the $x$-and $y$-projected coordinates. This permits elevation data to be displayed without vertical distortion. The string zunits specifies the units of the elevation data, and can be any string recognized by distdim.
daspectm(zunits,vfac) sets the 'DataAspectRatio' property so that the $z$-axis is vertically exaggerated by the factor vfac. If omitted, the default is no vertical exaggeration.
daspectm(zunits, vfac, lat,long) sets the aspect ratio based on the local map scale at the specified geographic location. If omitted, the default is the center of the map limits.
daspectm(zunits,vfac, lat,long, az) also specifies the direction along which the scale is computed. If omitted, 90 degrees (west) is assumed.
daspectm(zunits, vfac, lat,long, az, gunits) also specifies the units in which the geographic position and direction are given. If omitted, 'degrees ' is assumed.
daspectm(zunits,vfac,lat,long, az, gunits, radius) uses the last input to determine the radius of the sphere. If radius is a string, then it is evaluated as an almanac body to determine the spherical radius. If numerical, it is the radius of the desired sphere in zunits. If omitted, the default radius of the Earth is used.

Show the elevation map of the Korean peninsula with a vertical exaggeration factor of 30 :

```
load korea
[latlim,lonlim] = limitm(map,refvec);
worldmap(latlim,lonlim,'none')
meshm(map,refvec,size(map),map)
demcmap(map)
view(3)
daspectm('m',30)
tightmap
```


## daspectm



## Limitations

## See Also

daspect Data aspect ratio
paperscale

The relationship between the vertical and horizontal coordinates holds only as long as the geoid or scale factor properties of the map axes remain unchanged. If you change the scaling between geographic coordinates and projected axes coordinates, execute daspectm again.

Figure paper size for a given map scale

## Purpose

Read selected data from the Digital Chart of the World

## Syntax

struct = dcwdata(library, latlim, lonlim, theme, topolevel) reads data for
the specified theme and topology level directly from the DCW CD-ROM. There are four CDs, one for each of the libraries: ' NOAMER' (North America), ' SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern Asia), and ' SOAMAFR' (South America and Africa). The desired theme is specified by a two-letter code string. A list of valid codes is displayed when an invalid code, such as '?', is entered. The region of interest can be given as a point latitude and longitude or as a region with two-element vectors of latitude and longitude limits. The units of latitude and longitude are degrees. The data covering the requested region is returned, but will include data extending to the edges of the 5 -by- 5 degree tiles. The result is returned as a Mapping Toolbox geographic data structure.
struct = dowdata(devicename,library,...) specifies the logical device name of the CD-ROM for computers that do not automatically name the mounted disk.
[struct1, struct2,...] = dcwdata(...,\{topolevel1,topolevel2,...\}) reads several topology levels. The levels must be specified as a cell array with the entries 'patch', 'line', 'point', or 'text'. Entering \{'all'\} for the topology level argument is equivalent to \{'patch', 'line', 'point', 'text'\}. Upon output, the data structures are returned in the output arguments by topology level in the same order as they were requested.

The Digital Chart of the World (DCW) is a detailed and comprehensive source of publicly available global vector data. It was digitized from the Operational Navigation Charts (scale 1:1,000,000) and Jet Navigation Charts (1:2,000,000), compiled by the U.S. Defense Mapping Agency (DMA) along with mapping agencies in Australia, Canada, and the United Kingdom. The digitized data was published on four CD-ROMS by the DMA and is distributed by the U.S. Geological Survey (USGS).

The DCW is out of print and has been succeeded by the Vector Map Level 0 (VMAP0).

The DCW organizes data into 17 different themes, such as political/oceans (PO), drainage (DN), roads (RD), or populated places (PP). The data is further
tiled into 5 -by- 5 degree tiles and separated by topology level (patches, lines, points, and text).

## Remarks

## Examples On the Macintosh,

```
s = dcwdata('NOAMER',41,-69,'?','patch');
??? Error using ==> dcwdata
Theme not present in library NOAMER
Valid two-letter theme identifiers are:
PO: Political/Oceans
PP: Populated Places
LC: Land Cover
VG: Vegetation
```

```
RD: Roads
RR: Railroads
UT: Utilities
AE: Aeronautical
DQ: Data Quality
DN: Drainage
DS: Supplemental Drainage
HY: Hypsography
HS: Supplemental Hypsography
CL: Cultural Landmarks
OF: Ocean Features
PH: Physiography
TS: Transportation Structure
POpatch = dcwdata('NOAMER',[41 44],[-72 -69],'PO','patch')
POpatch =
1x234 struct array with fields:
    type
    otherproperty
    tag
    altitude
    lat
    long
    tag2
    tag3
```

On an MS-DOS based operating system with the CD-ROM as the 'd:' drive,
[RDtext,RDline] = dcwdata('d:','SASAUS',[-48 -34],[164 180],...
'RD', \{'text', 'line'\});

On a UNIX operating system with the CD-ROM mounted as ' \cdrom',
[POpatch, POline, POpoint, POtext] = dcwdata('\cdrom',...
'EURNASIA', - 48 , 164,'PO', \{'all'\});
\(\left.$$
\begin{array}{lll}\text { See Also } & \begin{array}{l}\text { vmap0data } \\
\text { dcwgaz }\end{array} & \begin{array}{l}\text { Read selected data from the Vector Map Level } 0 \\
\text { dewread }\end{array}
$$ <br>

geazette for entries in the Digital Chart of the World\end{array}\right\}\)| Read a Digital Chart of the World file |
| :--- |

## dcwdata

| dcwrhead | Read a Digital Chart of the World file header |
| :--- | :--- |
| displaym | Project data contained in a map structure |
| extractm | Extract vector data from a map structure |
| mlayers | GUI for manipulating map layers |
|  |  |
| The format and the history of the DCW are described in references [ 1], [2], <br> and [3] located in the Bibliography at the end of this chapter. |  |

## Purpose

Syntax

## Background

## Remarks

## Examples

Search for entries in the Digital Chart of the World gazette
dcwgaz(library, object) searches the DCW library for items beginning with the object string. There are four CDs, one for each of the libraries: ' NOAMER' (North America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR ' (South America and Africa). Items that exactly match or begin with the object string are displayed on screen.
dcwgaz (devicename, library, object) specifies the logical device name of the CD-ROM for computers that do not automatically name the mounted disk.
mtextstruc $=$ dcwgaz (...) displays the matched items on screen and returns a Mapping Toolbox geographic data structure with the matches as text entries.
[mtextstruc,mpointstruc] = dcwgaz(...) returns the matches in structures formatted both as text and as points.

In addition to the geographic data, the Digital Chart of the World (DCW) also includes an extensive gazette feature. The gazette is a collection of the names of geographic items mentioned in the various themes of a DCW disk. One DCW disk can contain about 10,000 to 15,000 names. This function allows you to search the gazette for names beginning with a particular string.

The search is not case sensitive. Items that match are those that begin with the object string. Spaces are significant.

On the Macintosh,

```
s = dcwgaz('EURNASIA','apatin')
APATIN
s =
            type: 'text'
    otherproperty: {1x2 cell}
                    tag: 'Built up area'
            string: 'APATIN'
                altitude: []
                    lat: 45.6660
            long: 18.9830
```

On a UNIX operating system with the CD-ROM mounted as ' \cdrom',

```
[mtextstruc,mpointstruc] = dcwgaz('\cdrom','SOAMAFR',...
    'cape good')
Cape Goodenough
Cape Goodenough
Cape Goodenough
mtextstruc =
1x3 struct array with fields:
    type
    otherproperty
    tag
    string
    altitude
    lat
    long
mpointstruc =
1x3 struct array with fields:
    type
    otherproperty
    tag
    string
    altitude
    lat
    long
```

See Also \begin{tabular}{ll}
dcwdata <br>
dcwread <br>
dcwrhead <br>
displaym <br>
mlayers

$\quad$

Read selected data from the Digital Chart of the World <br>
Read a Digital Chart of the World file <br>
Read a Digital Chart of the World file header

$\quad$

Project data contained in a map structure
\end{tabular}

## Purpose

Syntax

Background

Remarks

Read a Digital Chart of the World file
dcwread reads a DCW file. The user selects the file interactively.
dcwread(filepath,filename) reads the specified file. The combination [filepath filename] must form a valid complete filename.
dcwread(filepath, filename, recordIDs) reads selected records or fields from the file. If recordIDs is a scalar or a vector of integers, the function returns the selected records. If recordIDs is a cell array of integers, all records of the associated fields are returned.
dcwread(filepath,filename,recordIDs,field,varlen) uses previously read field and variable-length record information to skip parsing the file header (see below).
struc $=$ dcwread (...) returns the file contents in a structure.
[struc,field] = dcwread(...) returns the file contents and a structure describing the format of the file.
[struc,field,varlen] = dcwread(...) also returns a vector describing the fields that have variable-length records.
[struc,field, varlen, description] = dcwread(...) also returns a string describing the contents of the file.
[struc,field,varlen,description, narrativefield] = dcwread(...) also returns the name of the narrative file for the current file.

The Digital Chart of the World (DCW) uses binary files in a variety of formats. This function determines the format of the file and returns the contents in a structure. The field names of this structure are the same as the field names in the DCW file.

This function reads all DCW files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI'), and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

## Examples

The following examples use the Macintosh directory system and file separators for the pathname:

```
s = dcwread('NOAMER:DCW:NOAMER:','GRT')
s =
            ID: 1
            DATA_TYPE: 'GEO'
            UNITS: '014'
            ELLIPSOID: 'WGS 84'
    ELLIPSOID_DETAIL: 'A=6378137,B=6356752 Meters'
            VERT_DATUM_REF: 'MEAN SEA LEVEL'
            VERT_DATUM_CODE: '015'
            SOUND_DATUM: 'MEAN SEA LEVEL'
    SOUND_DATUM_CODE: '015'
        GEO_DATUM_NAME: 'WGS 84'
        GEO_DATUM_CODE: 'WGE'
        PROJECTION_NAME: 'DECIMAL DEGREES'
s = dcwread('NOAMER:DCW:NOAMER:AE:','INT.VDT')
S =
5x1 struct array with fields:
    ID
    TABLE
    ATTRIBUTE
    VALUE
    DESCRIPTION
for i = 1:length(s); disp(s(i)); end
            ID: 1
            TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 1
    DESCRIPTION: 'Active civil'
                ID: 2
            TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 2
    DESCRIPTION: 'Active civil and military'
            ID: 3
```

```
            TABLE: 'AEPOINT.PFT'
            ATTRIBUTE: 'AEPTTYPE'
            VALUE: 3
            DESCRIPTION: 'Active military'
                ID: 4
                TABLE: 'AEPOINT.PFT'
            ATTRIBUTE: 'AEPTTYPE'
            VALUE: 4
            DESCRIPTION: 'Other'
                            ID: 5
            TABLE: 'AEPOINT.PFT'
            ATTRIBUTE: 'AEPTTYPE'
            VALUE: 5
            DESCRIPTION: 'Added from ONC when not available from DAFIF'
s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',1)
S =
            ID: 1
    AEPTTYPE: 4
    AEPTNAME: 'THULE AIR BASE'
        AEPTVAL: 251
    AEPTDATE: '19900502000000000000'
    AEPTICAO: '1261'
    AEPTDKEY: 'BR17652'
        TILE_ID: 94
            END_ID: 1
s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',{1,2})
S =
4678x1 struct array with fields:
    ID
    AEPTTYPE
```

See Also \begin{tabular}{lll}
dcwdata <br>
dcwgaz <br>
dcwrhead

$\quad$

Read selected data from the Digital Chart of the World <br>
Search for entries in the Digital Chart of the World gazette <br>
Read a Digital Chart of the World file header
\end{tabular}

Purpose Read the header of a Digital Chart of the World file

Syntax dcwrhead allows the user to select the header file interactively.
dcwrhead(filepath,filename) reads from the specified file. The combination [filepath filename] must form a valid complete filename.
dcwrhead(filepath,filename,fid) reads from the already open file associated with fid.
dcwrhead (...), with no output arguments, displays the formatted header information on the screen.
str $=$ dcwrhead (...) returns a string containing the DCW header.

## Background

Remarks

Examples

The Digital Chart of the World (DCW) uses header strings in most files to document the contents and format of that file. This function reads the header string, displays a formatted version in the command window, or returns it as a string.

This function reads all DCW files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI'), and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

The following example uses the Macintosh file separators and pathname:

```
dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
Aeronautical Points
AEPOINT.DOC
ID=I, 1,P,Row Identifier,-,-,
AEPTTYPE=I, 1,N,Airport Type,INT.VDT,-,
AEPTNAME=T,50,N,Airport Name,-,-,
AEPTVAL=I, 1,N,Airport Elevation Value,-,-,
AEPTDATE=D, 1,N,Aeronautical Information Date,-,-,
AEPTICAO=T, 4,N,International Civil Organization Number,-,-,
AEPTDKEY=T, 7,N,DAFIF Reference Number,-,-,
TILE_ID=S, 1,F,Tile Reference Identifier,-,AEPOINT.PTI,
```

```
END_ID=I 1,F,Entity Node Primitive Foreign Key,-,-,
s = dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
S =
;Aeronautical Points;AEPOINT.DOC;ID=I, 1,P,Row
Identifier,-,-,:AEPTTYPE=I, 1,N,Airport
Type,INT.VDT, -,:AEPTNAME=T,50,N,Airport Name,-, -, :AEPTVAL=I,
1,N,Airport Elevation Value,-,-,:AEPTDATE=D, 1,N,Aeronautical
Information Date,-,-,:AEPTICAO=T, 4,N,International Civil
Organization Number,-,-,:AEPTDKEY=T, 7,N,DAFIF Reference
Number,-,-,:TILE_ID=S, 1,F,Tile Reference
Identifier,-,AEPOINT.PTI,:END_ID=I 1,F,Entity Node Primitive
Foreign Key,-,-,:;
```

See Also
dcwdata Read selected data from the Digital Chart of the World
dcwgaz Search for entries in the Digital Chart of the World gazette
dcwread Read a Digital Chart of the World file

## Purpose Initialize a default map projection structure

Syntax mstruct = defaultm creates an empty map projection structure.
mstruct $=$ defaultm(projection) initializes the map structure for the specified map projection. projection is any valid projection string, such as 'sinusoid'.
mstruct $=$ defaultm(mstruct) sets appropriate defaults based on existing parameter values in the map structure mstruct.
[mstruct, msg] = defaultm(...) returns the string msg, indicating any error encountered.

Description

Examples

The map projection structure contains all the information needed to project and display geographic data. It normally resides in the UserData property of a map axes, but it can also be used directly to project data without display.

Create an empty map projection structure for a Mercator projection:

```
mstruct = defaultm('mercator')
mstruct =
    mapprojection: 'mercator'
            zone: []
        angleunits: 'degrees'
            aspect: 'normal'
        falseeasting: []
        falsenorthing: []
            fixedorient: []
            geoid: [1 0]
            maplatlimit: []
            maplonlimit: []
        mapparallels: 0
            nparallels: 1
                origin: []
            scalefactor: []
            trimlat: [-86 86]
            trimlon: [-180 180]
                    frame: []
                    ffill: 100
        fedgecolor: [0 0 0]
```

```
    ffacecolor: 'none'
        flatlimit: []
        flinewidth: 2
        flonlimit: []
            grid: []
        galtitude: Inf
            gcolor: [0 O 0]
        glinestyle: ':'
        glinewidth: 0.5000
mlineexception: []
            mlinefill: 100
        mlinelimit: []
    mlinelocation: []
    mlinevisible: 'on'
plineexception: []
            plinefill: 100
            plinelimit: []
plinelocation: []
    plinevisible: 'on'
            fontangle: 'normal'
            fontcolor: [0 0 0]
            fontname: 'helvetica'
            fontsize: 9
            fontunits: 'points'
            fontweight: 'normal'
            labelformat: 'compass'
    labelrotation: 'off'
            labelunits: []
    meridianlabel: []
mlabellocation: []
mlabelparallel: []
    mlabelround: 0
    parallellabel: []
plabellocation: []
plabelmeridian: []
    plabelround: 0
```

Now change the map origin to [0 900 ], and fill in default projection parameters accordingly:

```
mstruct.origin = [0 90 0];
```

```
mstruct = defaultm(mstruct)
mstruct =
    mapprojection: 'mercator'
                    zone: []
        angleunits: 'degrees'
            aspect: 'normal'
    falseeasting: 0
falsenorthing: 0
    fixedorient: []
            geoid: [1 0]
    maplatlimit: [-86 86]
    maplonlimit: [-180 180]
    mapparallels: 0
        nparallels: 1
            origin: [0 O 0]
    scalefactor: 1
            trimlat: [-86 86]
            trimlon: [-180 180]
                    frame: 'off'
                    ffill: 100
    fedgecolor: [0 0 0]
    ffacecolor: 'none'
        flatlimit: [-86 86]
        flinewidth: 2
            flonlimit: [-180 180]
                    grid: 'off'
            galtitude: Inf
                gcolor: [0 0 0]
        glinestyle: ':'
        glinewidth: 0.50000000000000
mlineexception: []
            mlinefill: 100
        mlinelimit: []
    mlinelocation: 30
    mlinevisible: 'on'
plineexception: []
            plinefill: 100
            plinelimit: []
plinelocation: 15
    plinevisible: 'on'
```

fontangle: 'normal'
fontcolor: [0 O 0]
fontname: 'helvetica'
fontsize: 9
fontunits: 'points'fontweight: 'normal'
labelformat: 'compass'
labelrotation: 'off'
labelunits: 'degrees'
meridianlabel: 'off'
mlabellocation: ..... 30
mlabelparallel: ..... 86
mlabelround:
parallellabel: 'off
plabellocation: ..... 15
plabelmeridian: ..... -180plabelround: 0
See Also
gcmaxesm Define map axes and set map propertiesmfwdtranminvtran Map inverse transformation
setm
Set and modify map properties Map forward transformation Map inverse transformation

Define map axes and set map properties Get current map data structure

## deg2dms, deg2dm

Purpose $\quad$ Convert angle units from degrees to dms or dm format


#### Abstract

Syntax anglout $=$ deg2dms (anglin) converts angles input in degrees to the equivalent measure in the degrees-minutes-seconds ( $d m s$ ) format. angleout $=$ deg2dm(anglin) converts angles input in degrees to the equivalent measure in the degrees-minutes ( $d m$ ) format. This is the dms format, properly rounded to just degrees and minutes.


## Example <br> ```deg2dms(23.561) \\ ans = \\ 2333.40``` <br> deg2dm(23.561) <br> ans = <br> 2334.00

## See Also

angledim Convert angle units
dms2mat Convert from dms to separated matrix components
deg2rad Other direct angle conversion functions
dms2rad
mat2dms Convert from separated matrices input to dms

## Purpose

Syntax

Examples
A degree of arc length is about 60 nautical miles:

```
deg2nm(1)
ans =
    60.0405
```

This is not true on Mercury, of course:

```
deg2nm(1,'mercury')
ans =
    22.9852
```


## See Also

deg2rad Convert degrees to radians
distdim Convert distance units
nm2km Other direct distance conversion functions
Purpose Convert angle (or distance) units from degrees to radians

| Syntax | anglout $=$ deg2rad(anglin) converts angles input in degrees to the <br> equivalent measure in radians. |
| :--- | :--- |
| Remarks | This is both an angle conversion function and a distance conversion function, <br> since arc length can be a measure of distance in either radians or degrees, <br> provided that the radius is known. |

Example
Show that there are $2 \frac{1}{4}$ radians in a full circle:

```
2*pi - deg2rad(360)
ans =
    0
```


## See Also

angledim Convert angle units
deg2dms Other direct angle conversion functions
dms2rad
distdim Convert distance units
nm2km Other direct distance conversion functions
sm2deg
rad2deg Convert from radians to degrees

Purpose
Syntax

## Examples

Create colormaps for digital elevation maps
demcmap (map) creates and assigns a colormap for elevation data. The colormap has the number of land and sea colors in the same proportions as the maximum elevations and depths in the data grid. With no output arguments, the colormap is applied to the current figure and the color axis is set so that the interface between the land and sea is in the right place.
demcmap(map, ncolors) makes a colormap with a length of ncolors. The default value is 64 .
demcmap (map, ncolors, cmapsea, cmapland) allows the default colors for sea and land to be replaced. The colors in the created colormap are interpolated from the RGB color matrix inputs, which can be of any length. You can retain default colors for either land or sea by providing an empty matrix in place of the color matrices. You can specify the current figure colormap by entering the string 'window' in place of either RGB matrix.
demcmap (color, map, spec) uses the color string to define a colormap. If the string is set to 'size', spec is the length of the colormap. If it is set to 'inc ', spec is the size of the altitude range assigned to each color. If omitted, color is 'size' by default.
demcmap (color, map, spec, cmapsea, cmapland) allows for both coloring options along with specified colors.

Display the world topographical map using grayscale colors:

```
load topo
axesm hatano
meshm(topo,topolegend)
demcmap(topo,64,[0 0 0],[.2 .2 .2; 1 1 1])
```


## demcmap



## See Also

caxis
colormap
meshlsrm
meshm
surflsrm
surfm

Color axis scaling (see the online MATLAB Function Reference documentation)
Set and get the current colormap (see the online MATLAB Function Reference documentation)

Project 3-D lighted shaded relief of regular data grid Display a regular data grid warped to a projected graticule Project 3-D lighted shaded relief of geolocated data grid Display a data grid warped to a projected graticule

## Purpose

## Activation <br> demdataui

Description

Digital elevation map data user interface
demdataui is a graphical user interface to extract digital elevation map data from a number of external data files.

The demdataui panel lets you read data from a variety of high-resolution digital elevation maps (DEMs). These DEMs range in resolution from about 10 kilometers to 100 meters or less. The data files are available over the Internet at no cost, or (in some cases) on CD-ROMs for varying fees. demdataui reads ETOPO5, TerrainBase, GTOPO30, GLOBE, satellite bathymetry, and DTED data. See the links under "See also" for more information on these data sets. demdataui looks for these external data files on the MATLAB path and, for some operating systems, on CD-ROM disks.

You use the list to select the source of data and the map to select the region of interest. When you click the Get button, data is extracted and displayed on the map. Use the Save button to save the data in a MAT-file or to the base workspace for later display. The Close button closes the window.

## demdataui

## Controls



## The Map

The map controls the geographic extent of the data to be extracted. demdataui extracts data for areas currently visible on the map. Use the mouse to zoom in or out to the area of interest. See zoom for more on zooming.

Some data sources divide the world up into tiles. When extracting, data is concatenated across all visible tiles. The map shows the tiles in light yellow with light gray edges. When data resolution is high, extracting data for large area can take much time and memory.An approximate count of the number of points is shown above the map. Use the Samplefactor slider to reduce the amount of data.

## The List

The list controls the source of data to be extracted. Click a name to see the geographic coverage in light yellow. The sources list shows the data sources found when demdataui started.
demdataui searches for data files on the MATLAB path. On some computers, demdataui also checks for data files on the root level of letter drives. demdataui looks for the following data: etopo5: new_etopo5.bil or etopo5.northern.bat and etopo5.southern.bat files. tbase: tbase.bin file. satbath: topo_6.2.img file. gtopo30: a directory that contains subdirectories with the data files. For example, demdataui would detect gtopo30 data if a directory on the path contained the directories E060S10 and E100S10, each of which holds the uncompressed data files. globedem: a directory that contains data files and in the subdirectory " /esri/hdr" the "*. hdr" header files. dted: a directory that has a subdirectory named DTED. The contents of the DTED directory are more subdirectories organized by longitude and, below that, the DTED data files for each latitude tile. See the help for functions with the data source names for more on the data attributes and internet locations.

## The Samplefactor Slider

The Sample Factor slider allows you to reduce the density of the data. A sample factor of 2 returns every second point. The current sample factor is shown on the slider.

## The Get Button

The Get button reads the currently selected data and displays it on the map. Press the standard interrupt key combination for your platform to interrupt the process.

## The Clear Button

The Clear button removes any previously read data from the map.

## The Save Button

The Save button saves the currently displayed data to a MAT-file or the base workspace. If you choose to save to a file, you will be prompted for a file name and location. If you choose to save to the base workspace, you can choose the variable name under which the data will be stored. The results are stored as a geographic data structure. Use load and displaym to redisplay the data from a file on a map axes. To display the data in the base workspace, use displaym. To gain access to the data matrices, subscript into the structure (for example, datagrid = demdata(1).map; refvec = demdata(1).maplegend). Use worldmap to create easy displays of the elevation data (for example, worldmap(datagrid, refvec, 'ldem3d')). Use meshm to add regular data grids

## demdataui

to existing displays, or surfm or a similar function for geolocated data grids (for example, meshm(datagrid, refvec) or surfm(latgrat,longrat,z)).

## The Close Button

The Close button closes the demdataui panel.
See Also etopo5, tbase, gtopo30, globedem, dted, satbath, vmap0ui

Purpose
Syntax

Description

## Examples

Compute departure between longitudes at specified latitudes
dist $=$ departure(long1,long2, lat) returns the departure between two longitudes at a given latitude in degrees. Departure is dimensionless; the shorter of the two directions is taken from the first longitude to the second. The distance is given in degrees of arc length.
dist = departure(long1,long2,lat,units) specifies the valid angle units string to apply to the latitude, longitudes, and output distance.
dist = departure(long1,long2,lat,ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a unit sphere, which is sufficient for most applications. When a ellipsoid model is input, the resulting distance is given in terms of the distance units in the ellipsoid vector, regardless of the angle units used.

Departure is the distance along a parallel between two points. Whereas a degree of latitude is always the same distance, a degree of longitude is different in length at different latitudes. In practice, this distance is usually given in nautical miles.

On a spherical Earth, the departure is proportional to the cosine of the latitude:

```
distance = departure(0,10,0)
distance =
    10
distance = departure(0,10,60)
distance =
```

    5
    When an ellipsoid is used, the result is more complicated. The distance at $60^{\circ}$ is not exactly twice the $0^{\circ}$ value:

```
distance = departure(0,10,0,almanac('earth','ellipsoid','nm'))
distance =
    601.0772
distance = departure(0,10,60,almanac('earth','ellipsoid','nm'))
distance =
    299.7819
```


## departure

See Also<br>distance Distance between two points<br>stdm<br>Standard deviation for geographic data

Purpose
Syntax

## Examples

Display political and coastlines contained in structure format:

```
axesm werner; framem
displaym(POline)
```



Highlight Russia by displaying a patch map of the country: displaym(POpatch, 'russia')


## Remarks

## See Also

extractm
mlayers objects.

A Mapping Toolbox geographic data structure is a MATLAB structure that can contain line, patch, text, regular data grid, geolocated data grid, and light

Object properties used in the display are taken from the otherproperty field of the structure. If a line or patch object's otherproperty field is empty, displaym uses default colors. A patch is assigned an index into the current colormap based on the structure's tag field. Lines are assigned colors from the current color order according to their tags.

Extract vector data from geographic data structures

GUI for manipulating layers of a geographic data structure

## Purpose Convert distance values to strings

Syntax str = dist2str(distin) converts the input vector of distances, distin, to a string matrix.
str $=$ dist2str(distin, format) uses the format string to specify the notation to be used for the string matrix. The default, ' none ', results in simple numerical representation (no indicator for positive distances, minus signs for negative distances); 'pm' (for plus-minus) prefixes a + for positive distances.
str $=$ dist2str(distin, format, units) uses the input units to define the units in which the input distances are supplied. units is any valid distance string ('kilometers' is the default). units also determines the unit symbol to suffix to the strings.
str $=$ dist2str(distin, format, units, digits) determines how many digits to display. digits is the power of 10 representing the last place of significance in the resulting output. For example, if digits $=2$, the hundreds slot is its last significant figure. In general, the $10^{\text {digits }}$ slot is the last significant figure, rounded appropriately depending upon the value in the $10^{\text {digits- } 1}$ slot. digits is -2 by default.

## Description

Examples

The purpose of this function is to make distance-valued variables into strings suitable for map display.

Create a vector of values and convert to strings:

```
d = [l-3.7 2.95 87]
str = dist2str(d,'none','km')
str =
-3.70 km
2.95 km
87.00 km
```

Now change the units, add +'s to positive values, and truncate to the tenths ( $10^{-1}$ ) slot:

```
str = dist2str(d,'pm','sm',-1)
str =
    -3.7 mi
    +3.0 mi
```

| See Also | angl2str | Convert angle values to strings |
| :--- | :--- | :--- |
| distdim | time2str | Convert distance units |
|  | Convert time values to strings |  |

## Purpose Compute distance between two points on the globe

```
Syntax dist = distance(pt1,pt2)
dist = distance(pt1,pt2,ellipsoid)
dist = distance(pt1,pt2,units)
dist = distance(pt1,pt2,ellipsoid,units)
dist = distance(track,pt1,...)
dist = distance(lat1,lon1,lat2,lon2)
dist = distance(lat1,lon1,lat2,lon2,ellipsoid)
dist = distance(lat1,lon1,lat2,lon2,units)
dist = distance(lat1,lon1,lat2,lon2,ellipsoid,units)
dist = distance(track,lat1,...)
```

Background Distance between two points can be calculated in two ways. For great circles, the distance is the shortest surface distance between two points. For rhumb lines, the distance is measured along the rhumb line passing through the two points, which is not, in general, the shortest surface distance between them. For more information on this distinction, see the Mapping Toolbox User's Guide documentation.

## Description

dist $=$ distance $(p t 1, p t 2)$ calculates the great circle distance from pt1 to pt2. These two-column matrices should be of the form [latitude longitude]. The resulting distance is returned in terms of angle units of arc length (degrees by default).
dist $=$ distance(lat1,lon1,lat2,lon2) performs the same calculation for two pairs of latitude and longitude matrices.
dist = distance(pt1, pt2, ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a unit sphere, which is sufficient for most applications. When an ellipsoid is input, the resulting distance is given in terms of the distance units used in the ellipsoid vector.
dist $=$ distance(pt1,pt2, units) specifies the standard angle unit string. The default value is 'degrees '. These units are also the distance units of the result (e.g., degrees of arc length) unless a ellipsoid vector is specified.
dist $=$ distance (track, pt1, ...) specifies whether great circle distances or rhumb line distances are desired. Great circle distances, the default, are indicated with the standard track string 'gc'. Rhumb line distances are indicated with the standard track string 'rh'.

## Examples

Imagine a trip from Norfolk, Virginia $\left(37^{\circ} \mathrm{N}, 76^{\circ} \mathrm{W}\right)$, to Cape St. Vincent, Portugal ( $37^{\circ} \mathrm{N}, 9^{\circ} \mathrm{W}$ ), just outside the Straits of Gibraltar. The distance between these two points depends upon the track string selected. Using the pt1, pt2 notation, the two cases result in

```
dist = distance('gc',[37,-76],[37, -9])
dist =
    52.3094
dist = distance('rh',[37,-76],[37,-9])
dist =
    53.5086
```

The difference between these two tracks is 1.992 degrees, or about 72 nautical miles. This represents about $2 \%$ of the total trip distance. The tradeoff is that at the cost of those 72 miles, the entire trip can be made on a course of $090^{\circ}$, due east, while in order to follow the great circle path, the course must be changed continuously.

When a great circle and rhumb line coincide, the distances are the same. Using two points on the same meridian, this time in the lat1,lon1,lat2,lon2 notation,

```
dist = distance(37,-76,67,-76) % great circle sense
dist =
    30.0000
dist = distance('rh',37,-76,67,-76)
dist =
    30.0000
```

The distances are the same, about 1800 nautical miles (there are about 60 nautical miles in a degree of arc length).

| See Also | azimuth | Azimuth between two points on the globe |
| :--- | :--- | :--- |
| elevation | Elevation between two points on the globe |  |
| distdim | Convert distance units |  |
| reckon | New point with an azimuth and distance |  |
| track | Track1 |  |
| track2 paths on the globe |  |  |
| trackg |  |  |

Purpose
Syntax

## Background

## Examples

Calculate distortion parameters for a map projection
areascale $=$ distortcalc(lat,long) computes the area distortion for the current map projection at the specified geographic location. An area scale of 1 indicates no scale distortion. Latitude and longitude can be scalars, vectors, or matrices in the angle units of the defined map projection.
areascale = distortcalc(mstruct,lat,long) uses the projection defined in the map structure mstruct.
[areascale,angdef,maxscale,minscale,merscale,parscale] = distortcalc (...) computes the area scale, maximum angular deformation of right angles (in the angle units of the defined projection), the particular maximum and minimum scale distortions in any direction, and the particular scale along the meridian and parallel. You can also call distortcalc with fewer output arguments, in the order shown.

Map projections inevitably introduce distortions in the shapes and sizes of objects as they are transformed from three-dimensional spherical coordinates to two-dimensional Cartesian coordinates. The amount and type of distortion vary between projections, over the projection, and with the selection of projection parameters such as standard parallels. This function allows a quantitative evaluation of distortion parameters.

At the equator, the Mercator projection is free of both area and angular distortion:

```
axesm mercator
[areascale,angdef] = distortcalc(0,0)
areascale =
    1.0000
angdef =
    8.5377e-007
```

At 60 degrees north, objects are shown at $400 \%$ of their true area. The projection is conformal, so angular distortion is still zero.

```
[areascale,angdef] = distortcalc(60,0)
areascale =
    4.0000
angdef =
```


## distortcalc

## Remarks

See Also
mdistort Contours of constant distortion on a map
tissot Graphic depiction of distortion characteristics

## Purpose

Syntax

Remarks

Convert distances between different units
distout $=$ distdim(distin, from, to) returns the value of the input distance distin, which is in units specified by the valid distance units string from, in the desired units given by the valid distance units string to. Valid distance units strings are

```
'kilometers' or 'km' for kilometers
'meters' or 'm' for meters
'nauticalmiles' or 'nm' for nautical miles
'statutemiles' or 'sm' for statute miles
'feet' or 'ft' for feet
'degrees' or 'deg' for degrees (arc length)
'radians' or 'rad' for radians (arc length)
```

distout = distdim(distin, from, to, radius) specifies the radius of a sphere to use when one of from or to is a unit string associated with arc length (radians or degrees). A degree of arc length covers more kilometers, for example, on Jupiter than it would on the Earth. You can enter the radius as a number (the radius of the sphere in the non-arc-length units), as a call to the almanac function (e.g., almanac('jupiter', 'radius', 'units')), again in the appropriate units, or as a string planet name (e.g., 'mars'), and the function makes the appropriate call to the almanac function. The radius of the Earth is the default.

Distance is expressed in one of two general forms: as a linear measure in some unit (kilometers, miles, etc.) or as angular arc length (degrees or radians). While the use of linear units is generally understood, angular arc length is not necessarily as clear. The conversion from angular units to linear units for the arc along any circle is the angle in radians multiplied by the radius of the circle. On the sphere, this means that radians of latitude are directly translatable to kilometers, say, by multiplying by the radius of the Earth in kilometers (about 6371 km ). However, the linear distance associated with radians of longitude changes with latitude; the radius in question is then not the radius of the Earth, but the (chord) radius of the small circle defining that parallel. In the Mapping Toolbox, the angle in radians or degrees associated with any distance is the arc length of a great circle passing through the points of interest. Therefore, the radius in question always refers to the radius of the relevant sphere, consistent with the distance function.

## Examples

Convert 100 kilometers to nautical miles:

```
distkm = 100
distkm =
    1 0 0
distnm = distdim(distkm,'kilometers','nauticalmiles')
distnm =
    53.9957
```

A degree of arc length is about 60 nautical miles:

```
distnm = distdim(1,'deg','nm')
distnm =
    60.0405
```

This is not accidental. It is the original definition of the nautical mile.
Naturally, this assumption does not hold on other planets:

```
distnm = distdim(1,'deg','nm','mars')
distnm =
    31.9474
```

See Also

| almanac | Planetary data |
| :--- | :--- |
| angledim | Convert angle units |
| deg2km | Direct distance conversion functions |
| sm2nm |  |
| nm2rad |  |
| dist2str | Convert distances to display strings |
| distance | Distance between points |
| timedim | Convert time units |

Purpose

| Syntax | anglout = dms2deg (anglin) converts angles input in <br> degrees-minutes-seconds $(d m s)$ format to the equivalent measure in decimal <br> degrees. |
| :--- | :--- |
| anglout = dms2rad (anglin) converts angles input in |  |
| degrees-minutes-seconds $(d m s)$ format to the equivalent measure in radians. |  |

## Example

dms2deg(430.00)
ans =
4.50

See Also
angledim Convert angle units
deg2rad Other direct angle conversion functions
dms2rad
dms2dm Round dms format angles to dm format
dms2mat Convert from dms to separated matrix components
mat2dms Convert from separated matrices to dms format

## Purpose Convert the elements of dms format to distinct matrix elements

Syntax $[d, m, s]=$ dms2mat (anglin) takes angles input in dms inputs and splits their components into three outputs, one each for degrees, minutes, and seconds.
[d,m,s] = dms2mat(anglin, $n$ ) specifies the power of $10, n$, to which the resulting seconds output should be rounded (that is, if a result is 12.567 seconds, and $n=-2$, the resulting seconds output would be 12.57). The default value of $n$ is -5 .
matout $=$ dms2mat(anglin, $n$ ) returns a three-column matrix, matout, in which the columns represent degrees, minutes, and seconds, respectively. In this case, anglin must be a vector.

## Examples

```
anglin = [12547.34; 54323.17];
[d,m,s] = dms2mat(anglin)
d =
    125
    543
m =
    4 7
    23
s =
    34
    17
matout = dms2mat(anglin)
matout =
    125 47 34
    543 23 17
```

See Also mat2dms Convert from separated matrices to dms format

Purpose

## Syntax

Example

Round from dms format to dm format
anglout = dms2deg(anglin) rounds angles input in degrees-minutes-seconds $(d m s)$ format to the appropriate value in degrees-minutes $(d m)$ format. This special handling is needed because there are 60 , and not 100 , seconds in a minute.

Round $4^{\circ} 45^{\prime} 29^{\prime \prime}$ and $4^{\circ} 45^{\prime} 31^{\prime \prime}$ to dm format:

```
dms2dm(445.29)
ans =
            445.00
dms2dm(445.31)
ans =
    446.00
```


## See Also

angledim Convert angle units
deg2rad Other direct angle conversion functions
dms2rad
dms2dm Round dms format angles to dm format
dms2mat Convert from dms to separated matrix components
mat2dms Convert from separated matrices input to dms

Purpose
Compute dead reckoning positions for a track

Syntax

[drlat,drlong,drtime] = dreckon(waypoints,time,speed) returns the positions and times of required dead reckoning (DR) points for the input track that starts at the input time. The track should be in navigational track format (two columns, latitude then longitude, in order of traversal). These waypoints are the starting and ending points of each leg of the track. There is one fewer track leg than waypoints, as the last point included is the end of the track. In navigation, the first waypoint would be a navigational fix, taken at time. The speed input can be a scalar, in which case a constant speed is used throughout, or it can be a vector in which one speed is given for each track leg (that is, speed changes coincide with course changes).
[drlat,drlong,drtime] = dreckon(waypoints,time,speed,spdtimes) allows speed changes to occur independent of course changes. The elements of the speed vector must have a one-to-one correspondence with the elements of the spdtimes vector. This latter variable consists of the time interval after time at which each speed order ends. For example, if time is 6.75 , and the first element of spdtimes is 1.35 , then the first speed element is in effect from 6.75 to 8.1 hours. When this syntax is used, the last output DR is the earlier of the final spdtimes time or the final waypoints point.

This is a navigational function. It assumes that all latitudes and longitudes are in degrees, all distances are in nautical miles, all times are in hours, and all speeds are in knots, that is, nautical miles per hour.

Dead reckoning is an estimation of position at various times based on courses, speeds, and times elapsed from the last certain position, or fix. In navigational practice, a dead reckoning position, or DR, must be plotted at every course change, every speed change, and at every hour, on the hour. Navigators also DR at other times that are not relevant to this function.

Often in practice, when two events occur that require DRs within a very short time, only one DR is generated. This function mimics that practice by setting a tolerance of 3 minutes ( 0.05 hours). No two DRs will fall closer than that.

Refer to the "Navigation" section of the Mapping Toolbox User's Guide documentation for further information.

## Examples

## See Also <br> legs Find courses and distances between waypoints <br> navfix Mercator-based navigational fixing <br> track Connect navigational waypoints with track segments

Assume that a navigator gets a fix at noon, 1200 Z , which is $\left(10.3^{\circ} \mathrm{N}, 34.67^{\circ} \mathrm{W}\right)$. He's in a hurry to make a 1330 Z rendezvous with another ship at $\left(9.9^{\circ} \mathrm{N}\right.$, $34.5^{\circ} \mathrm{W}$ ), so he plans on a speed of 25 knots. After the rendezvous, both ships head for $\left(0^{\circ}, 37^{\circ} \mathrm{W}\right)$. The engineer wants to take an engine off line for maintenance at 1430 Z , so at that time, speed must be reduced to 15 knots. At 1530Z, the maintenance will be done. Determine the DR points up to the end of the maintenance.

```
waypoints = [10.1 -34.6; 9.9 -34.5; 0 -37]
waypoints =
    10.1000 -34.6000 % Fix at noon
        9.9000 -34.5000 % Rendezvous point
        0-37.0000 % Ultimate destination
speed = [25; 15];
spdtimes = [2.5; 3.5]; % Elapsed times after fix
noon = 12;
[drlat,drlong,drtime] = dreckon(waypoints,noon,speed,spdtimes);
[drlat,drlong,drtime]
ans =
\begin{tabular}{llll}
9.8999 & -34.4999 & 12.5354 & \% Course change at waypoint \\
9.7121 & -34.5478 & 13.0000 & \% On the hour \\
9.3080 & -34.6508 & 14.0000 & \% On the hour \\
9.1060 & -34.7022 & 14.5000 & \% Speed change to 15 kts \\
8.9847 & -34.7330 & 15.0000 & \% On the hour \\
8.8635 & -34.7639 & 15.5000 & \% Stop at final spdtime, last \\
& & & \% waypoint has not been reached
\end{tabular}
```


## Purpose Heading to correct for wind or current drift

Syntax heading = driftcorr(course, airspeed, windfrom, windspeed) computes the heading that corrects for drift due to wind (for aircraft) or current (for watercraft). course is the desired direction of movement (in degrees), airspeed is the speed of the vehicle relative to the moving air or water mass, windfrom is the direction facing into the wind or current (in degrees), and windspeed is the speed of the wind or current (in the same units as airspeed).
[heading, groundspeed, windcorrangle] = driftcorr(...) also returns the ground speed and wind correction angle. The wind correction angle is positive to the right, and negative to the left.

Example An aircraft cruising at a speed of 160 knots plans to fly to an airport due north of its current position. If the wind is blowing from 310 degrees at 45 knots, what heading should the aircraft fly to remain on course?

```
course=0; airspeed=160;windfrom=310; windspeed = 45;
[heading,groundspeed,windcorrangle] =
driftcorr(course,airspeed,windfrom,windspeed)
heading =
```

347.56
groundspeed =
127.32
windcorrangle =
$-12.442$
The required heading is 348 degrees, which amounts to a wind correction angle of 12 degrees to the left of course. The headwind component reduces the aircraft's ground speed to 127 knots.

See Also driftvel Wind or current from heading, course, and speeds

## Purpose

## Syntax

Example

See Also

Wind or current from heading, course, and speeds
[windfrom,windspeed] =
driftvel(course, groundspeed, heading, airspeed) computes the wind (for aircraft) or current (for watercraft) from course, heading, and speeds. course and groundspeed are the direction and speed of movement relative to the ground (in degrees), heading is the direction in which the vehicle is steered, and airspeed is the speed of the vehicle relative to the air mass or water. The output windfrom is the direction facing into the wind or current (in degrees), and windspeed is the speed of the wind or current (in the same units as airspeed and groundspeed).

An aircraft is cruising at a true air speed of 160 knots and a heading of 10 degrees. From the Global Positioning System (GPS) receiver, the pilot determines that the aircraft is progressing over the ground at 155 knots in a northerly direction. What is the wind aloft?

```
course = 0; groundspeed = 155; heading = 10; airspeed = 160;
[windfrom,windspeed] =
driftvel(course,groundspeed,heading,airspeed)
windfrom =
```

84.717
windspeed =
27.902

The wind is blowing from the right, 085 degrees at 28 knots.
driftcorr Heading to correct for wind or current drift

## Purpose

Read U. S. Department of Defense Digital Terrain Elevation Data (DTED) data
Syntax

## Background

[datagrid, refvec] = dted returns all of the elevation data in a DTED file as a regular data grid with elevations in meters. The file is selected interactively. This function reads the DTED elevation files, which generally have filenames ending in . dtN , where N is $0,1,2,3, \ldots$.
[datagrid,refvec] = dted(filename) returns all the elevation data in the specified DTED file. The file must be found on the MATLAB path. If not found, you can select the file interactively.
[datagrid,refvec] = dted(filename,scalefactor) returns data from the specified DTED file, downsampled by the scalefactor. If omitted, a scalefactor of 1 is assumed.
[datagrid,refvec] = dted(filename,scalefactor,latlim,lonlim) reads the data for the part of the DTED file within the latitude and longitude limits. The limits must be two-element vectors in units of degrees.
[datagrid,refvec] = dted(dirname,scalefactor,latlim,lonlim) reads and concatenates data from multiple files within a DTED CD-ROM or directory structure. The dirname input is a string with the name of a directory containing the DTED directory. Within the DTED directory are subdirectories for each degree of longitude, each of which contains files for each degree of latitude. For DTED CD-ROMs, dirname is the device name of the CD-ROM drive.
[datagrid,refvec, UHL, DSI, ACC] = dted(...) also returns the DTED User Header Label (UHL), Data Set Identification (DSI) and Accuracy (ACC) metadata records as structures. Documentation describing the meaning of these records is available online at http://www.nima.mil/publications/specs/printed/DTED/dted1-2.doc.

The U. S. Department of Defense, through the National Imagery and Mapping Agency, produces several kinds of digital cartographic data. One is digital elevation data, in a series called DTED, for Defense Digital Terrain Elevation Data. The data is available as 1-by-1 degree quadrangles at horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest resolution data is available to the public. Higher resolution data is restricted to the U.S. Department of Defense and its contractors.

## Examples

## Limitations

## Remarks

See Also
usgsdem
gtopo30
tbase TerrainBase Global 5-Min digital terrain data
etopo5 ETOPO5 Global 5-Min digital terrain data

## Purpose DTED file names

| Syntax | fname = dteds(latlim, lonlim) returns 'Level 0' DTED file names (directory and name) required to cover the geographic region specified by latlim and lonlim. <br> fname = dteds(latlim,lonlim, level) controls the level for which the file names are generated. Valid inputs for the level of the DTED files include 0,1 , or 2 . |
| :---: | :---: |
| Background | The U. S. Department of Defense, through the National Imagery and Mapping Agency, produces several kinds of digital cartographic data. One is digital elevation data, in a series called DTED, for Defense Digital Terrain Elevation Data. The data is available as 1-by-1 degree quadrangles at horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest resolution data is available to the public. Higher resolution data is restricted to the U.S. Department of Defense and its contractors. |
|  | Determining the files needed to cover a particular region requires knowledge of the DTED database naming conventions. This function constructs the file names for a given geographic region based on these conventions. |
| Examples | Which files are needed for Cape Cod? |
|  | ```latlim = [ 41.15 42.22]; lonlim = [-70.94 -69.68]; dteds(latlim,lonlim,1)``` |
|  | ans = |
|  | ' \DTED\W071\N41.dt1' |
|  | ' \DTED\W070\N41.dt1' |
|  | ' \DTED \W071 \N42.dt1' |
|  | ' \DTED\W070\N42.dt1' |

See Also dted Read DTED digital elevation map data

10-208

Purpose
Syntax

## Example

Remarks

See Also

Wrap longitudes to values east of a meridian
ang = eastof(angin,meridian) transforms input angles into equivalent angles east of the specified meridian.
ang = eastof(angin,meridian,units) uses the units defined by the input string units. If omitted, default units of 'degrees ' are assumed.
eastof(1,360)
ans $=$
361

This function can be used to prepare vector data for use with regular data grids. Regular data grids use geographic locations that are strictly east of the left edge of the map.
westof Wrap longitudes to values west of a meridian
zero22pi Truncate angles into the 0 deg to 360 deg range
npi2pi Truncate angles into the -180 deg to 180 deg range
smoothlong Remove discontinuities for longitude data
angledim Convert angles from one unit system to another
Purpose Convert from eccentricity to flattening representation of the ellipsoid

Syntax | flattening $=$ ecc2flat (eccentricity) returns the equivalent flattening for |
| :--- |
| the input eccentricities. If the input, eccentricity, is a two-column vector, |
| only the second column is used. This allows the standard two-element ellipsoid |
| vectors to be used as rows of the input, because the second element of these |
| vectors is the eccentricity. In all other cases, all columns of the input are used. | Description $\quad$ Flattening and eccentricity are two methods of defining an ellipsoid.

## Example

```
flattening = ecc2flat(almanac('earth','ellipsoid'))
flattening =
    0.0034
```


## See Also

almanac Planetary data
ecc2n Other ellipsoid functions
majaxis
flat2ecc Convert from flattening to eccentricity

Purpose
$\begin{array}{ll}\text { Syntax } & \begin{array}{l}n=\text { ecc2n(eccentricity) returns the equivalent } n \text { for the input eccentricities. } \\ \text { If the input, eccentricity, is a two-column vector, only the second column is } \\ \text { used. This allows the standard two-element ellipsoid vectors to be used as rows } \\ \text { of the input, because the second element of these vectors is the eccentricity. In } \\ \text { all other cases, all columns of the input are used. }\end{array} \\ \text { Description } & \begin{array}{l}\text { Eccentricity and the parameter } n \text { are two methods of defining an ellipsoid. The }\end{array}\end{array}$

Example

```
n = ecc2n(almanac('earth','ellipsoid'))
n =
    0.00167922039463
```


## See Also

almanac Planetary data
ecc2flat Other ellipsoid functions
majaxis
n2ecc Convert from $n$ to eccentricity

## egm96geoid

## Purpose Read 15-minute gridded geoid heights from the EGM96 geoid model of the Earth

## Syntax

## Background

## Examples

[datagrid, refvec] = egm96geoid(scalefactor) reads the data for the entire world, downsampling the data by the scale factor. The result is returned as a regular data grid and associated referencing vector. Heights are given in meters in the tide-free system.
[datagrid,refvec] = egm96geoid(scalefactor,latlim,lonlim) reads the data for the part of the world within the latitude and longitude limits. The limits must be two-element vectors in units of degrees. Longitude limits can be defined in the range [-180 180] or [0 360]. For example, lonlim = [170 190] returns data centered on the date line, while lonlim $=\left[\begin{array}{ll}-10 & 10\end{array}\right]$ returns data centered on the prime meridian.

Although the Earth is round, it is not exactly a sphere. The shape of the Earth is usually defined by the geoid, which is defined as a gravitational equipotential surface, but can be conceptualized as the shape the ocean surface would take in the absence of waves, weather, and land. For cartographic purposes it is generally sufficient to treat the Earth as a sphere or ellipsoid of revolution. For other applications, a more detailed model of the geoid such as EGM 96 may be required. EGM 96 is a spherical harmonic model of the geoid complete to degree and order 360 . This function reads from a file of gridded geoid heights derived from the EGM 96 harmonic coefficients.

Read the EGM 96 geoid grid for the world, taking every 10th point.

```
[datagrid,refvec] = egm96geoid(10);
```

Read a subset of the geoid grid at full resolution and interpolate to find the geoid height at a point between grid points.

```
[datagrid,refvec] = egm96geoid(1,[-10 -12],[129 132]);
z = ltln2val(datagrid,refvec,-11.1,130.22,'bicubic')
z =
    53.4809
```


## Remarks

See Also

This function reads the 15-minute EGM96 grid file ww15MGH. GRD. The grid is available from

```
<http://www.nima.mil/GandG/wgs-84/egm96.html>
```

as either a DOS self-extracting compressed file or a UNIX compressed file. Do not modify the file once it has been extracted.

Information on the data set can be found at
[http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html](http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html)
Maps will extend a half a cell outside the requested map limits.
There are 721 rows and 1441 columns of values in the grid at full resolution. The lower resolution atlas data in GEOID. MAT is derived from the EGM 96 grid.
ltln2val Returns map code value associated with positions

## elevation

## Purpose Calculate elevation angle between points on an ellipsoid

Syntax elevang = elevation(lat1,lon1, alt1, lat2, lon2, alt2) computes the elevation angle of point 2 as viewed from point 1 . The elevation angle is the angle of the line of sight above the local horizontal at point 1. Points are specified as latitude, longitude, and altitude above the surface. Angles are in units of degrees, altitudes are in meters. The figure of the Earth is assumed to be the default ellipsoid. Inputs can be vectors of points. You can compute elevations from a point to a line by providing a scalar point 1 and vector point 2.
[elevang,slantrange] = elevation(...) also returns the slant range between the points in units of meters.
[elevang,slantrange] =
elevation(lat1,lon1, alt1, lat2,lon2, alt2, angleunits) uses the inputs angleunits to define the angle units of the inputs and outputs. If omitted, 'degrees' is assumed.
[elevang,slantrange] =
elevation(lat1,lon1,alt1,lat2,lon2, alt2, angleunits,zunits) uses the inputs zunits to define the units of the altitude inputs and slant range outputs. If omitted, 'meters ' is assumed. All distance units recognized by distdim are valid inputs.
[elevang,slantrange] = elevation(lat1,lon1, alt1, lat2, lon2, alt2, angleunits, ellipsoid) computes the elevation and slant range of the ellipsoid defined by the input ellipsoid. The ellipsoid vector is of the form [semimajor axes, eccentricity]. If omitted, the default ellipsoid for the Earth is assumed. The altitudes are input and the slant range is returned in the units of ellipsoid(1).

## Example What is the elevation angle of a point 90 degrees distant when both the

 observer and target are 1000 km altitude above the Earth?```
lat1 = 0; lon1 = 0; alt1 = 1000*1000;
lat2 = 0; lon2 = 90;alt2 = 1000*1000;
elevang = elevation(lat1,lon1,alt1,lat2,lon2,alt2)
elevang =
```

    \(-45\)
    Visually check the result using the los2 line of sight function. Construct a data grid of zeros to represent the Earth's surface. The los2 function with no output arguments creates a figure displaying the geometry.

```
map = zeros(180,360); refvec = [1 90 -180];
los2(map,refvec,lat1,lon1,lat2,lon2,alt1,alt1);
```



## See Also

azimuth
Calculate azimuth between points on an ellipsoid

## ellipse 1

## Purpose

Syntax

Geographic ellipse defined by its center, semimajor axes, eccentricity, and azimuth
[lat,lon] = ellipse1(lat0,lon0,ellipse) computes ellipses with a center at the point lato, lono. The ellipse is defined by the third input, which is of the form [semimajor-axis, eccentricity]. The lat0, lon0 inputs can be scalar or column vectors. The eccentricity input can be a two-element row vector or a two-column matrix. The ellipse input must have the same number of rows as the input lat0 and lono. The input semimajor axis is in degrees of arc length on a sphere. All ellipses are oriented so that their semimajor axis lies due north.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset) computes the ellipses where the semimajor axis is rotated from due north by an azimuth offset. The offset angle is measured clockwise from due north. If offset=[ ], then no offset is assumed.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az) uses the input az to define the ellipse arcs computed. The arc azimuths are measured clockwise from due north. If az is a column vector, then the arc length is computed from due north. If az is a two-column matrix, then the ellipse arcs are computed starting at the azimuth in the first column and ending at the azimuth in the second column. If az=[], then a complete ellipse is computed.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid) computes the ellipse on the ellipsoid defined by the input ellipsoid vector, of the form [semimajor-axis, eccentricity]. If omitted, the unit sphere, ellipsoid=[ $\left.\begin{array}{ll}1 & 0\end{array}\right]$, is assumed. When a ellipsoid is supplied, the input semimajor axis must be in the same units as the ellipsoid semimajor axes. In this calling form, the units of the ellipse semimajor axis are not assumed to be in degrees.

```
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,units),
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,units), and
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units)
are all valid calling forms, which use the input units to define the angle units
of the inputs and outputs. If omitted, 'degrees' is assumed.
[lat,lon] =
ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units,npts) uses the
```

input npts to determine the number of points per ellipse computed. The input npts is a scalar, and if omitted, npts=100.
[lat,lon] = ellipse1(track,...) uses the track string to define either a great circle or rhumb line distance from the ellipse center. If track = 'gc ', then great circle distances are computed. If track = 'rh', then rhumb line distances are computed. If omitted, ' gc ' is assumed.
mat = ellipse1(...) returns a single output argument where mat=[lat lon]. This is useful if only one ellipse is computed.

## Example

Create and plot the small ellipse centered at $\left(0^{\circ}, 0^{\circ}\right)$, with a semimajor axis of $10^{\circ}$ and a semiminor axis of $5^{\circ}$.

```
axesm mercator
ecc = axes2ecc(10,5);
plotm(0,0,'r+')
[elat,elon] = ellipse1(0,0,[10 ecc],45);
plotm(elat,elon)
```

If the desired radius is known in some nonangular distance unit, use the radius returned by the almanac function as the ellipsoid input to set the range units (use an empty azimuth entry to specify a full ellipse).

```
earthradius = almanac('earth','radius','nm');
[elat,elon] = ellipse1(0,0,[550 ecc],45,[],earthradius);
plotm(elat,elon,'m--')
```

For just an arc of the ellipse, enter an azimuth range:

```
[elat,elon] = ellipse1(0,0,[5 ecc],45,[-30 70]);
plotm(elat,elon,'c-')
```


## ellipse 1



Remarks
This function extends the concept of the small circle, which is the locus of all points at an equal surface distance, to a "small ellipse." You construct the small ellipse by computing the locus of points for which the distance from the center point varies as the parametric description of the ellipse.

You can define multiple circles from a single starting point by providing scalar lat0, lono inputs and a two-column matrix for the ellipse definitions.

See Also
scircle1 Small circle defined by its center, range, and azimuth track1
c

Track lines defined by starting point, azimuth, and range
Compute eccentricity given semimajor, semiminor axes

## Purpose

Syntax

Description

## Examples

For this imaginary map, fill in the upper right region with 7's and the lower left region with 3's:


See Also getseeds Interactively create seed matrix
imbedm Encode data points into a regular data grid

## Purpose Show map precision

Syntax

Examples
epsm is the limit of map angular precision. It is useful in avoiding trigonometric singularities, among other things.
epsm(units) returns the same angle in units corresponding to any valid angle units string. The default is 'degrees'.

The value of epsm is $10^{-6}$ degrees. To put this in perspective, in terms of an angular arc length, the distance is

```
epsmkm = deg2km(epsm)
epsmkm =
    1.1119e-04 % kilometers
```

This is about 11 centimeters, a very small distance on a global scale.
See Also roundn Significant figures

## Purpose

Syntax

Description

Examples

Convert from equal area to Greenwich coordinates
[lat,lon] = eqa2grn(x,y) converts the equal-area coordinate points $x$ and $y$ to the Greenwich coordinates lat and lon.
[lat,lon] = eqa2grn(x,y,origin) specifies the location in the Greenwich system of the $x-y$ origin $(0,0)$. The two-element vector origin must be of the form [latitude longitude]. The default places the origin at the Greenwich coordinates $\left(0^{\circ}, 0^{\circ}\right)$.
[lat,lon] = eqa2grn(x,y,origin,ellipsoid) specifies the two-element ellipsoid vector describing the ellipsoidal model of the figure of the Earth. The ellipsoid is spherical by default.
[lat,lon] = eqa2grn(x,y,origin, units) specifies the units for the outputs, where units is any valid angle units string. The default value is 'degrees'.
mat $=$ eqa2grn(x,y,origin...) packs the outputs into a single variable.
This function converts data from equal-area $x-y$ coordinates to Greenwich (latitude-longitude) coordinates. The opposite conversion can be performed with grn2eqa.

```
[lat,lon] = eqa2grn(.5,.5)
lat =
    30.0000
lon =
    28.6479
```

See Also
grn2eqa Convert Greenwich coordinates to equal-area coordinates
hista Equal area histogram

Purpose
Read data from the ETOPO5 global 5-minute Digital Terrain Model
Syntax

Background

Remarks
[datagrid, refvec] = etopo5(scalefactor) reads the data for the entire world, downsampling the data by the scale factor. The result is returned as a regular data grid and an associated referencing vector.
[datagrid,refvec] = etopo5(scalefactor,latlim,lonlim) reads the data for the part of the world within the latitude and longitude limits. The limits must be two-element vectors in units of degrees.

ETOPO5 is a global database of elevations and depths on a regular 5-minute grid. It is a compilation of data from a variety of different sources, including the U.S. Naval Oceanographic Office, U.S. Defense Mapping Agency, U.S. Navy Fleet Numerical Oceanographic Center, Bureau of Mineral Resources, Australia, and the Department of Industrial and Scientific Research, New Zealand. These databases were assembled by Margo Edwards at Washington University, St. Louis, Missouri.

Data values are in whole meters, representing the elevation of the center of each cell. Some parts of the world are represented by data with a horizontal resolution as coarse as 1 degree by 1 degree. The vertical resolution varies from 1 meter for Australia and New Zealand to as much as 150 meters for parts of Africa, Asia, and South America. Oceanographic data in areas shallower than 200 meters contains little detail, because of how depth contours were converted to gridded depths.

ETOPO5 is being superseded by the development of a new digital terrain model called TerrainBase. See the tbase external interface function for more information.

The etopo5 function reads the version of the database contained in two text files, etopo5.southern.bat and etopo5.northern.bat. These files are available over the Internet from The MathWorks:
ftp://ftp.mathworks.com
An overview of the data can be found at the ETOPO5 information page at the U.S. Geological Survey:
http://edcwww.cr.usgs.gov/glis/hyper/guide/etopo5
and from the U.S. National Geophysical Data Center Web page:
http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
Examples Read every tenth point in the data set:

```
scalefactor = 10;
[datagrid,refvec] = etopo5(scalefactor);
whos
            Name Size Bytes Class
            datagrid 216x432 746496 double array
            refvec 1x3 24 double array
            scalefactor 1x1 8 double array
limitm(datagrid,refvec)
ans =
            -90 90 0 360
```

Read in data for Korea and Japan at the full resolution:

```
scalefactor = 1; latlim = [30 45]; lonlim = [115 145];
[datagrid,refvec] = etopo5(scalefactor,latlim,lonlim);
whos datagrid
\begin{tabular}{lcl} 
Name & Size & Bytes Class \\
datagrid & \(180 \times 360\) & 518400 double array
\end{tabular}
```

| See Also | gtopo30 | Read elevation data from GTOPO30 |
| :--- | :--- | :--- |
| tbase | Read data from the TerrainBase model |  |
|  | usgsdem | Read USGS digital elevation maps |

References
More information on ETOPO5 can be found in reference [4] located in the Bibliography at the end of this appendix.

## extractfield

## Purpose Extract the field values from a structure

Syntax $\quad a=$ extractfield(s, name) returns the field values specified by the field named name into the 1-by-n output array a. $n$ is the total number of elements in the field name of structure $s$, that is, $n=\operatorname{numel}([s(:) .($ name $)])$. name is a case-sensitive string defining the field name of the structure s. a is a cell array if any field values in the field name contain a string or if the field values are not uniform in type; otherwise a is the same type as the field values. The shape of the input field is not preserved in a.

## Examples

```
% Plot the X, Y coordinates of the road's shape
roads = shaperead('concord_roads.shp');
plot(extractfield(roads,'X'),extractfield(roads,'Y'));
% Extract the names of the roads
roads = shaperead('concord_roads.shp');
names = extractfield(roads,'STREETNAME');
% Extract a mix-type field into a cell array
S(1).Type = 0;
S(2).Type = logical(0);
mixedType = extractfield(S,'Type');
```



See Also struct, shaperead

## Purpose Extract vector data from geographic data structures

## Syntax

## Examples

[lat,lon] = extractm(gstruct,object) extracts vector data from those entries in the Mapping Toolbox geographic data structure that have tags beginning with the object string. The output vectors use NaNs to separate the entries in the map structure. Matches of the tag string must be vector data (lines and patches) to be included in the output.
[lat,lon] = extractm(gstruct,objects), where objects is a character array, allows more than one object to be the basis for the search.
[lat,lon] = extractm(gstruct,objects,'exact') requires an exact match to extract data.
[lat,lon,indx] = extractm(gstruct) extracts all vector data from the input map structure.
[lat,lon,indx] = extractm(...) also returns the vector indx identifying the entries in the structure that meet the selection criteria.
mat $=$ extractm (...) returns the vector data in a single, two-column matrix, in which the first column contains latitudes and the second column longitudes.

Extract the District of Columbia from the low-resolution U.S. vector data:

```
load usalo
extractm(state,'district of columb')
ans =
    38.9000 -77.0700
    38.9000 -77.0500
    38.9000 -77.0700
    38.8700 -77.0200
    38.8000 -77.0200
    38.7800 -77.0300
    38.9000 -76.9000
    39.0000 -77.0300
    38.9500 -77.1200
    38.9000 -77.0700
```

Extract the states that meet at the Four Corners and plot them:

```
states4 = strvcat('colo','new mex','ariz','utah');
```

```
[lat,long,indx] = extractm(state,states4);
axesm mercator
patchm(lat,long,'g')
```



## Remarks

See Also

A Mapping Toolbox geographic data structure is a MATLAB structure that can contain line, patch, text, regular data grid, geolocated data grid, and light objects.
extractfield, geoshow, mapshow, updategeostruct, mlayers, displaym

## fill 3 m

Purpose
Project 3-D patch objects onto the current map axes

Syntax

Examples
$h=$ fill3m(lat,lon, $z$, cdata) projects and displays any patch object with vertices defined by vectors lat and lon to the current map axes. The scalar z indicates the altitude plane at which the patch is displayed. The input cdata defines the patch face color. The patch handle or handles, $h$, can be returned.
$h=$ fill3m(lat,lon, $z$, PropertyName,PropertyValue, ...) allows any property name/property value pair supported by patch to be assigned to the fill3m object.

```
lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
view(3)
fill3m(lat,lon,2,'b')
```



## See Also

fillm
patchesm
patchm

Project 2-D patch objects onto the current map axes
Project multiple patch objects more rapidly
Project and display patch objects on the current map axes

Purpose
Project 2-D patch objects onto the current map axes
Syntax

Examples

```
lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
fillm(lat,lon,'b')
```



See Also
fill3m
patchesm
patchm

Project 3-D patch objects onto the current map axes Project multiple patch objects more rapidly
Project and display patch objects on the current map axes

Purpose

## Syntax

## Examples

See Also

Filter geographic data sets
[newlat, newlong] = filterm(lat,long,map, refvec, allowed) filters geographic data based upon the corresponding entries of a regular data grid, map, with a three-element referencing vector refvec. The data locations to be filtered are input in the vectors lat and lon. For those locations corresponding to entries of map equal to one of the values contained in the vector allowed, an output location is returned in newlat and newlon. Those locations not corresponding to such entries of map are not returned in the outputs.

Filter a random set of 100 geographic points. Use the topo map for starters:

```
load topo
```

Then generate 100 random points:

```
lat = -90+180*rand(100,1);
long = -180+360*rand(100,1);
```

Make a land map, which is 1 where topo>0 elevation:

```
land = topo>0;
[newlat,newlong] = filterm(lat,long,land,topolegend,1);
size(newlat)
ans =
    15 1
```

15 of the 100 random points fall on land.
hista Spatial equal area histogram
histr Spatial equirectangular histogram

## findm

## Purpose Find latitude and longitude coordinates for nonzero map entries

## Syntax <br> [lat,lon] = findm(map,refvec) returns latitude and longitude vectors lat and lon, which provide the locations of all nonzero entries of the regular data grid map, with three-element referencing vector refvec. <br> [lat,lon, val] = findm(map, refvec) also returns the values val of the data grid corresponding to the lat and lon locations.

[lat,lon, val] = findm(latin,lonin,map) removes the regular matrix restriction. Two matrices, latin and lonin, the same size as map, must provide cell-by-cell latitude and longitude coordinates matched with the corresponding entries of map.
mat $=$ findm(...) returns a single output mat of the form [lat, lon].

Description

## Examples

This function works in two modes: with a regular matrix restriction and without.

The entered map can also be the result of a logical statement. Where is elevation greater than 5500 meters?

```
load topo
mat = findm((topo>5500),topolegend)
mat =
    34.5000 79.5000
    34.5000 80.5000
    30.5000 84.5000
    28.5000 86.5000
```

These points are in the Himalayas.

## See Also <br> find $\quad$ Find indices and values of nonzero elements (see the online MATLAB Function Reference documentation)

Purpose

Syntax

Background

Read the FIPS (Federal Information Processing Standard) name file used with the TIGER thinned boundary files
struc = fipsname opens a file selection window to pick the file, reads the FIPS codes, and returns them in a structure.
struc $=$ fipsname(filename) reads the specified file.
The TIGER thinned boundary files provided by the U.S. Census use FIPS codes to identify geographic entities. This function reads the FIPS files as provided with the TIGER files. These files generally have names of the format _name.dat.

Remarks

Example
The FIPS name files, along with the TIGER thinned boundary files, are available over the Internet at

```
```

ftp://ftp.census.gov/pub/tiger/boundary/

```
```

ftp://ftp.census.gov/pub/tiger/boundary/
struc = fipsname('st_name.dat')
struc = fipsname('st_name.dat')
struc =
struc =
1x57 struct array with fields:
1x57 struct array with fields:
name
name
id
id
s(1)
s(1)
ans =
ans =
name: 'Alabama'
name: 'Alabama'
id: 1

```
```

        id: 1
    ```
```

See Also tigermif Read TIGER MapInfo Interchange Format thinned boundary files
tigerp Read TIGER ArcInfo Format thinned boundary files

## flat2ecc

Purpose Convert from flattening to eccentricity representation of the ellipsoid

Syntax | eccentricity = flat2ecc (flattening) returns the equivalent eccentricity for |
| :--- |
| the input flattening. If the input, flattening, is a two-column vector, only |
| the second column is used. This allows two-element vectors to be used as rows |
| of the input, since the form [semimajor-axis, flattening] is a complete |
| representation of an ellipsoid (but is not the standard form for ellipsoid vectors |
| in the Mapping Toolbox). In all other cases, all columns of the input are used. |

Description Flattening and eccentricity are two methods of defining an ellipsoid.

## Example

```
e = flat2ecc(0.003353)
e =
    0.08182149712026
```

This eccentricity is the default value for the Earth.

## See Also

almanac Planetary data
ecc2flat Convert from eccentricity to flattening
ecc2n Other ellipsoid functions

10-234

## flatearthpoly

Purpose
Syntax

## Example

Insert points along the date line to the pole
[lat2,lon2] = flatearthpoly(lat,lon) inserts points in the input latitude and longitude vectors at +/- 180 longitude and to the poles. The resulting vectors look like the result of patchm on a cylindrical projection and do not encompass the poles. Inputs and outputs are in degrees.
[lat2,lon2] = flatearthpoly(lat,lon,origin) centers the polygon on the provided origin. The origin is a scalar longitude or a three-element vector containing latitude, longitude, and orientation in units of degrees.

Vector data for geographic objects that encompass a pole will inevitably encounter or cross the date line. While the Mapping Toolbox properly displays such polygons, they can cause problems for functions like the polygon intersection and Boolean operations that work with Cartesian coordinates. When these polygons are treated as Cartesian coordinates, the date line crossing results in a spurious line segment, and the polygon displayed as a patch does not have the interior filled correctly.

```
[lat,long]=extractm(worldlo('POpatch'),'Antarctica');
plot(long,lat)
```



The polygons can be reformatted more appropriately for Cartesian coordinates using the flatearthpoly function. The result resembles a map display on a

## flatearthpoly

cylindrical projection. The polygon meets the date line, drops down to the pole, sweeps across the longitudes at the pole, and follows the date line up to the other side of the date line crossing.

```
[lat2,lon2]=flatearthpoly(lat,long);
plot(lon2,lat2)
ylim([-100 -60])
```



See Also
polybool Polygon Boolean operations
polyxpoly Polygon intersections
mfwdtran Process the map forward transformations

Purpose
Syntax

## Remarks

## See Also

Toggle and control the display of the map frame
framem toggles the visibility of the map frame by setting the map axes property Frame to 'on' or 'off'. The default setting for map axes is 'off'.
framem('on') sets the map axes property Frame to 'on'.
framem('off') sets the map axes property Frame to 'off'.
When called with the string argument 'off', the map axes property Frame is set to 'off'.
framem('reset') resets the entire frame using the current properties. This is essentially a refresh option.
framem(linespec) sets the map axes FEdgeColor property to the color component of any linespec string recognized by the MATLAB line function.
framem(PropertyName,PropertyValue,...) sets the appropriate map axes properties to the desired values. These property names and values are described on the axesm reference page.

You can also create or alter map frame properties using the axesm or setm functions.

| axesm | Define map axes and set map properties |
| :--- | :--- |
| setm | Set map properties |

Set map properties

## Purpose Convert great circles to small circle notation

Syntax

Description
[centerlat, centerlong, radius] = gc2sc(lat,long, az) returns the small circle notation for great circles entered in great circle notation.
[centerlat, centerlong, radius] = gc2sc(lat,long, az, units) specifies the standard angle unit string. The default value is 'degrees'.

Great circles are a subcategory of small circles, having a radius of $90^{\circ}$. Because of the computational circumstances under which these objects often arise, however, two different notations are convenient.

Great circle notation consists of a point on the great circle and the azimuth at that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular arc length.

Given a great circle passing through $\left(25^{\circ} \mathrm{S}, 70^{\circ} \mathrm{W}\right)$ on an azimuth of $45^{\circ}$, how can it be represented in small circle notation?

```
[newlat,newlong,range] = gc2sc(-25,-70,45)
newlat =
    -39.8557
newlong =
    42.9098
range =
    90
```

A great circle always bisects the sphere. As a demonstration of this statement, consider the equator, which passes through any point with a latitude of $0^{\circ}$ and proceeds on an azimuth of $90^{\circ}$ or $270^{\circ}$. In small circle notation, this is

```
[newlat,newlong,range] = gc2sc(0,-70,270)
newlat =
    90
newlong =
    -145.9638
range =
    90
```

Not surprisingly, the small circle is centered on the North Pole. As always, at the poles, the longitude is arbitrary, because of the convergence of the meridians.

## Remarks

Note that the center coordinates returned by this function always lead to one of two possibilities. Since the great circle bisects the sphere, the antipode of the returned point is also a center with a radius of $90^{\circ}$. In the above example, the South Pole would also be a suitable center for the equator in small circle notation.

See Also | antipode | Find antipodal points |
| :--- | :--- | :--- |
| distdim | Distance unit conversions |
| gcxgc | Intersection functions |
| gcxsc |  |
| rhxrh |  |
| crossfix |  |

## Purpose Get current map structure

Syntax

Examples
mapstruct = gcm returns the map axes map structure, which contains the settings for all the current map axes properties.
mapstruct $=\mathrm{gcm}(\mathrm{hndl})$ specifies the map axes by axes handle.
Establish a map axes with default values, then look at the structure:

```
axesm mercator
mapstruct = gcm
mapstruct =
        mapprojection: 'mercator'
            zone: []
        angleunits: 'degrees'
            aspect: 'normal'
        fixedorient: []
            geoid: [1 0]
        maplatlimit: [-86 86]
        maplonlimit: [-180 180]
    mapparallels: 0
        nparallels: 1
                origin: [0 0 0]
        falsenorthing: 0
            falseeasting: 0
            scalefactor: 1
            trimlat: [-86 86]
            trimlon: [-180 180]
                    frame: 'off'
                    ffill: 100
        fedgecolor: [0 0 0]
        ffacecolor: 'none'
            flatlimit: [-86 86]
            flinewidth: 2
            flonlimit: [-180 180]
                    grid: 'off'
            galtitude: Inf
                gcolor: [0 0 0]
            glinestyle: ':'
        glinewidth: 0.50000000000000
```

```
mlineexception: []
            mlinefill: 100
        mlinelimit: []
    mlinelocation: 30
    mlinevisible: 'on'
plineexception: []
            plinefill: 100
        plinelimit: []
    plinelocation: 15
    plinevisible: 'on'
            fontangle: 'normal'
            fontcolor: [0 0 0]
                fontname: 'helvetica'
                fontsize: 9
            fontunits: 'points'
        fontweight: 'normal'
        labelformat: 'compass'
        labelunits: 'degrees'
    labelrotation: 'off'
    meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 86
        mlabelround: 0
    parallellabel: 'off'
plabellocation: 15
plabelmeridian: -180
    plabelround: 0
```


## Remarks

See Also

| axesm | Create map axes object |
| :--- | :--- |
| getm | Query map axes map structure |
| setm | Modify map axes map structure |

You create map structure properties with the axesm function. You can query them with the getm function and modify them with the setm function.

Modify map axes map structure

## Purpose Get current mouse point from the map

| Syntax | $\mathrm{pt}=$ gcpmap returns the current point of the current map axes in the form <br> [latitude longitude $z$-altitude]. |
| :--- | :--- |
| pt = gcpmap(hndl) specifies the map axes in question by its handle. |  |

## gcwaypts

## Purpose

Find equally spaced waypoints along a great circle

## Background

## Examples

[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2) returns the coordinates of equally spaced points along a great circle path connecting two endpoints, (lat1,lon1) and (lat2, lon2).
[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2, nlegs) specifies the number of equal-length track legs to calculate. nlegs+1 output points are returned, since a final endpoint is required. The default number of legs is 10 .
pts = gcwaypts(lat1,lon1,lat2,lon2...) packs the outputs, which are otherwise two-column vectors, into a two-column matrix of the form [latitude longitude]. This format for successive waypoints along a navigational track is called navigational track format in this guide. See the navigational track format reference page in this section for more information.

This is a navigational function. It assumes that all latitudes and longitudes are in degrees.

In navigational practice, great circle paths are often approximated by rhumb line segments. This is done to come reasonably close to the shortest distance between points without requiring course changes too frequently. The gcwaypts function provides an easy means of finding waypoints along a great circle path that can serve as endpoints for rhumb line segments (track legs).

Imagine you own a sailing yacht and are planning a voyage from North Point, Barbados ( $13.33^{\circ} \mathrm{N}, 59.62^{\circ} \mathrm{W}$ ), to Brest, France ( $48.33^{\circ} \mathrm{N}, 4.83^{\circ} \mathrm{W}$ ). To divide the track into three equal-length segments,

```
[l,g] = gcwaypts(13.33,-59.62,48.33,-4.83,3)
l =
    13.3300
    27.3316
    39.6250
    48.3300
g =
    -59.6200
    -45.8919
    -28.4459
```



See Also
dreckon
legs
navfix
track

Dead reckon points for a track
Courses and distances between waypoints

Mercator-based navigational fixing
track
Connect waypoints

Purpose
Provide intersection coordinates for pairs of great circles
Syntax [newlat, newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2) returns the two intersection points of pairs of great circles input in great circle notation. When the two great circles are identical (which is not, in general, apparent by inspection), two NaNs are returned instead and a warning is displayed. For multiple pairings, the inputs must be column vectors.
[newlat, newlong] =
gcxgc (lat1, long1, az1, lat2, long2, az2, units) specifies the standard angle unit string. The default value is 'degrees'.

For any pair of great circles, there are two possible intersection conditions: the circles are identical or they intersect exactly twice on the sphere.

Great circle notation consists of a point on the great circle and the azimuth at that point along which the great circle proceeds.

Given a great circle passing through $\left(10^{\circ} \mathrm{N}, 13^{\circ} \mathrm{E}\right)$ and proceeding on an azimuth of $10^{\circ}$, where does it intersect with a great circle passing through $\left(0^{\circ}, 20^{\circ} \mathrm{E}\right.$ ), on an azimuth of $-23^{\circ}$ (that is, $337^{\circ}$ )?

```
[newlat,newlong] = gcxgc(10,13,10,0,20,-23)
newlat =
    14.3105 -14.3105
newlong =
    13.7838 -166.2162
```

Note that the two intersection points are always antipodes of each other. As a simple example, consider the intersection points of two meridians, which are just great circles with azimuths of $0^{\circ}$ or $180^{\circ}$ :

```
[newlat,newlong] = gcxgc(10,13,0,0,20,180)
newlat =
    -90 90
newlong =
    -174.4504 12.5094
```

The two meridians intersect at the North and South Poles, which is exactly correct.
See Alsoantipode Find antipodal pointsgc2sc Convert great circle to small circle notation
scxsc Other intersection functionsgexscrhxrhcrossfix
polyxpoly

Purpose
Provide intersection coordinates for great circles paired with small circles

## Syntax

Description

Examples
[newlat, newlong] = gcxsc(gclat,gclong,gcaz,sclat,sclong,scrange) returns the points of intersection of a great circle in great circle notation followed by a small circle in small circle notation. For multiple pairings, the inputs must be column vectors. The results are two-column matrices with the coordinates of the intersection points. If the circles do not intersect, or are identical, two NaNs are returned and a warning is displayed. If the two circles are tangent, the single intersection point is repeated twice.
[newlat, newlong] = gcxsc(..., units) specifies the standard angle unit string. The default value is 'degrees'.

For a pairing of a great circle with a small circle, there are four possible intersection conditions: the circles are identical (possible because great circles are a subset of small circles), they do not intersect, they are tangent to each other (the small circle interior to the great circle) and hence they intersect once, or they intersect twice.

Great circle notation consists of a point on the great circle and the azimuth at that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular arc length.

Given a great circle passing through ( $43^{\circ} \mathrm{N}, 0^{\circ}$ ) and proceeding on an azimuth of $10^{\circ}$, where does it intersect with a small circle centered at $\left(47^{\circ} \mathrm{N}, 3^{\circ} \mathrm{E}\right)$ with an arc length radius of $12^{\circ}$ ?

```
[newlat,newlong] = gcxsc(43,0,10,47,3,12)
newlat =
    35.5068 58.9143
newlong =
    -1.6159 5.4039
```

See Also ..... gc2scgcxgc Other intersection functionsscxscrhxrh
crossfix
polyxpoly

Purpose

## Syntax

## Remarks

Example

Convert a geolocated data array to a regular data grid
[Z, refvec] = geoloc2grid(lat, lon, A, cellsize) converts the geolocated data array $A$, given geolocation points in lat and lon, to produce a regular data grid, $Z$, and the corresponding referencing vector refvec. cellsize is a scalar that specifies the width and height of data cells in the regular data grid, using the same angular units as lat and lon. Data cells in $Z$ falling outside the area covered by A are set to NaN.
geoloc2grid provides an easy-to-use alternative to gridding geolocated data arrays with imbedm. There is no need to preallocate the output map; there are no data gaps in the output (even if cellsize is chosen to be very small), and the output map is smoother.

```
% Load the geolocated data array 'map1'
% and grid it to 1/2-degree cells.
load mapmtx
cellsize = 0.5;
[Z, refvec] = geoloc2grid(lt1, lg1, map1, cellsize);
% Create a figure
f = figure;
[cmap,clim] = demcmap(map1);
set(f,'Colormap',cmap,'Color','w')
% Define map limits
latlim = [-35 70];
lonlim = [0 100];
% Display 'map1' as a geolocated data array in subplot 1
subplot(1,2,1)
ax =
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
    'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(lt1, lg1, map1, 'DisplayType', 'texturemap');
% Display 'Z' as a regular data grid in subplot 2
subplot(1,2,2)
```

```
ax =
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
    'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off'
geoshow(Z, refvec, 'DisplayType', 'texturemap');
```


## Purpose

## Syntax

Display map latitude and longitude data
geoshow(s) displays the graphic features stored in the geographic data structure s. If Lat and Lon fields are present, then their coordinate values are projected to map coordinates if the axes has a projection. Otherwise, Lon is plotted as latitude and Lat as longitude. If s includes X and Y fields, then they are used directly to plot features in map coordinates.

```
geoshow(lat,lon) or
```

geoshow(lat,lon, ..., 'DisplayType', displaytype, ...) displays the equal length coordinate vectors lat and lon. lat and lon can contain embedded NaNs, delimiting coordinates of lines or polygons. In this case, displaytype can be 'point', 'line', or 'polygon' and defaults to 'line'. geoshow(lat,lon, Z, ..., 'DisplayType', displaytype, ...), where lat and lon are M -by- N coordinate arrays, Z is an M -by- N array of class double, and displaytype is 'texturemap' or 'contour', displays a geolocated data grid. Z can contain NaN values.

```
geoshow(lat,lon,I)
```

geoshow(lat,lon, BW)
geoshow(lat,lon, X, cmap)
geoshow(lat,lon, RGB)
where I is an intensity image, BW is a logical image, X is an indexed image with colormap cmap, or RGB is a true-color image, displays a geolocated image. The image is rendered as a texture map on a zero-elevation surface. If specified, 'DisplayType ' must be set to 'image '. Examples of geolocated images include a color composite from a satellite swath or an image originally referenced to a different coordinate system.
geoshow(Z,R, ..., 'DisplayType', displaytype,...), where $Z$ is of class double and DisplayType is 'contour' or 'texturemap', displays a regular $\mathrm{M}-\mathrm{by}-\mathrm{N}$ data grid. R is a referencing matrix or referencing vector.

```
geoshow(I,R)
```

geoshow(BW,R)
geoshow(RGB,R)
geoshow(A, CMAP, R)
displays an image georeferenced to latitude/longitude. It is rendered as an image object if the display geometry permits; otherwise, the image is rendered

## geoshow

as a texture map on a zero-elevation surface. If specified, 'DisplayType ' must be set to 'image'.
geoshow(filename) displays data from filename according to the type of file format. The DisplayType parameter is automatically set, according to the following table:

| Format | DisplayType |
| :--- | :--- |
| Shape file | 'point ', 'line ', or 'polygon' |
| GeoTIFF | 'image ' |
| TIFF/JPEG/PNG with a <br> world file | 'image ' |
| ARC ASCII GRID | 'surface ' (can be overridden) |
| SDTS raster | 'surface ' (can be overridden) |

geoshow(ax, ...) sets the axes parent to ax. This is equivalent to geoshow(..., 'Parent', ax, ...).
$\mathrm{h}=$ geoshow (...) returns a handle to a MATLAB graphics object, an array of object handles, or in the case of vector data, a map graphics object.
geoshow(..., param1, val1, param2, val2, ...) specifies parameter/value pairs that modify the type of display or set MATLAB graphics properties.

Parameters Parameter names can be abbreviated and are case insensitive. Parameters include

- 'DisplayType': The DisplayType parameter specifies the type of graphic display for the data. The value must be consistent with the type of data being displayed, as shown in the following table:

| Data Type | Value(s) |
| :--- | :--- |
| Vector | 'point', 'line', or 'polygon' |
| Image | 'image' |
| Grid | 'texturemap' or 'contour' |

## Graphics Properties

In addition to specifying a parent axes, you can set the following properties for line, point, and polygon:

- DisplayType:

| DisplayType | Property Name |
| :--- | :--- |
| 'line' | 'Color', 'LineStyle', 'LineWidth', and 'Visible' |
| 'point' | 'Marker', 'Color', 'MarkerEdgeColor', <br>  <br> 'MarkerFaceColor', 'MarkerSize', and 'Visible' |
| 'polygon' | 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth', <br>  <br>  $\mathbf{l}$ |

Refer to the MATLAB Graphics documentation on line, patch, image, surface, and mesh for a complete description of these properties and their values.

- SymbolSpec:

The SymbolSpec parameter specifies the symbolization rules used for vector data through a structure returned by makesymbolspec. It is used only for vector data.
In cases where both SymbolSpec and one or more graphics properties are specified, the graphics properties override any settings in the symbol spec structure. See example 3 below.
To change the default symbolization rule for a property name/property value pair in the symbol spec, prefix the word 'Default' to the graphics property name (listed in the preceding table). See example 2 below.

## geoshow

Remarks

## Examples

You can use geoshow to render vector data in an axesm figure. However, you cannot subsequently change the map projection using setm.
geoshow can generally be substituted for displaym. However, there are limitations where display of specific objects is concerned. See the remarks under updategeostruct for further information.

## Example 1

Display world coastlines, without a projection.

```
load coast
figure
geoshow(lat,long);
% Add the international boundaries as black lines
boundaries = updategeostruct(worldlo('POline'));
symbols = makesymbolspec('Line',{'Default','Color','black'});
hold on
geoshow(gca,boundaries(1),'SymbolSpec',symbols);
```


## Example 2

Override the SymbolSpec default rule.

```
% Create a SymbolSpec to display Alaska and Hawaii as red
polygons.
symbols = makesymbolspec('Polygon', ...
    {'tag','Alaska','FaceColor','red'}, ...
    {'tag','Hawaii','FaceColor','red'});
% Display all the other states in blue.
figure;worldmap('na');
geoshow(usahi('statepatch'),'SymbolSpec',symbols, ...
                                    'DefaultFaceColor','blue', ...
                                    'DefaultEdgeColor','black');
```


## Example 3

Display the Korean data grid, with the worldhi boundaries.

```
% Display the Korean data grid as a texture map.
load korea
figure;axesm mercator
```

```
geoshow(gca,map,maplegend,'DisplayType','texturemap');
colormap(demcmap(map))
% Set the display to the bounding box of the data grid.
[latlim,lonlim] = limitm(map,maplegend);
[x,y]=mfwdtran(latlim,lonlim);
set(gca,'Xlim',[min(x(:)), max(x(:))]);
set(gca,'Ylim',[min(y(:)), max(y(:))]);
% Get the region's worldhi data.
[korea_lat, korea_lon]= extractm(worldhi(latlim, lonlim));
% Display the worldhi boundaries.
hold on
geoshow(korea_lat, korea_lon);
% Mask the ocean.
geoshow(worldlo('oceanmask'),'EdgeColor','none','FaceColor','c')
```


## Example 4

Display the EGM96 geoid heights.

```
% Display the geoid as a texture map.
load geoid
figure
axesm eckert4; framem; gridm;
h=geoshow(geoid, geoidlegend, 'DisplayType','texturemap');
axis off
% Set the Z data to the geoid height values, rather than a
% surface with zero elevation.
set(h,'ZData',geoid);
light; material(0.6*[ 1 1 1]);
    set(gca,'dataaspectratio',[ 1 1 200]);
hcb = colorbar('horiz');
set(get(hcb,'Xlabel'),'String','EGM96 geoid heights in m.')
% Mask out all the land.
geoshow(worldlo('POpatch'),'FaceColor','black');
zdatam(handlem('patch'),max(geoid(:)));
```


## Example 5

Display the moon albedo image as a texture map.

```
load moonalb
figure
axesm ortho
geoshow(moonalb, moonalblegend, 'DisplayType','image');
axis off
```

See Also
makesymbolspec, mapshow, mapview, updategeostruct

## geotiff2mstruct

Purpose

See Also
Convert GeoTIFF information to a map projection structure

```
Syntax
```

Syntax
Example
Example
% Verify info converts to a mstruct.
% Verify info converts to a mstruct.
% Verify info converts to a mstruct.
id = strmatch(info.CTProjection,{S.GeoTIFF},'exact');
id = strmatch(info.CTProjection,{S.GeoTIFF},'exact');
id = strmatch(info.CTProjection,{S.GeoTIFF},'exact');
if ~isempty(id) \&\& S(id).mstruct
if ~isempty(id) \&\& S(id).mstruct
if ~isempty(id) \&\& S(id).mstruct
mstruct = geotiff2mstruct(info);
mstruct = geotiff2mstruct(info);
mstruct = geotiff2mstruct(info);
else
else
else
fprintf('Unable to convert %s to an mstruct.\n',...
fprintf('Unable to convert %s to an mstruct.\n',...
fprintf('Unable to convert %s to an mstruct.\n',...
info.CTProjection);
info.CTProjection);
info.CTProjection);
end
end
end
% Verify that the info structure from 'boston.tif'
% Verify that the info structure from 'boston.tif'
% Verify that the info structure from 'boston.tif'
% converts to an mstruct.
% converts to an mstruct.
% converts to an mstruct.
% Obtain the info structure of 'boston.tif'.
% Obtain the info structure of 'boston.tif'.
% Obtain the info structure of 'boston.tif'.
info = geotiffinfo('boston.tif');
info = geotiffinfo('boston.tif');
info = geotiffinfo('boston.tif');
% Get the projection list structure for conversion from
% Get the projection list structure for conversion from
% Get the projection list structure for conversion from
% GeoTIFF to a map projection structure.
% GeoTIFF to a map projection structure.
% GeoTIFF to a map projection structure.
S = projlist('all');

```
S = projlist('all');
```

S = projlist('all');

```
axesm, defaultm, geotiffinfo, projfwd, projinv, projlist

\section*{geotiffinfo}

\section*{Purpose Information about a GeoTIFF file}

Syntax info = geotiffinfo(filename) returns a structure whose fields contain file and cartographic information about a GeoTIFF file.
filename is a string that specifies the name of the GeoTIFF file. filename can include the directory name; otherwise, the file must be in the current directory or in a directory on the MATLAB path. If the named file includes the extension .TIF or .TIFF (either upper- or lowercase), the extension can be omitted from filename.

If filename is a file containing more than one GeoTIFF image, info is a structure array with one element for each image in the file. For example, info (3) would contain information about the third image in the file. If more than one image exists in the file, it is assumed that each image will have the same cartographic information and the same image width and height.
info = geotiffinfo(url) reads the GeoTIFF image from an Internet URL. The url must include the protocol type (e.g., "http://").

Field Description

The info structure contains the following fields:
\(\left.\begin{array}{ll}\text { Filename } & \text { String containing the name of the file } \\
\text { FileModDate } & \text { String containing the modification date of the file } \\
\text { FileSize } & \begin{array}{l}\text { Integer indicating the size of the file in bytes }\end{array} \\
\text { Format } & \begin{array}{l}\text { String containing the file format, which should always be } \\
\text { 'tiff' }\end{array} \\
\text { FormatVersion } & \begin{array}{l}\text { String or number specifying the file format version } \\
\text { Height }\end{array} \\
\text { Integer indicating the height of the image in pixels }\end{array}\right\}\)\begin{tabular}{l} 
Integer indicating the width of the image in pixels \\
BitDepth \\
ColorType
\end{tabular} \begin{tabular}{l} 
Integer indicating the number of bits per pixel
\end{tabular}
\begin{tabular}{|c|c|}
\hline ModelType & String indicating the type of coordinate system used to georeference the image: 'ModelTypeProjected', ModelTypeGeographic ', or \\
\hline PCS & String describing the projected coordinate system \\
\hline Projection & String describing the EPSG identifier for the underlying projection method \\
\hline MapSys & String indicating the map system, if applicable: STATE_PLANE_27', 'STATE_PLANE_83', 'UTM_NORTH', UTM_SOUTH ' , or \\
\hline Zone & Double indicating the UTM or State Plane Zone number, zero if not applicable or unknown \\
\hline CTProjection & String containing the GeoTIFF identifier for the underlying projection method \\
\hline ProjParm & An N-by-1 double containing projection parameter values. The identity of each element is specified by the corresponding element of ProjParmId. Lengths are in meters, angles in decimal degrees. \\
\hline ProjParmId & \begin{tabular}{l}
An N -by- 1 cell array listing the projection parameter identifier for each corresponding numerical element of ProjParm: \\
- 'ProjNatOriginLatGeoKey' \\
- 'ProjNatOriginLongGeoKey' \\
- 'ProjFalseEastingGeoKey' \\
- 'ProjFalseNorthingGeoKey' \\
- 'ProjFalseOriginLatGeoKey' \\
- 'ProjFalseOriginLongGeoKey' \\
- 'ProjCenterLatGeoKey' \\
- 'ProjCenterLongGeoKey' \\
- 'ProjAzimuthAngleGeoKey' \\
- 'ProjRectifiedGridAngleGeoKey' \\
- 'ProjScaleAtNatOriginGeoKey' \\
- 'ProjStdParallel1GeoKey' \\
- 'ProjStdParallel2GeoKey'
\end{tabular} \\
\hline
\end{tabular}

\section*{geotiffinfo}
\begin{tabular}{|c|c|}
\hline GCS & String indicating the geographic coordinate system \\
\hline Datum & String indicating the projection datum type, such as 'North American Datum 1927' or 'North American Datum 1983' \\
\hline Ellipsoid & String indicating the ellipsoid name as defined by the ellipsoid.csv EPSG file \\
\hline SemiMajor & Double indicating the length of the semimajor axis of the ellipsoid, in meters \\
\hline SemiMinor & Double indicating the length of the semiminor axis of the ellipsoid, in meters \\
\hline PM & String indicating the prime meridian location, for example, 'Greenwich' or 'Paris' \\
\hline PmLongToGreenwich & Double indicating the decimal degrees of longitude between this prime meridian and Greenwich. Prime meridians to the west of Greenwich are negative. \\
\hline UOMLength & String indicating the units of length used in the projected coordinate system \\
\hline UOMLengthInMeters & Double defining the UOMLength unit in meters \\
\hline UOMAngle & String indicating the angular units used for geographic coordinates \\
\hline UOMAngleInDegrees & Double defining the UOMAngle unit in degrees \\
\hline TiePoints & Structure containing the image tiepoints. The structure contains these fields: \\
\hline
\end{tabular}
- ImagePoints - Structure containing the image coordinates of the tiepoints
- WorldPoints - Structure containing the world coordinates of the tiepoints The ImagePoints and WorldPoints structures each contain these fields:
- X - A double array of size N -by- 1 for the X values
- Y - A double array of size N -by- 1 for the Y values

\section*{geotiffinfo}
- Z - A double array of size N -by- 1 for the Z values
\begin{tabular}{ll} 
PixelScale & \begin{tabular}{l} 
3-by-1 double array that specifies the X, Y, Z pixel \\
scale values \\
3-by-2 double referencing matrix that must be \\
unambiguously defined by the GeoTIFF file; \\
otherwise it is returned empty ([]).
\end{tabular} \\
RefMatrix & \begin{tabular}{l} 
2-by-2 double array that specifies the minimum (row \\
1) and maximum (row 2) values for each dimension of \\
the image data in the GeoTIFF file
\end{tabular} \\
CornerCoords & \begin{tabular}{l} 
Contains the GeoTIFF image corners in projected and \\
latitude-longitude coordinates. The corner coordinate \\
values are stored counterclockwise starting at the \\
upper left corner followed by lower left, lower right, \\
and ending at the upper right corner.
\end{tabular}
\end{tabular}

The CornerCoords structure contains four fields. Each is a 4-by-1 double array, or empty ([ ]), if unknown.
- PCSX - Coordinates in the Projected Coordinate System; equals LON if the model type is 'ModelTypeGeographic'
- PCSY - Coordinate in the Projected Coordinate System; equals LAT if the model type is 'ModelTypeGeographic'
- LON - Longitudes of the corner
- LAT - Latitudes of the corner

ImageDescription String describing the image; omitted if not included
GeotifFCodes Structure containing raw numeric values for those GeoTIFF fields that are encoded numerically in the file. These raw values, converted to a string elsewhere in the INFO structure, are provided here for reference.

The following fields are included in the GeotifFCodes structure:
- Model
- PCS
- GCS
- UOMLength
- UOMAngle
- Datum
- PM
- Ellipsoid
- ProjCode
- Projection
- CTProjection
- ProjParmId
- MapSys

Each is scalar except for ProjParmId, which is a column vector.
Example
info = geotiffinfo('boston.tif');
See Also
imfinfo, geotiffread, makerefmat, projfwd, projinv, projlist

\section*{Purpose}

\section*{Syntax}

\section*{Example}

Read a georeferenced image from GeoTIFF file
A = geotiffread(filename) reads the GeoTIFF image in filename into A. If the file contains a grayscale intensity image, \(A\) is a two-dimensional array. If the file contains a true-color (RGB) image, \(A\) is a three-dimensional (M-by-N-by-3) array.
filename is a string that specifies the name of the GeoTIFF file. filename can include the directory name; otherwise, the file must be in the current directory or in a directory on the MATLAB path. If the named file includes the extension .TIF or .TIFF (either upper- or lowercase), the extension can be omitted from filename.
[ \(\mathrm{X}, \mathrm{cmap}\) ] = geotiffread(filename) reads the indexed image in filename into I and its associated colormap into cmap. Colormap values in the image file are automatically rescaled into the range \([0,1]\).
[X, cmap, R, bbox] = geotiffread(filename) reads the indexed image into I, the associated colormap into cmap, the referencing matrix into R , and the bounding box into bbox. The referencing matrix must be unambiguously defined by the GeoTIFF file; otherwise, it and the bounding box are returned empty ([]).
[A, R, bbox] = geotiffread(filename) reads the image into A, the referencing matrix into \(R\), and the bounding box into bbox.
[...] = geotiffread(filename, idx) reads in one image from a multiimage GeoTIFF file. idx is an integer value that specifies the order that the image appears in the file. For example, if idx is 3 , geotiffread reads the third image in the file. If you omit this argument, geotiffread reads the first image in the file.
[...] = geotiffread(url, ...) reads the GeoTIFF image from an Internet URL. The URL must include the protocol type (e.g., "http: //").

1 Read and display the Boston GeoTIFF image:
```

[boston_X, boston_cmap, boston_R, bbox] =
geotiffread('boston.tif');
figure
mapshow(boston_X,boston_cmap,boston_R);

```

2 Read and display the Boston GeoTIFF panachromatic image:
[pan_I, pan_R, bbox] = geotiffread('boston_pan.tif'); figure
mapshow(pan_I, pan_R);
3 Overlay the Boston GeoTIFF panchromatic image with the Boston GeoTIFF multispectral image.
figure
mapshow(boston_X,boston_cmap,boston_R); mapshow(gca,pan_I, pan_R);

\section*{See Also}
geotiffinfo, imread, mapview, mapshow, geoshow

\section*{Purpose}

Syntax

Examples

Get map object properties
mat \(=\) getm (h) returns the map structure of the map axes specified by its handle. If the handle of a child of the map axes is specified, only its properties are returned.
mat \(=\) getm (h,MapPropertyName) returns the specified property value. getm('MapProjection') lists all available projections.
getm('axes') lists the map axes properties by property name. getm('units') lists the available units.

Create a default map axes and query a property value:
```

axesm('mercator','AngleUnits','degrees')
getm(gca,'MapParallels')
ans =
0

```

See Also Define map axes and set map properties

Set map properties

\section*{getseeds}
Purpose Interactively assign seeds for data grid encoding
Syntax
DescriptionThe getseeds function allows you to interactively create the seed matrix valuesused by the encodem function to fill in regions of data grids.
Examples Demonstrate this for yourself by typing the following and interactivelyselecting points:
```

load topo
axesm('gortho','grid','on')
seedmat = getseeds(topo,topolegend,3)

```

When you have selected three points, you are prompted for their values. The regular data grid need not be displayed to execute getseeds on it.

See Also encodem Fill in regions of indexed data grids with specified values

\section*{getworldfilename}

\section*{Purpose Derive a worldfile name from an image filename}
Syntax \begin{tabular}{l} 
worldfilename = getworldfilename (imagefilename) returns the name of \\
the corresponding worldfile derived from the name of an image file. \\
The worldfile and the image file have the same base name. If imagefilename \\
follows the ".3" convention, then you create the worldfile extension by removing \\
the middle letter and appending the letter ' \(w\) ' . \\
If imagefilename has an extension that does not follow the ". 3 " convention, \\
then a ' \(w\) ' is appended to the full image name to construct the worldfile name. \\
If imagefilename has no extension, then '.\(w l d\) ' is appended to construct a \\
worldfile name.
\end{tabular}\(\quad\)\begin{tabular}{l} 
Given the following image filenames, worldfilename would return these \\
worldfile names:
\end{tabular}
\begin{tabular}{l|l}
\hline Image File Name & Worldfile Name \\
\hline myimage.tif & myimage.tfw \\
\hline myimage.jpeg & myimage.jpegw \\
\hline myimage & myimage.wld \\
\hline
\end{tabular}

\footnotetext{
See Also
worldfileread, worldfilewrite
}

Purpose

Syntax

Read elevation data from GLOBE Digital Elevation Map files into a regular data grid
[datagrid, refvec] = globedem(filename, scalefactor) reads the GLOBE DEM files and returns the result as a regular data grid. The filename is given as a string that does not include an extension. GLOBEDEM first reads the ESRI header file found in the subdirectory '/esri/hdr/' and then the binary data file filename. If the files are not found on the MATLAB path, they can be selected interactively. scalefactor is an integer that when equal to 1 gives the data at its full resolution. When scalefactor is an integer \(n\) larger than 1 , every nth point is returned. The map data is returned as an array of elevations and associated referencing vector. Elevations are given in meters above mean sea level, using WGS 84 as a horizontal datum.
[datagrid,refvec] = globedem(filename,scalefactor,latlim,lonlim) allows a subset of the map data to be read. The limits of the desired data are specified as vectors of latitude and longitude in degrees. The elements of latlim and lonlim must be in ascending order.
[datagrid,refvec] = globedem(dirname,scalefactor,latlim,lonlim) reads and concatenates data from multiple files within a GLOBE directory tree. The dirname input is a string with the name of the directory that contains both the uncompressed data files and the ESRI header files.

\section*{Background}

Remarks
GLOBE, the Global Land One-km Base Elevation data, was compiled by the National Geophysical Data Center from more than 10 different sources of gridded elevation data. GLOBE can be considered a higher resolution successor to TerrainBase. The data set consists of 16 tiles, each covering 50 by 90 degrees. Tiles require as much as 60 MB of storage. Uncompressed tiles take between 100 and 130 MB .

The Mapping Toolbox reads data from GLOBE Version 1.0. The data is for elevations only. Elevations are given in meters above mean sea level using WGS 84 as a horizontal datum. Areas with no data, such as the oceans, are coded with NaNs.

The data is available over the Internet via anonymous FTP from
<ftp://ftp.ngdc.noaa.gov/GLOBE_DEM/data/elev/>

\section*{globedem}

The data and some documentation is also available over the World Wide Web from
```

[http://www.ngdc.noaa.gov/seg/topo/globe.shtml](http://www.ngdc.noaa.gov/seg/topo/globe.shtml)

```

\section*{Examples}

Determine the file that contains the area around Cape Cod.
```

latlim = [41 42.5]; lonlim = [-73 -69.9];
globedems(latlim,lonlim)
ans =
'f10g'

```

Extract every 20th point from the tile covering the northeastern United States and eastern Canada. Provide an empty file name, and select the file interactively.
```

[datagrid,refvec] = globedem([],20);
size(datagrid)
ans =
300 540

```

Extract a subset of the data for Massachusetts at the full resolution.
```

latlim = [41 42.5]; lonlim = [-73 -69.9];
[datagrid,refvec] = globedem('f10g',1,latlim,lonlim);
size(datagrid)
ans =
1 8 1 3 7 3

```

Replace the NaNs in the ocean with -1 to color them blue.
```

datagrid(isnan(datagrid)) = -1;

```

Extract some data for southern Louisiana in an area that straddles two tiles. Provide the name of the directory containing the data files, and let globedem determine which files are required, read from the files, and concatenate the data into a single regular data grid.
```

latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)

```

\section*{globedem}
```

ans =
'e10g'
'f10g'
[datagrid,refvec] =
globedem('d:\externalData\globe\elev',1,latlim,lonlim);
size(datagrid)
ans =
$325.00 \quad 315.00$

```
\begin{tabular}{lll} 
See Also & demdataui & Interactive tool to read digital elevation data \\
dted & Read Digital Terrain Elevation Data (DTED) data
\end{tabular}

\section*{globedems}

\section*{Purpose}
Syntax \begin{tabular}{l} 
fname = globedems(latlim, lonlim) returns a cell array of the filenames \\
covering the geographic region for GLOBE DEM digital elevation maps. The \\
region is specified by scalar latitude and longitude points, or two-element \\
vectors of latitude and longitude limits in units of degrees.
\end{tabular}

GLOBE DEM filenames
fname = globedems(latlim, lonlim) returns a cell array of the filenames covering the geographic region for GLOBE DEM digital elevation maps. The region is specified by scalar latitude and longitude points, or two-element vectors of latitude and longitude limits in units of degrees.

\section*{Remarks}

\section*{Examples}

Which files are needed for southern Louisiana?
```

```
latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
```

```
latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)
globedems(latlim,lonlim)
ans =
ans =
    'e10g'
    'e10g'
    'f10g'
```

```
    'f10g'
```

```

\section*{See Also}

References
The Mapping Toolbox reads data from GLOBE Version 1.0. GLOBE DEM first reads the corresponding ESRI header file found in the subdirectory '/esri/hdr/' and then the binary data file (with no extension).
globedem Read GLOBE digital elevation map data
<http://www.ngdc.noaa.gov/seg/topo/globe.shtml>

GLOBE, the Global Land One-km Base Elevation data, was compiled by the National Geophysical Data Center from more than 10 different sources of gridded elevation data. The data set consists of 16 tiles, each covering 50 by 90 degrees. Determining which files are needed to cover a particular region generally requires consulting an index map. This function takes the place of such a reference by returning the filenames for a given geographic region.

\section*{gradientm}

\section*{Purpose}

Numerical gradient, slope, and aspect of data grids

Syntax

Example
[aspect, slope, gradN, gradE] = gradientm(map, refvec) computes the slope, aspect, and north and east components of the gradient for a regular data grid. If the map contains elevations in meters, the resulting aspect and slope are in units of degrees clockwise from north and up from the horizontal. The north and east gradient components are the change in the map variable per meter of distance in the north and east directions. The computation uses finite differences for the map variable on the default Earth ellipsoid.
[aspect,slope,gradN,gradE] = gradientm(lat,lon,map) does the computation for a geolocated data grid.
[aspect,slope,gradN,gradE] = gradientm(map,refvec,ellipsoid) and [aspect, slope, gradN, gradE] = gradientm(lat,lon,map,ellipsoid) use the provided ellipsoid definition. The ellipsoid vector is of the form [ semimajor axes, eccentricity]. If the map contains elevations in the same units as ellipsoid(1), the slope and aspect are in units of degrees. This calling form is most useful for computations on bodies other than the Earth.
[aspect,slope,gradN, gradE] = gradientm(lat,lon, map,ellipsoid, units) specifies the angle units of the latitude and longitude inputs. If omitted, 'degrees ' is assumed. For elevation maps in the same units as ellipsoid(1), the resulting slope and aspect are in the specified units. The components of the gradient are the change in the map variable per unit of ellipsoid(1).

Compute the gradient, slope, and aspect for a regular data grid based on the MATLAB peaks matrix. Show the gradientm outputs as colors on a three-dimensional surface of elevation. The surfaces are shown with no vertical exaggeration.
```

clear all; close all;
datagrid = 500*peaks(100);
gridrv = [ 1000 0 0];
[aspect,slope,gradN,gradE] = gradientm(datagrid,gridrv);
figure
worldmap(gradN,gridrv,'none')
meshm(gradN,gridrv,size(datagrid),datagrid)
hcb = contourcmap(1,'jet','colorbar','on',...
'ylabelstring','Gradient (North Component)');

```
view(3)
daspectm meters
camlight
shading interp; lighting phong
framem off

clmo surface
meshm(gradE,gridrv, size(datagrid), datagrid)
set(get(hcb,'ylabel'),'String','Gradient (East Component)');
shading interp; lighting phong

clmo surface
meshm(slope,gridrv, size(datagrid), datagrid)
contourcmap(10, 'hot', 'colorbar', 'on', ...
'ylabelstring','Slope (degrees)')
colormap(flipud(colormap))
shading interp; lighting phong

```

clmo surface
meshm(aspect,gridrv,size(datagrid),datagrid)
contourcmap(30,'hsv','colorbar','on',...
'ylabelstring','Aspect (degrees)')
shading interp; lighting phong

```

clear; close all;
load korea
[aspect,slope,gradN,gradE] = gradientm(map,refvec);
worldmap(slope,refvec);
contourcmap(1,'cool', 'colorbar', 'on', ...
'ylabelstring','Slope (degrees)')
hidem(gca)

\section*{gradientm}


\section*{Remarks}

See Also
gradient
viewshed

Approximate gradient
Visible areas from a point on a digital elevation map

\section*{Purpose}

\section*{Syntax}

\section*{Example}

Identify matching fields in fixed record length files
grepfields(filename, searchstring) displays lines in the file that begin with the search string. The file must have fixed-length records with line endings.
grepfields(filename, searchstring, casesens), with casesens 'matchcase', specifies a case-sensitive search. If omitted or 'none', the search string matches regardless of the case.
grepfields(filename, searchstring, casesens, startcol) searches starting with the specified column. startcol is an integer between 1 and the bytes per record in the file. In this calling form, the file is regarded as a text file with line endings.
grepfields(filename, searchstring, casesens,startfield,fields) searches within the specified field. startfield is an integer between 1 and the number of fields per record. The format of the file is described by the fields structure. See readfields for recognized fields structure entries. In this calling form, the file can be binary and lack line endings. The search is within startfield, which must be a character field.
grepfields(filename, searchstring, casesens,startfield,fields, machineformat) opens the file with the specified machine format. machineformat must be recognized by fopen.
indx \(=\) grepfields (...) returns the record numbers of matched records instead of displaying them on screen.

Write a binary file and read it:
```

fid = fopen('testbin','wb');
for i = 1:3
fwrite(fid,['character' num2str(i) ],'char');
fwrite(fid,i,'int8');
fwrite(fid,[i i],'int16');
fwrite(fid,i,'integer*4');
fwrite(fid,i,'real*8');
end
fclose(fid);
fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';

```

\section*{grepfields}
```

fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64';fs(5).name = 'field 5';

```

Find the record matching the string 'character2'. The record contains binary data, which cannot be properly displayed.
```

grepfields('testbin','character2','none',1,fs)
character2? ? ? ?@
indx = grepfields('testbin','character2','none',1,fs)
indx =
2

```

Read the formatted file containing the following:
```

character data 1 1 2 3 1e6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6

```
```

fs(1).length = 16;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 3;fs(2).type = '%3d';fs(2).name = 'field 2';
fs(3).length = 1;fs(3).type = '%4g';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = '%5D';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'char';fs(5).name = '';

```

Find the records that match at the beginning of the line.
```

grepfields('testfile1','character')
character data 1 1 2 3 1e6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6
grepfields('testfile1','character data 2')
character data 2 11 22 33 2e6 20D6

```

Find the records that match, starting the search in column 11.
```

grepfields('testfile1','data 2','none',11)
character data 2 11 22 33 2e6 20D6

```

Search record number 1.
```

grepfields('testfile1','character data 2','none',1,fs)
character data 2 11 22 33 2e6 20D6

```
\begin{tabular}{ll} 
Limitations & Searches are limited to fields containing character data. \\
Remarks & \begin{tabular}{l} 
See readfields for a complete discussion of the format and contents of the \\
fields argument.
\end{tabular}
\end{tabular}

See Also readfields Read fields or records from a fixed-format file

\section*{gridm}

\section*{Purpose Toggle and control the display of the map grid}

Syntax

Remarks

See Also
gridm toggles the visibility of the map grid by setting the map axes property Grid to 'on' or 'off'. The default setting for map axes is 'off'.
gridm('on') sets the map axes Grid property to 'on'.
gridm('off') sets the map axes Grid property to 'off'.
gridm('reset') resets the entire grid using the current properties. This is essentially a refresh option.
gridm (linestyle) sets the map axes GridLineStyle property to any line style string recognized by the MATLAB line function.
gridm (PropertyName, PropertyValue, ...) sets the appropriate map axes properties to the desired values. These property names and values are described on the axesm reference page of this guide.

You can also create or alter map grid properties using the axesm or setm functions.
\begin{tabular}{ll} 
axesm & Define map axes and set map properties \\
setm & Set map properties
\end{tabular}

Purpose

\section*{Syntax}

Description

Examples

Grid a geolocated data grid
[griddedmap, maprefvec] = gridmap(lat, lon, map, cellsize) grids the geolocated data grid map, given geolocation points in lat and lon, to produce a regular data grid griddedmap and the corresponding referencing vector maprefvec. cellsize is a scalar that specifies the width and height of data cells in the regular data grid, using the same angular units as lat and lon. Data cells in griddedmap falling outside the area covered by map are set to NaNs.
gridmap provides an easy-to-use alternative to gridding geolocated data grids with imbedm. There is no need to preallocate the output map: there are no data gaps in the output (even if cellsize is chosen to be very small), and the output map is smoother.
```

% Load the geolocated data grid 'map1'
% and grid it to 1/2-degree cells
load mapmtx
cellsize = 0.5;
[griddedmap, maprefvec] = gridmap(lt1, lg1, map1, cellsize);
% Create a figure
f = figure;
[cmap,clim] = demcmap(map1);
set(f,'Colormap',cmap,'Color','w')
% Define map limits
latlim = [-35 70];
lonlim = [0 100];
% Display 'map1' as a geolocated data grid in subplot 1
subplot(1,2,1)
ax =
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
surfm(lt1, lg1, map1);
% Display 'griddedmap' as a regular data grid in subplot 2
subplot(1,2,2)
ax =
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim,...
'Grid','on','MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')

```

\section*{meshm(griddedmap, maprefvec);}

\section*{See Also imbedm, meshm}

\section*{grid2image}

Purpose
Syntax

See Also image, mapshow, mapview, meshm, surfacem, surfm

\section*{grn2eqa}

\section*{Purpose Convert from Greenwich to equal area coordinates}

Syntax \(\quad[x, y]=\) grn2eqa(lat,lon) converts the Greenwich coordinates lat and lon to the equal-area coordinate points \(x\) and \(y\).
[ \(x, y]=\) grn2eqa(lat,lon,origin) specifies the location in the Greenwich system of the \(x-y\) origin ( 0,0 ). The two-element vector origin must be of the form [latitude, longitude]. The default places the origin at the Greenwich coordinates \(\left(0^{\circ}, 0^{\circ}\right)\).
\([x, y]=\) grn2eqa(lat,lon,origin,ellipsoid) specifies the two-element ellipsoid vector describing the ellipsoidal model of the figure of the Earth. The ellipsoid is spherical by default.
\([x, y]=\) grn2eqa(lat,lon,origin, units) specifies the units for the inputs, where units is any valid angle units string. The default value is 'degrees'.
mat \(=\) grn2eqa(lat,lon,origin...) packs the outputs into a single variable.
mat = grn2eqa(lat,lon,origin...)
Description

Examples
The grn2eqa function converts data from Greenwich-based latitude-longitude coordinates to equal-area \(x-y\) coordinates. The opposite conversion can be performed with eqa2grn.
```

lats = [56 34]; longs = [-140 23];
[x,y] = grn2eqa(lats,longs)
x =
-2.4435 0.4014
y =
0.8290 0.5592

```

\section*{See Also}
\begin{tabular}{ll} 
eqa2grn & Convert from equal area to Greenwich coordinates \\
hista & Equal-area histogram
\end{tabular}

\section*{Purpose}

Read the Global Self-Consistent Hierarchical High-Resolution Shoreline data

\section*{Syntax}

\section*{Background}

\section*{Example}

Read all of the lowest resolution database.
```

s = gshhs('gshhs_c.b')

```

Read the intermediate resolution database for South America.
s = gshhs('gshhs_i.b',[-60 -15],[-90 -30])

Read the full-resolution file for East and West Falkland Islands (Islas Malvinas).
```

s = gshhs('gshhs_f.b',[-55 -50],[-65 -55])

```

Create the index file for the high-resolution database.

\section*{gshhs}
```

gshhs('gshhs_h.b', 'createindex')

```

Limitations

\section*{Remarks}

\section*{See Also}

Purpose
Syntax \(\quad h=\) gtextm(string) places the text object string at the position selected by mouse input. When this function is called, the current map axes are brought up and the cursor is activated for mouse-click position entry. The text object's handle is returned.
h = gtextm(string,PropertyName,PropertyValue,...) allows the specification of any properties supported by the MATLAB text function.

\section*{Example}

See Also
axesm
Create map axes object
textm Project text objects

\section*{Purpose Read elevation data from GTOPO30 into a regular data grid}

Syntax

\section*{Background}

\section*{Remarks The data is for elevations only. Elevations are given in meters above mean sea} level, using WGS 84 as a horizontal datum. Areas with no data, such as the oceans, are coded with NaNs.

The data is available over the Internet via anonymous FTP from
```

ftp://edcftp.cr.usgs.gov/pub/data/gtopo30/global

```

The data and some documentation is also available over the World Wide Web from
http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html and

\section*{gtopo30}
http://edcwww.cr.usgs.gov/landdaac/gtopo30/README.html

\section*{Examples}

Extract every 20th point from the tile covering the northeastern United States and eastern Canada. Provide an empty filename and select the file interactively.
```

[datagrid,refvec] = gtopo30([],20);
size(datagrid)
ans =
300 240

```

Extract a subset of the data for Massachusetts at the full resolution.
```

latlim = [41 42.5]; lonlim = [-73 -69.9];
[datagrid,refvec] = gtopo30('W100N90',1,latlim,lonlim);
size(datagrid)
ans =
180 391

```

Replace the NaNs in the ocean with -1 to color them blue.
```

datagrid(isnan(datagrid)) = -1;

```

Extract the data for Thailand. This area straddles two tiles. The data is on CD number 3 distributed by the USGS.
```

latlim = [5.22 20.90]; lonlim = [96.72 106.38];
gtopo30s(latlim,lonlim)
ans =
'e060n40'
'e100n40'
[datagrid,refvec] = gtopo30('f:\',3,latlim,lonlim);
size(datagrid)
ans =

```

628388

\section*{gtopo30}
See Also \begin{tabular}{lll} 
gtopo30s & Filenames for GTOPO30 data from geographic area \\
demdataui & Digital elevation map data user interface \\
dted & Read Digital Terrain Elevation Data (DTED) data \\
globedem & Read 1 km GLOBE DEM data \\
satbath & Global 2-minute topography from satellite bathymetry \\
tbase & Read data from the TerrainBase data set \\
usgsdem & Read USGS digital elevation maps
\end{tabular}

\section*{Purpose}

Syntax

\section*{Remarks}

See Also

Obtain 30-arc-sec resolution DEM file names
fname = gtopo30s(latlim, lonlim) returns a cell array of the filenames covering the geographic region for GTOPO30 digital elevation maps (also referred to as " \(30-\mathrm{arc}\) second" DEMs). latlim and lonlim specify the region as scalar latitude and longitude points, or two-element vectors of latitude and longitude limits in units of degrees.

The data is available over the Internet via anonymous FTP from
<ftp://edcftp.cr.usgs.gov/pub/data/gtopo30/global>
The data and some documentation is also available over the Web from
<http://edcdaac.usgs.gov/gtopo30/gtopo30.html>
Specifically, see
<http://edcdaac.usgs.gov/gtopo30/README.html>
gtopo30

\section*{handlem}

Purpose Get handles of graphics objects
Syntax handlem or handlem('taglist') displays a dialog box for selecting the objects for which you want handles.
h = handlem('prompt') displays another dialog box, which allows greater control of object selection.
\(\mathrm{h}=\) handlem(object) returns the handles of those objects specified by the input string. The options for the object string are
'all' All children of the current axes
'clabel' Contour labels on the current map axes
' contour ' Contour lines on the current map axes
'frame' Map frame
'grid' Map grid lines
'hidden ' Hidden objects on the current axes
'image ' Image objects on the current axes
'light ' Light objects on the current axes
'line ' Line objects on the current axes
'map ' All objects on the map, excluding the frame (default)
'meridian' Longitude grid lines
'mlabel' Longitude labels
'parallel' Latitude grid lines
'patch Patch objects on the current axes
'plabel' Latitude labels
'surface' Surface objects on the current axes
'text' Text objects on the current axes
'tissot \(\quad\) Tissot indicatrices on the current map axes
'visible' Visible objects on the current axes

Or any user-defined object tag string.
A prefix of 'all' can be applied to strings defining a Handle Graphics object type ('allimage', 'allline', 'allsurface', 'allpatch', 'alltext') to determine all object handles that meet the type criteria. Without the 'all' prefix, those objects named by the user with the tagm function are not included (e.g., a line with the tag 'route' would not be included for object string ' line ', but would be for 'allline').
handlem('object', axesh) searches within the axes specified by the input handle axesh.
handlem('object',axesh,'searchmethod') controls the method used to match the 'str' input. If omitted, 'exact' is assumed. Search method 'strmatch' searches for matches at the beginning of the tag, similar to the MATLAB STRMATCH function. Search method 'findstr' searches within the tag, similar to the MATLAB FINDSTR function.
\(\mathrm{h}=\) handlem(handles) returns those elements of an input vector of handles that are still valid.
\begin{tabular}{lll} 
See Also & clma & Clear current map \\
clmo & Clear specified graphics objects \\
& hidem & Hide specified graphics objects \\
namem & Determine names of valid graphics objects \\
showm & Show specified graphics objects \\
tagm & Assign a name to graphics object Tag property
\end{tabular}

\section*{hidem}

Purpose Hide specified graphic object

Syntax

See Also
hidem brings up a dialog box for selecting the objects to hide (set their Visible property to 'off').
hidem (handle) hides the objects specified by a vector of handles.
hidem (object) hides those objects specified by the object string, which can be any string recognized by the handlem function.
\begin{tabular}{ll} 
clma & Clear current map \\
clmo & Clear specified graphics objects \\
handlem & Get handle of displayed map objects \\
namem & Determine names of valid graphics objects \\
showm & Show specified graphics objects \\
tagm & Assign name to graphics object Tag property
\end{tabular}

\section*{Purpose}

Syntax

Examples

Create spatial equal-area histogram
[lat,lon, num] = hista(lats,lons) returns the center coordinates of equal-area bins and the number of observations falling in each based on the geographically distributed input data.
[lat,lon, num] = hista(lats,lons,binarea) specifies the equal-area bin size, in square kilometers. It is \(100 \mathrm{~km}^{2}\) by default.
[lat,lon, num] = hista(lats,lons,binarea, ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a spherical Earth, which is sufficient for most applications.
[lat,lon, num] = hista(lats,lons, binarea, units) specifies the standard angle unit string. The default value is 'degrees'.

Create random data:
```

lats = rand(4)
lats =
0.4451 0.8462 0.8381 0.8318
0.9318 0.5252 0.0196 0.5028
0.4660 0.2026 0.6813 0.7095
0.4186 0.6721 0.3795 0.4289
longs = rand(4)
longs =
0.3046 0.3028 0.3784 0.4966
0.1897 0.5417 0.8600 0.8998
0.1934 0.1509 0.8537 0.8216
0.6822 0.6979 0.5936 0.6449

```

Bin the data in 50 -by- 50 km cells ( 2500 sq km ):
```

[lat,lon,num] = hista(lats,longs,2500);
[lat lon num]
ans =
0.2574 0.3757 4.0000
0.7070 0.3757 5.0000
-0.1923 0.8253 1.0000
0.2573 0.8253 2.0000

```

\section*{hista}
\(0.7070 \quad 0.8254 \quad 4.0000\)

\section*{See Also}
eqa2grn Greenwich/equal-area conversion grn2eqa
histr
Spatial equirectangular histogram

\section*{Purpose}

Syntax

\section*{Description}

\section*{Examples}

Create spatial equirectangular histogram
[lat,lon, num, wnum] = histr(lats,lons) returns the center coordinates of equal-rectangular bins and the number of observations, num, falling in each based on the geographically distributed input data. Additionally, an area-weighted observation value, wnum, is returned. wnum is the bin's num divided by its normalized area. The largest bin has the same num and wnum; a smaller bin has a larger wnum than num.
[lat,lon, num, wnum] = histr(lats,lons, units) specifies the standard angle unit string. The default value is 'degrees'.
[lat,lon, num, wnum] = histr(lats,lons, bindensty) sets the number of bins per angular unit. For example, if units is 'degrees', a bindensty of 10 would be 10 bins per degree of latitude or longitude, resulting in 100 bins per square degree. The default is one cell per angular unit.

The histr function sorts geographic data into equirectangular bins for histogram purposes. Equirectangular in this context means that each bin has the same angular measurement on each side (e.g., \(1^{\circ}\)-by- \(1^{\circ}\) ). Consequently, the result is not an equal-area histogram. The hista function provides that capability. However, the results of histr can be weighted by their area bias to correct for this, in some sense.

Create random data:
```

lats = rand(4)
lats =
0.4451 0.8462 0.8381 0.8318
0.9318 0.5252 0.0196 0.5028
0.4660 0.2026 0.6813 0.7095
0.4186 0.6721 0.3795 0.4289
longs = rand(4)
longs =
0.3046 0.3028 0.3784 0.4966
0.1897 0.5417 0.8600 0.8998
0.1934 0.1509 0.8537 0.8216
0.6822 0.6979 0.5936 0.6449

```

\section*{histr}

Bin the data in 0.5 -by- 0.5 degree cells (two bins per degree):
```

[lat,lon,num,wnum] = histr(lats,longs,2);
[lat,lon, num,wnum]
ans =
0.2500 0.2500 3.0000 3.0000
0.7500 0.2500 4.0000 4.0003
0.2500 0.7500 4.0000 4.0000
0.7500 0.7500 5.0000 5.0004

```

The bins centered at \(0.75^{\circ} \mathrm{N}\) are slightly smaller in area than the others. wnum reflects the relative count per normalized unit area.
\begin{tabular}{lll} 
See Also & filterm & Geographic filter for data sets \\
hista & Spatial equal-area histogram
\end{tabular}

Purpose

\section*{Syntax}

Example

Round from hms format to hm format
timeout = hms2hm(timein) rounds times input in hours-minutes-seconds ( hms ) format to the appropriate value in hours-minutes ( hm ) format. This special handling is needed because there are 60 , not 100 , seconds in a minute.

Round 12:34:29 and 12:34:31 to hm format:
timeout \(=\) hms2hm([1234.29 1234.31])
timeout =
12341235
See Also
hms2hr
sec2hr
hms2mat Convert from hms to separated matrix components
mat2hms Convert from separated matrices to hms format
timedim Convert time units

\section*{hms2hr, hms2sec}

Purpose Convert time units from hms format to hours or seconds
\begin{tabular}{ll} 
Syntax & \begin{tabular}{l} 
timeout \(=\) hms2hr (timein) converts times input in hours-minutes-seconds \\
\((h m s)\) format to the equivalent measure in decimal hours.
\end{tabular} \\
timeout \(=\) hms2sec(timein) converts times input in hours-minutes-seconds \\
\((h m s)\) format to the equivalent measure in seconds.
\end{tabular}

\section*{Example}
```

hms2hr(1230)
ans =
12.5000
hms2sec(100.10)
ans =
3 6 1 0

```

\section*{See Also}
hms2hm
hms2mat Convert from hms to separated matrix components
sec2hr
hr2hms
mat2hms Convert from separated matrices to hms format
timedim Convert time units

Purpose
Syntax

Examples

See Also
mat2hms Convert from separated matrices to hms format

\section*{hr2hms, hr2hm}

\section*{Purpose Convert time units from hours to hms or hm}

\begin{abstract}
Syntax
\end{abstract}

\section*{Example}
```

hr2hms(12.51)
ans =
1230.36
hr2hm(12.51)
ans =
1231.00

```

See Also
hms2mat Convert from hms to separated matrix components
sec2hr Other direct time conversion functions
hr2hms
mat2hms Convert from separated matrices to hms format
timedim Convert time units

Purpose

\section*{Syntax}

\section*{Example}

See Also

Convert time from hours to seconds
timeout \(=\) hr2sec(timein) converts times input in hours to the equivalent measure in seconds.
```

hr2sec(1)
ans =
3 6 0 0

```
sec2hr
Other direct time conversion functions hr2hms
timedim Convert time units

\section*{imbedm}

\section*{Purpose Encode data points into regular data grid}

\begin{abstract}
Syntax newmap = imbedm(lat,long, value, map, refvec) resets certain entries of a regular data grid, map. The entries to be reset correspond to the locations defined by the latitude and longitude position vectors lat and lon. The entries are reset to the same number if value is a scalar, or to individually specified numbers if value is a vector the same size as lat and lon. If any points lie outside the input map, a warning is displayed.
newmap \(=\) imbedm(lat,lon, value, map, refvec, units) specifies the units of the vectors lat and lon, where units is any valid angle units string ( ' degrees ' by default).
[newmap, badindx] = imbedm(lat, lon, value, map, refvec, units) returns the indices of lat and lon corresponding to points outside the map in the variable badindx.
\end{abstract}

Examples Create a simple map and embed new values in it:
```

map = ones (3,6)
map =

| 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

refvec = [1/60 90 -180]
refvec =
0.0167 90.0000 -180.0000
newmap = imbedm([[23 -23], [45 -45],[5 5],map,refvec)
newmap =

| 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 5 | 5 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

```
\begin{tabular}{lll} 
See Also & ltln2val & Latitude and longitude to matrix entry value \\
& setpostn & Latitude and longitude to row and column
\end{tabular}

Purpose

\section*{Syntax}

Example

Convert an indexed image to a uint8 RGB image.
RGB \(=\) ind2rgb8(X, cmap) creates an RGB image of class uint8. \(X\) must be uint8, uint16, or double, and cmap must be a valid MATLAB colormap.
```

% Convert the 'boston.tif' image to RGB.
[X, cmap, R, bbox] = geotiffread('boston.tif');
RGB = ind2rgb8(X, cmap);
mapshow(RGB, R);

```
See also
\(\left.\begin{array}{ll}\text { Purpose } & \text { Select latitude and longitude coordinates using mouse } \\
\text { Syntax } & \begin{array}{l}\text { [lat, long] }=\text { inputm returns the latitude-longitude point of a mouse-selected } \\
\text { point of the current map axes. } \\
\text { [lat, long] }=\text { inputm (npts) specifies the number of points, npts, to be } \\
\text { mouse-selected. } \\
{[\text { lat, long] }=\text { inputm (npts, hndl) specifies the handle of the map axes on }} \\
\text { which mouse selection is desired. }\end{array} \\
\text { pts = inputm (npts) returns the points in a single two-column output. }\end{array}\right]\)\begin{tabular}{l} 
inputm works much like the standard MATLAB ginput, except that the \\
returned values are latitudes and longitudes extracted from the projection, \\
rather than axes \(x-y\) coordinates.
\end{tabular}

Purpose
Syntax

Examples
```

lat = [1 2 4 5]; lon = [7 8 9 11];
[latout,lonout] = interpm(lat,lon,1);
[latout lonout]
ans =
1.0000 7.0000
2.0000 8.0000
3.0000 8.5000
4.0000 9.0000
4.5000 10.0000
5.0000 11.0000

```

See Also intrplat Interpolated latitudes for given longitudes
intrplon Interpolated longitudes for given latitudes

Purpose
Interpolate latitude for a given longitude

\section*{Syntax}
newlat = intrplat(long, lat, newlong) returns an interpolated latitude, newlat, corresponding to a longitude newlong. long must be a monotonic vector of longitude values. The actual entries must be monotonic; that is, the longitude vector [350 3573 10] is not allowed even though the geographic direction is unchanged (use [350 357363 370] instead). lat is a vector of the latitude values paired with each entry in long.
newlat \(=\) intrplat(long, lat, newlong, method) specifies the method of interpolation employed. The default value of the method string is 'linear', which results in linear, or Cartesian, interpolation between the numerical values entered. This is really just a pass-through to the MATLAB interp1 function. Similarly, 'spline' and 'cubic' perform cubic spline and cubic interpolation, respectively. The 'rh' method returns interpolated points that lie on rhumb lines between input data. Similarly, the 'gc ' method returns interpolated points that lie on great circles between input data.
newlat \(=\) intrplat(long, lat, newlong,method,units) specifies the units used, where units is any valid angle units string. The default is 'degrees'.

\section*{Description}

\section*{Examples}

The function intrplat is a geographic data analogy of the standard MATLAB function interp1.

Compare the results of the various methods:
```

lats = [25 45]; longs = [30 60];
newlat = intrplat(longs,lats,45,'linear')
newlat =
35
newlat = intrplat(longs,lats,45,'rh')
newlat =
35.6213
newlat = intrplat(longs,lats,45,'gc')
newlat =
37.1991

```

\section*{Remarks}

See Also
intrplon Linear interpolation of latitude and longitude
Interpolate longitudes for given latitudes

\section*{Purpose}

Interpolate longitude for a given latitude

\section*{Description}

Examples
newlon = intrplon(lat,lon, newlat) returns an interpolated longitude, newlon, corresponding to a latitude newlat. lat must be a monotonic vector of longitude values. lon is a vector of the longitude values paired with each entry in lat.
newlon = intrplon(lat,lon, newlat, method) specifies the method of interpolation employed. The default value of the method string is 'linear', which results in linear, or Cartesian, interpolation between the numerical values entered. This is really just a pass-through to the MATLAB interp1 function. Similarly, 'spline ' and 'cubic' perform cubic spline and cubic interpolation, respectively. The 'rh' method returns interpolated points that lie on rhumb lines between input data. Similarly, the 'gc ' method returns interpolated points that lie on great circles between input data.
newlon = intrplon(lat,lon, newlat,method,units) specifies the units used, where units is any valid angle units string. The default is 'degrees'.

The function intrplon is a geographic data analogy of the MATLAB function interp1.

Compare the results of the various methods:
```

long = [25 45]; lat = [30 60];
newlon = intrplon(lat,long,45,'linear')
newlon =
35
newlon = intrplon(lat,long,45,'rh')
newlon =
33.6515
newlon = intrplon(lat,long,45,'gc')
newlon =
32.0526

```

\section*{Remarks}

There are separate functions for interpolating latitudes and longitudes, for although the cases are identical when using those methods supported by interp1, when latitudes and longitudes are treated like the spherical angles
they are (using 'rh' or 'gc'), the results are different. Compare the previous example to the example under intrplat, which reverses the values of latitude and longitude.

See Also
interpm Linear interpolation of latitude and longitude
intrplat Interpolate longitudes for given longitude

\section*{Purpose Test whether axes have a map definition}
\begin{tabular}{|c|c|}
\hline Syntax & \begin{tabular}{l}
mflag = ismap returns a 1 if the current axes is a map axes, and 0 otherwise. \\
mflag = ismap (hndl) specifies the handle of the axes to be tested. \\
[mflag, msg] = ismap(hndl) returns a string message if the axes is not a map axes, specifying why not.
\end{tabular} \\
\hline Description & The ismap function tests an axes object to determine whether it is a map axes. \\
\hline See Also & gcm get current map data structure \\
\hline & ismapped Test whether object is projected on map axes \\
\hline
\end{tabular}

Purpose
Syntax

Description

See Also
gcm
ismap

Get current map data structure
Test whether axes have a map definition

\section*{km2deg, km2nm, km2rad, km2sm}

\section*{Purpose Convert distance from kilometers to other units}
Syntax
Description

\section*{Examples \\ How many miles is a \(10 k\) run?}
```

distout = km2sm(10)
distout =
6.2139

```

See Also
distdim Convert distance units
nm2km Other direct distance conversion functions sm2deg

\section*{latlon2pix}

Purpose

Description

Example

\section*{See Also}

Syntax [row, col] = latlon2pix(R,lat,lon) calculates pixel coordinates row, col from latitude-longitude coordinates lat, lon. R is a 3-by-2 referencing matrix defining a two-dimensional affine transformation from pixel coordinates to spatial coordinates. lat and lon are vectors or arrays of matching size. The outputs row and col have the same size as lat and lon. lat and lon must be in degrees.
Convert latitude-longitude coordinates to pixel coordinates

Longitude wrapping is handled in the following way: Results are invariant under the substitution lon \(=10 n+/-n * 360\) where \(n\) is an integer. Any point on the Earth that is included in the image or gridded data set corresponding to \(r\) will yield row/column values between 0.5 and \(0.5+\) the image height/width, regardless of what longitude convention is used.
```

% Find the pixel coordinates of the upper left and lower right
% outer corners of a 2-by-2 degree gridded data set.
R = makerefmat(1, 89, 2, 2);
[UL_row, UL_col] = latlon2pix(R, 90, 0) % Upper left
[LR_row, LR_col] = latlon2pix(R, -90, 360) % Lower right
[LL_row, LL_col] = latlon2pix(R, -90, 0) %Lower left
%Note that the in both the 2nd case and 3rd case we get a column
% value of 0.5, because the left and right edges are on the same
% meridian and (-90, 360) is the same point as (-90, 0).

```
makerefmat, pix2latlon, map2pix

\section*{Purpose Determine courses and distances between navigational track waypoints}

Syntax [course, dist] = legs(lat, lon) returns the azimuths (course) and distances (dist) between navigational waypoints, which are specified by the column vectors lat and lon.
[course,dist] = legs(lat,lon,method) specifies the logic for the leg characteristics. If the string method is 'rh' (the default), course and dist are calculated in a rhumb line sense. If method is ' gc ', great circle calculations are used.
[course,dist] = legs(pts) and [course,dist] = legs(pts,method) allow you to input the waypoints in a single two-column matrix, pts.
mat \(=\) legs(lat,.. ) packs up the outputs into a single two-column matrix, mat.

Description This is a navigation function. All angles are in degrees, and all distances are in nautical miles. Track legs are the courses and distances traveled between navigational waypoints.

\section*{Examples}

Imagine an airplane taking off from Logan International Airport in Boston \(\left(42.3^{\circ} \mathrm{N}, 71^{\circ} \mathrm{W}\right)\) and traveling to LAX in Los Angeles ( \(34^{\circ} \mathrm{N}, 118^{\circ} \mathrm{W}\) ). The pilot wants to file a flight plan that takes the plane over O'Hare Airport in Chicago \(\left(42^{\circ} \mathrm{N}, 88^{\circ} \mathrm{W}\right)\) for a navigational update, while maintaining a constant heading on each of the two legs of the trip.

What are those headings and how long are the legs?
```

lat = [42.3; 42; 34]; long = [-71; -88; -118];
[course,dist] = legs(lat,long,'rh')
course =
268.6365
251.2724
dist =
1.0e+003 *
0.7569
1.4960

```

Upon takeoff, the plane should proceed on a heading of about \(269^{\circ}\) for 756 nautical miles, then alter course to \(251^{\circ}\) for another 1495 miles.

How much farther is it traveling by not following a great circle path between waypoints? Using rhumb lines, it is traveling
```

totalrh = sum(dist)
totalrh =
2.2530e+003

```

For a great circle route,
```

[coursegc,distgc] = legs(lat,long,'gc'); totalgc = sum(distgc)
totalgc =
2.2451e+003

```

The great circle path is less than one-half of one percent shorter.
See Also
\begin{tabular}{ll} 
dreckon & Dead reckon points for a track \\
gcwaypts & Find waypoints along a great circle \\
navfix & Mercator-based navigational fixing \\
track & Connect waypoints
\end{tabular}

\section*{lightm}

Purpose
Project light objects on the current map axes

\section*{Examples}

\section*{See Also}
\(\mathrm{h}=\) lightm(lat,lon) projects a light object at the coordinates lat and lon. The handle, h , of the object can be returned.
h = lightm(lat,lon,PropertyName,PropertyValue,...) allows the specification of any property name/property value pair supported by the standard MATLAB light function.
\(h=\) lightm(lat, lon, alt) allows the specification of an altitude, alt, for the light object. When omitted, the default is an infinite light source altitude.
```

load topo
axesm globe; view(120,30)
meshm(topo,topolegend); demcmap(topo)
lightm(0,90,'color','yellow')
material([.5 .5 1]); lighting phong

```


Purpose

\section*{Syntax lightmui(hax)}

Description

GUI to control position of lights on a globe or 3-D map
lightmui (hax) creates a GUI to control the position of lights on a globe or 3-D map in map axes hax. You can control the position of lights by clicking and dragging the icon or by dialog boxes. Right-click the appropriate icon in the GUI to invoke the corresponding dialog box. You can change the light color by entering the RGB components manually or by clicking the pushbutton.


See Also
lightm
Project light objects on the current map axes

\section*{limitm}

Purpose Determine latitude and longitude limits of a regular data grid

Syntax

Examples

See Also
[latlimits,lonlimits] = limitm(map,refvec) returns two-element limit vectors latlimits and lonlimits describing the extremes of the input regular data grid with a legend vector refvec.
latlimits and lonlimits are of the form [south-limit north-limit] and [west-limit east-limit], respectively. All elements are in degrees, because this function deals only with regular data grids.
limvec \(=\) limitm(map, refvec) returns a single four-element output vector of the form [south-limit north-limit west-limit east-limit].

Using a familiar data grid,
load topo
[latlimits,lonlimits] = limitm(topo,topolegend)
latlimits =
-90 90
lonlimits =
0360
Which is expected, because topo covers the whole globe.
nanm
onem
spzerom
zerom
sizem

Create special data grids

Row and column dimensions needed for data grid

Purpose
Syntax [xout, yout] = linecirc(slope, intercpt, centerx, centery, radius) finds the points of intersection given a circle defined by a center and radius in \(x-y\) coordinates, and a line defined by slope and \(y\)-intercept, or a slope of "inf" and an \(x\)-intercept. Two points are returned. When the objects do not intersect, NaNs are returned.

When the line is tangent to the circle, two identical points are returned. All inputs must be scalars.

See Also circcirc

Purpose
Project line objects onto current map axes

Description

\section*{Examples}
\(\mathrm{h}=\) linem(lat,lon) displays projected line objects on the current map axes. lat and lon are the latitude and longitude coordinates, respectively, of the line object to be projected. Note that this ordering is conceptually reversed from the MATLAB line function, because the vertical \((y)\) coordinate comes first. However, the ordering latitude, then longitude, is standard geographic usage. lat and lon must be the same size and in the AngleUnits of the map axes. The object handle for the displayed line can be returned in h .
\(\mathrm{h}=\) linem(lat,lon,linetype) allows the specification of the line style, where linetype is any string recognized by the MATLAB line function.
h = linem(lat,lon, PropertyName,PropertyValue,...) allows the specification of any number of property name/property value pairs for any properties recognized by the MATLAB line function except for XData, YData, and ZData.
\(\mathrm{h}=\) linem(lat,lon, z ) displays a line object in three dimensions, where z is the same size as lat and lon and contains the desired altitude data. \(z\) is independent of AngleUnits. If omitted, all points are assigned a \(z\)-value of 0 by default.
linem is the mapping equivalent of the MATLAB line function. It is a low-level graphics function for displaying line objects in map projections. Ordinarily, it is not used directly. Use plotm or plot3m instead.
```

axesm sinusoid; framem
linem([15; 0; -45; 15],[-100; 0; 100; 170],'r-')

```


See Also
\begin{tabular}{ll} 
line & \begin{tabular}{l} 
Create line (see the online MATLAB Function \\
Reference documentation)
\end{tabular} \\
plot3m & Project lines onto current map axes in 3-D space \\
plotm & Project 2-D lines onto current map axes
\end{tabular}

\section*{Purpose Line of sight visibility between two points in terrain}

\section*{Syntax}
vis = los2(map,refvec,lat1,lon1,lat2,lon2) computes the mutual visibility between pairs of points on a digital elevation map. The elevations are provided as a regular data grid containing elevations in units of meters. The two points are provided as vectors of latitudes and longitudes in units of degrees. The resulting logical variable vis is equal to 1 when the two points are visible to each other, and 0 when the line of sight is obscured by terrain. If any of the input arguments is empty, los2 attempts to gather the data from the current axes. With one or more output arguments, no figures are created and only the data is returned.
vis \(=\) los2 (map, refvec, lat1, lon1, lat2,lon2, alt1) places the first point at the specified altitude in meters above the surface. This is equivalent to putting the point on a tower. If omitted, the point is assumed to be on the surface.
vis \(=\) los2(map,refvec,lat1,lon1,lat2,lon2, alt1, alt2) also places the second point at a specified altitude in meters above the surface. If omitted, the point is assumed to be on the surface.
```

vis = los2(map,refvec,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt)

``` controls whether the first point is at a relative or absolute altitude. If the altitude option is 'AGL', the point's altitude is in meters above the terrain ground level. If alt1opt is 'MSL', alt1 is interpreted as altitude above zero, or mean sea level. If omitted, 'AGL' is assumed.
```

vis = los2(map,refvec,lat1,lon1,lat2,lon2,...

```
alt1, alt2, alt1opt, alt2opt) also controls the interpretation of the second point's altitude.
vis \(=\) los2(map, refvec,lat1,lon1,lat2,lon2,...
alt1,alt2,alt1opt,alt2opt, actualradius) does the visibility calculation on a sphere with the specified radius. If omitted, the radius of the Earth in meters is assumed. The altitudes, the elevations, and the radius should be in the same units. This calling form is most useful for computations on bodies other than the Earth.
```

vis = los2(map,refvec,lat1,lon1,lat2,lon2,...

```
alt1, alt2, alt1opt,alt2opt,
actualradius, effectiveradius) assumes a larger radius for propagation of
the line of sight. This can account for the curvature of the signal path due to refraction in the atmosphere. For example, radio propagation in the atmosphere is commonly treated as straight line propagation on a sphere with \(4 / 3\) rds the radius of the Earth. In that case the last two arguments would be R_e and \(4 / 3 * R_{-} e\), where \(R_{-} e\) is the radius of the Earth. Use Inf as the effective radius for flat Earth visibility calculations. The altitudes, the elevations, and the radii should be in the same units.
[vis, visprofile, dist,z,lattrk,lontrk] = los2(...) also returns vectors of points along the path between the two points. The visprofile is a vector containing 1's where the intermediate points are visible. dist is the distance along the path (in meters or the units of the radius). \(z\) contains the terrain profile relative to the z datum along the path. lattrk and lontrk are the latitudes and longitudes of the points along the path.
los2 (...), with no output arguments, displays the visibility profile between the two points in a new figure.

\section*{Description}

\section*{Example}
los 2 computes the mutual visibility between two points on a displayed digital elevation map. los2 uses the current object if it is a regular data grid, or the first regular data grid found on the current axes. The map's zdata is used for the profile. The color data is used in the absence of data in z. Select the two points by clicking the map. The result is displayed in a new figure. Markers indicate visible and obscured points along the profile. The profile is shown in a Cartesian coordinate system with the origin at the observer's location. The displayed \(z\)-coordinate accounts for the elevation of the terrain and the curvature of the body.

Check the visibility between two points on the peaks map.
```

map = 500*peaks(100);
refvec = [ 1000 0 0];
[lat1,lon1,lat2,lon2]=deal(-0.027,0.05,-0.093,0.042);
los2(map,refvec,lat1,lon1,lat2,lon2,100)
ans =

```


Display the same data together with the peaks surface.
```

figure
axesm('globe','geoid',almanac('earth','sphere','meters'))
meshm(map,refvec,size(map),map); axis tight
camposm(-10,-10,1e6); camupm(0,0)
demcmap('inc',map,1000); shading interp; camlight
[vis,visprofile,dist,z,lattrk,lontrk] =
los2(map,refvec,lat1,lon1,lat2,lon2,100);
plot3m(lattrk([1;end]),lontrk([1; end]),z([1; end])+[100;
0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile),z(~visprofile),'r.
','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile),z(visprofile),'g.','
markersize',10)

```


See Also
viewshed Compute visible areas from a point on a digital elevation map
mapprofile Interpolate values between waypoints on a regular data grid
\begin{tabular}{|c|c|}
\hline Purpose & Determine data grid entries or interpolated values associated with latitude-longitude points \\
\hline Syntax & value \(=\) ltln2val(map, refvec, lat,lon) returns the values of the regular data grid map corresponding to the locations specified by the vectors lat and lon. \\
\hline & value \(=l t l n 2 v a l(m a p\), refvec, lat, lon, method) specifies the method for determining the returned value. The default method is 'nearest', which returns the unaltered value of the cell containing the coordinates lat and lon. Using a method of 'linear' or 'cubic' results in values that are linearly and cubically interpolated between cells, respectively. \\
\hline \multirow[t]{10}{*}{Examples} & Find the elevations in topo associated with three European cities - Milan, Bern, and Prague (topo elevations are in meters): \\
\hline & load topo \\
\hline & The city locations, [Milan Bern Prague], \\
\hline & lats \(=\) [45.45; 46.95; 50.1]; \\
\hline & longs = [9.2; 7.4; 14.45]; \\
\hline & elevations = ltln2val(topo,topolegend, lats,longs) \\
\hline & elevations = \\
\hline & 313 \\
\hline & 1660 \\
\hline & 297 \\
\hline See Also & findm Coordinates of nonzero map entries \\
\hline
\end{tabular}

Purpose

\section*{Syntax semimajor = majaxis(semiminor, eccentricity) returns the semimajor axis length corresponding to the input semiminor axis and eccentricity. \\ semimajor \(=\) majaxis([semiminor eccentricity]) allows the inputs to be packed into a single two-column input of the form [semiminor eccentricity]. \\ Description \\ Examples \\ Using the default values for the Earth, \\ \\ ```
```

    semimajor = majaxis(6356.7523,0.0818192) \\ \\ ```
    ```
    semimajor = majaxis(6356.7523,0.0818192) \\ \\ semimajor = \\ \\ semimajor = \\ \\ 6.3781e+03
```

``` \\ \\ 6.3781e+03
```

``` pacdind. \\ The semimajor axis, the first element of the standard ellipsoid vector in the Mapping Toolbox, can be determined given both the semiminor axis and the eccentricity.}

This is the default semimajor axis.

\section*{See Also}

Calculate semimajor axis from semiminor axis and eccentricity
\begin{tabular}{ll} 
almanac & Planetary data \\
axes2ecc & Related conversion functions \\
minaxis &
\end{tabular}

\section*{Purpose Make an object a mapped object}

Syntax

Background
makemapped ( h ) adds a Mapping Toolbox structure to the displayed objects associated with h . h can be a handle, vector of handles, or any name string recognized by handlem. The objects are then considered to be geographic data. Objects extending outside the map frame should first be trimmed to the map frame using trimcart.

The Mapping Toolbox identifies displayed objects that are projected from geographic coordinates by a special structure in that object's UserData property. Objects created using standard MATLAB display functions lack this structure, and retain the same Cartesian coordinates, regardless of the projection. This function adds the structure that makes an object mapped. The coordinates are unchanged in the process, but will change if the map projection is modified.

\section*{Examples}
```

axesm('miller','geoid',[25 0])
framem
plot(humps,'b+-')
h = plot(humps,'r+-');
trimcart(h)
makemapped(h)
setm(gca,'MapProjection','sinusoid')

```


Remarks

See Also

Objects should first be trimmed to the map frame using trimcart. This avoids problems in taking inverse map projections with out-of-range data.
trimcart Trim graphic objects to the map frame
handlem Return the graphics handle for identified objects
cart2grn Transform from projected Cartesian coordinates to Greenwich frame

\section*{Purpose}

Description

Construct an affine spatial-referencing matrix
A spatial referencing matrix \(R\) ties the row and column subscripts of an image or regular data grid to 2-D map coordinates or to geographic coordinates (longitude and geodetic latitude). R is a 3-by-2 affine transformation matrix. R either transforms pixel subscripts (row, column) to/from map coordinates ( \(\mathrm{x}, \mathrm{y}\) ) according to
```

[x y] = [row col 1] * R

```
or transforms pixel subscripts to/from geographic coordinates according to
```

[lon lat] = [row col 1] * R

```

To construct a referencing matrix for use with geographic coordinates, use longitude in place of \(X\) and latitude in place of \(Y\), as shown in the third syntax below. This is one of the few places where longitude precedes latitude in a function call.

\section*{Syntax} referencing matrix that aligns image/data grid rows to map \(x\) and columns to map \(y . x 11\) and y 11 are scalars that specify the map location of the center of the first \((1,1)\) pixel in the image or first element of the data grid, so that
```

[x11 y11] = pix2map(R,1,1)

```
dx is the difference in x (or longitude) between pixels in successive columns and dy is the difference in \(y\) (or latitude) between pixels in successive rows. More abstractly, \(R\) is defined such that
```

[x11 + (col-1) * dx, y11 + (row-1) * dy] = pix2map(R, row, col)

```

Pixels cover squares on the map when abs \((d x)=a b s(d y)\). To achieve the most typical kind of alignment, where \(x\) increases from column to column and \(y\) decreases from row to row, make \(d x\) positive and dy negative. In order to specify such an alignment along with square pixels, make \(d x\) positive and make dy equal to -dx :
```

    R = makerefmat(x11, y11, dx, -dx)
    ```
\(R=\) makerefmat(x11, \(y 11, d x, d y)\) with two-element vectors \(d x\) and \(d y\) constructs the most general possible kind of referencing matrix, for which
```

[x11 + ([row col]-1) * dx(:), y11 + ([row col]-1) * dy(:)] ...
= pix2map(R, row, col)

```

\section*{Remarks}

\section*{Examples}

In this general case, each pixel can become a parallelogram on the map, with neither edge necessarily aligned to map \(X\) or \(Y\). The vector [ \(d \times 1\) ) \(d y(1)\) ] is the difference in map location between a pixel in one row and its neighbor in the preceding row. Likewise, \([d x(2) d y(2)]\) is the difference in map location between a pixel in one column and its neighbor in the preceding column.

To specify pixels that are rectangular or square (but possibly rotated), choose \(d x\) and \(d y\) such that \(\operatorname{prod}(d x)+\operatorname{prod}(d y)=0\). To specify square (but possibly rotated) pixels, choose \(d x\) and \(d y\) such that the 2-by-2 matrix [ \(d x\) (: ) \(d y(:)]\) is a scalar multiple of an orthogonal matrix (that is, its two eigenvalues are real, nonzero, and equal in absolute value). This amounts to either rotation, a mirror image, or a combination of both. Note that for scalar dy and dy,
```

R = makerefmat(x11, y11, [0 dx], [dy 0])

```
is equivalent to
```

R = makerefmat(x11, y11, dx, dy)

```

R = makerefmat(lon11, lat11, dlon, dlat), with longitude preceding latitude, constructs a referencing matrix for use with geographic coordinates. In this case,
```

[lat11,lon11] = pix2geo(R,1,1),
[lat11+(row-1)*dlat,lon11+(col-1)*dlon] = pix2geo(R,row,col)

```
for scalar dlat and ddlon, and
```

[lat11+[row col]-1)*dlat,lon11+([row col]-1)*dlom] = ...
pix2geo(R, row,col)

```
for vector dlat and dlon. Note that images or data grids aligned with latitude and longitude might already have referencing vectors. In this case you can use function refvec2mat to convert to a referencing matrix.

\section*{Example 1}
\% Create a referencing matrix for an image with square,
\% four-meter pixels and with its upper left corner (in a map
\% coordinate system) at \(x=207000\) meters, \(y=913000\)
```

% meters. The image follows the typical orientation:
% x increasing from column to column and y decreasing
% from row to row.
x11 = 207002; % Two meters east of the upper left corner
y11 = 912998; % Two meters south of the upper left corner
dx = 4;
dy = -4;
R = makerefmat(x11, y11, dx, dy)

```

\section*{Example 2}
\% Create a referencing matrix for a global geoid grid.
load geoid \% Adds array 'geoid' to the workspace
\% 'geoid' contains a model of the Earth's geoid sampled in \% one-degree-by-one-degree cells. Each column of 'geoid'
\% contains geoid heights in meters for 180 cells starting at
\% latitude -90 degrees and extending to +90 degrees, for a
\% given latitude
\% Each row contains geoid heights for 360 cells starting at
\% longitude 0 and extending 360 degrees.
lat11 \(=-89.5\); \% Cell-center latitude corresponding to geoid(1,1)
lon11 = 0.5; \% Cell-center longitude corresponding to
geoid(1,1)
dLat \(=1\); \(\%\) From row to row moving north by one degree
dLon \(=1\); \% From column to column moving east by one degree
geoidR = makerefmat(lon11, lat11, dLon, dLat)
\% It's well known that at its most extreme the geoid reaches
\% a minimum of slightly less than -100 meters, and that the
\% minimum occurs in the Indian Ocean at approximately
\% 4.5 degrees latitude, 78.5 degrees longitude. Check the
\% geoid height at this location by using LATLON2PIX with
\% the new referencing matrix:
[row, col] = latlon2pix(geoidR, 4.5, 78.5)
geoid(round(row), round(col))

\section*{Example 3}
```

% Create a half-resolution version of a georeferenced TIFF
% image, using Image Processing Toolbox functions IND2GRAY
% and IMRESIZE.
% Read the indexed-color TIFF image and convert it to grayscale.
% The size of the image is 2000-by-2000.
[X, cmap] = imread('1_209910_sub.tif');
I_orig = ind2gray(X, cmap);
% Read the corresponding worldfile. Each image pixel covers a
% one-meter square on the map.
R_orig = worldfileread('1_209910_sub.tfw')
% Halve the resolution, creating a smaller (1000-by-1000) image.
I_half = imresize(I_orig, size(I_orig)/2, 'bicubic');
% Find the map coordinates of the center of pixel (1,1) in the
% resized image: halfway between the centers of pixels (1,1) and
% (2,2) in the original image.
[x11_orig, y11_orig] = pix2map(R_orig, 1, 1)
[x22_orig, y22_orig] = pix2map(R_orig, 2, 2)
% Average these to determine the center of pixel (1,1) in the new
% image.
x11_half = (x11_orig + x22_orig) / 2
y11_half = (y11_orig + y22_orig) / 2
% Make a referencing matrix for the new image, noting that its
% pixels are each two meters square.
R_half = makerefmat(x11_half, y11_half, 2, -2)
% Display each image in map coordinates.
figure;
subplot(2,1,1); h1 = mapshow(I_orig,R_orig); ax1 =
get(h1,'Parent');
subplot(2,1,2); h2 = mapshow(I_half,R_half); ax2 =
get(h2,'Parent');
set(ax1, 'XLim', [208000 208250], 'YLim', [911800 911950])
set(ax2, 'XLim', [208000 208250], 'YLim', [911800 911950])

```
```

% Mark the same map location on top of each image.
x = 208202.21;
y = 911862.70;
line(x, y, 'Parent', ax1, 'Marker', '+', 'MarkerEdgeColor', 'r');
line(x, y, 'Parent', ax2, 'Marker', '+', 'MarkerEdgeColor', 'r');
% Graphically, they coincide, even though the same map location
% corresponds to two different pixel coordinates.
[row1, col1] = map2pix(R_orig, x, y)
[row2, col2] = map2pix(R_half, x, y)

```

See Also latlon2pix, map2pix, pix2latlon, pix2map, refvec2mat, worldfileread, worldfilewrite

\title{
makesymbolspec
}

\section*{Purpose}

Construct layer symbolization specification

\section*{Syntax}

\section*{Examples}

The following examples import a shapefile containing road data and symbolize it in several ways using symbol specifications.

\author{
Example 1 - Default Color \\ roads = shaperead('concord_roads.shp');
}

\section*{makesymbolspec}
```

blueRoads = makesymbolspec('Line',{'Default','Color',[0 0 1]});
mapshow(roads,'SymbolSpec',blueRoads);

```
```

Example 2- Discrete Attribute Based
roads = shaperead('concord_roads.shp');
roadColors = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'},...
{'CLASS','Secondary','Color','g'},...
{'CLASS','Improved','Color','y'},...
{'Default','Color','k'});
mapshow(roads,'SymbolSpec',roadColors);

```

\section*{Example 3 - Using a Range of Attribute Values}
roads = shaperead('concord_roads.shp'); lineStyle = makesymbolspec('Line',...
    \{'ID',[0 5], 'LineStyle',':'\},...
    \{'ID', [6 10],'LineStyle',' -.'\});
mapshow(roads,'SymbolSpec',lineStyle);

\section*{Example 4 - Using a Range of Attribute Values and a Range of Property Values}
```

roads = shaperead('concord_roads.shp');
colorRange = makesymbolspec('Line',...
{'ID',[1 10],'Color',jet(10)});
mapshow(roads,'SymbolSpec',colorRange);

```

See Also
mapshow, geoshow, mapview

Purpose
Syntax

Example

See Also

Convert map coordinates to pixel coordinates
[row, col] = map2pix( \(R, x, y\) ) calculates pixel coordinates row, col from map coordinates \(\mathrm{x}, \mathrm{y}\). R is a 3-by-2 referencing matrix defining a two-dimensional affine transformation from pixel coordinates to map coordinates. \(x\) and \(y\) are vectors or arrays of matching size. The outputs row and col have the same size as \(x\) and \(y\).
\(p=\operatorname{map} 2 p i x(R, x, y)\) combines row and col into a single array \(p\). If \(x\) and \(y\) are column vectors of length \(n\), then \(p\) is an \(n\)-by- 2 matrix and each ( \(\mathrm{P}(\mathrm{k},:)\) ) specifies the pixel coordinates of a single point. Otherwise, p has size [size(row) 2], and \(p(k 1, k 2, \ldots, k n,:)\) contains the pixel coordinates of a single point.
\([\ldots]=\operatorname{map} 2 p i x(R, s)\) combines \(x\) and \(y\) into a single array \(s\). If \(x\) and \(y\) are column vectors of length \(n\), the \(s\) should be an \(n\)-by- 2 matrix such that each row \((s(k,:))\) specifies the map coordinates of a single point. Otherwise, \(s\) should have size [size(X) 2], and s(k1, k2, ..., kn,:) should contain the map coordinates of a single point.
```

% Find the pixel coordinates for the spatial coordinates
% (207050, 912900)
R = worldfileread('concord_ortho_w.tfw');
[r,c] = map2pix(R, 207050, 912900);

```
latlon2pix, makerefmat, pix2map, worldfileread

Purpose Compute bounding box of a georeferenced image or data grid


See Also
geotiffinfo, makerefmat, mapoutline, pixcenters, pix2map

\section*{Purpose}

Syntax

List the map projections available in the Mapping Toolbox
list = maplist returns a structure that defines the map projections available in the Mapping Toolbox. The list structure is list. Name, list. IdString, list. Classification, list. ClassCode. This list structure is used by the functions maps and axesmui when processing map projection identifiers during operation of the toolbox functions.
[list, defproj] = maplist also returns the IdString of the default projection.
list. Name defines the full name of the projection. This entry is used in the command-line table display and in the Projection Control Box.
list.IdString defines the name of the M-file that computes the projection.
list.Classification defines the projection classification that is used in the command-line table display.
list. ClassCode defines the character string that is used to label the classes of projections in the Projection Control Box. The eight class codes are
- Azim - Azimuthal
- Coni - Conic
- Cyln - Cylindrical
- Mazi - Modified azimuthal
- Pazi - Pseudoazimuthal
- Pcon - Pseudoconic
- Pcy — Pseudocylindrical
- Poly - Polyconic

If map projections are to be added to the toolbox, the list structure must be extended and the appropriate field data entered. For example, if a new projection is added to the default list, then a new entry in the list structure would be
```

list.Name(61) = 'My Projection'
list.IdString(61) = 'newprojection';
list.Classification(61) = 'New Projection Type';
list.ClassCode(61) = 'Code';

```

See Also maps, axesmui

\section*{Purpose Compute outline of a georeferenced image or data grid}

\section*{Syntax}
\([x, y]=\) mapoutline( \(R\), height, width) computes the outline of a georeferenced image or regular gridded data set in map coordinates. \(R\) is a 3 -by- 2 affine referencing matrix. height and width are the image dimensions. \(x\) and \(y\) are 4 -by- 1 column vectors containing the map coordinates of the outer corners of the corner pixels, in the following order:
\((1,1),(h e i g h t, 1), ~(h e i g h t, ~ w i d t h), ~(1, ~ w i d t h) . ~\)
[ \(\mathrm{x}, \mathrm{y}\) ] = mapoutline(R, sizea) accepts SIZEA = [height, width, ...] instead of height and width.
[ \(x, y\) ] = mapoutline(info) accepts a scalar struct array with the fields
'RefMatrix' 3-by-2 referencing matrix
'Height' Scalar number
'Width' Scalar number
\([x, y]=\) mapoutline(..., 'close') returns \(x\) and \(y\) as 5 -by-1 vectors, appending the coordinates of the first of the four corners to the end.
[lon,lat] = mapoutline(R,...), where R georeferences pixels to longitude and latitude rather than map coordinates, returns the outline in geographic coordinates. Longitude must precede latitude in the output argument list.
outline = mapoutline(...) returns the corner coordinates in a 4-by-2 or 5-by-2 array.

\section*{Examples Example 1}

Draw an outline delineating a TIFF image with a world file
```

R = worldfileread('concord_ortho_w.tfw');
info = imfinfo('concord_ortho_w.tif');
[x,y] = mapoutline(R, info.Height, info.Width);
plot(x,y)

```

\section*{Example 2}

Draw an outline delineating a GeoTIFF image
```

info = geotiffinfo('boston.tif');

```
```

[x,y] = mapoutline(info, 'close');
plot(x,y)

```

See Also
makerefmat, mapbbox, pixcenters, pix2map

\section*{Purpose}

Values between waypoints on a regular data grid
mapprofile plots a profile of values between waypoints on a displayed regular data grid. mapprofile uses the current object if it is a regular data grid, or the first regular data grid found on the current axes. The map's zdata is used for the profile. The color data is used in the absence of data in \(z\). The result is displayed in a new figure.
[z,rng,lat,lon] = mapprofile returns the values of the profile without displaying them. The output \(z\) contains interpolated values from map along great circles between the waypoints. rng is a vector of associated distances from the first waypoint in units of degrees of arc along the surface. lat and lon are the corresponding latitudes and longitudes.
[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon) uses the provided regular data grid and waypoint vectors. No displayed map is required. Sets of waypoints can be separated by NaNs into line sequences. The output ranges are measured from the first waypoint within a sequence.
[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon,rngunits) specifies the units of the output ranges along the profile. Valid range units inputs are any distance string recognized by distdim. Surface distances are computed using the default radius of the earth. If omitted, 'degrees ' is assumed.
[z,rng,lat,lon] = mapprofile(map,refvec,lat,lon,ellipsoid) uses the provided ellipsoid definition in computing the range along the profile. The ellipsoid vector is of the form [semimajor axes, eccentricity]. The output range is reported in the same distance units as the semimajor axes of the ellipsoid vector. If omitted, the range vector is for a sphere.
```

[z,rng,lat,lon] = ...
mapprofile(map,refvec,lat,lon,rngunits,trackmethod,interpmethod)
and [z,rng,lat,lon] = ...
mapprofile(map,refvec,lat,lon,ellipsoid,trackmethod,interpmethod)
control the interpolation methods used. Valid trackmethods are 'gc' for great
circle tracks between waypoints, and 'rh' for rhumb lines. Valid
interpmethods for interpolation within the data grid are 'bilinear ' for linear
interpolation, 'bicubic' for cubic interpolation, and 'nearest' for nearest
neighbor interpolation. If omitted, 'gc' and 'bilinear' are assumed.

```

Example

What is the elevation profile across the sample Korean digital elevation data? Take the data and the waypoints from a map display. Click the upper left and the lower right corners of the map, and then press the Enter key.
```

load korea
worldmap(map,refvec,'dem')
mapprofile

```


When you select more than two waypoints, the automatically generated figure displays the result in three dimensions. The following example shows the relative sizes of the mountains in northern China compared to the depths of the Sea of Japan.
```

close
mapprofile

```


Adding output arguments suppresses the display of the results in a new figure. You can then use the results in further calculations or display the results yourself. Here the profile from the upper left to lower right is computed from waypoints selected on the map. The ranges and elevations are converted to kilometers and displayed in a new figure. The vertical exaggeration factor is set to 20 . With no vertical exaggeration, the changes in elevation would be almost too small to see.
```

[z,rng,lat,lon] = mapprofile;
figure
plot(deg2km(rng),z/1000)
daspect([ 1 1/20 1 ]); grid
xlabel 'Range (km)'
ylabel 'Elevation (km)'

```


You can compute values along a path without reference to an existing figure by providing a regular data grid and vectors of waypoint coordinates. Optional arguments allow control over the units of the range output and interpolation methods between waypoints and data grid elements.

Find the countries that lie under a great circle track from Frankfurt to Seattle. Use the 15 minute ( 25 kilometer) worldmtxmed political map data.
```

close all; clear all;
load worldmtxmed
[lat,lon] =
extractm(worldlo('PPpoint'),{'Seattle','Frankfurt'});
lat(isnan(lat)) = []; lon(isnan(lon)) = [];
[lat lon]
ans =
50.1082 8.6732
47.5070 -122.3589
[valp,rngp,latp,lonp] =
mapprofile(double(map),refvec,lat,lon,'km','gc','nearest');
ucodes = unique(valp)
ucodes =
35
7 1
7 4
86
132

```

\section*{mapprofile}
```

194
207
unames $=$ names(ucodes)
unames =
'Canada'
'Germany '
'Greenland '
'Iceland'
'Netherlands'
'United States'
'Water'

```
```

plot(rngp,valp,'.')
xlabel 'Range (km)'
ylabel 'Country Code'
set(gca,'ytick',ucodes)
set(gca,'yticklabel',unames)

```


Verify the result by displaying the track on a map.
worldmap([40 80],[-135 20],'patch')
```

plotm(latp,lonp,'r')
plotm(lat,lon,'ro')
hidem(gca)

```


\section*{See Also}
ltln2val Values for position on a regular data grid
los2
Line of sight between two points

\section*{Purpose List projection names or projection codes}

Syntax maps displays in the Command Window a table describing all projections available for use.
strmat \(=\) maps('namelist') returns the English names for the available projections as a matrix of strings.
strmat \(=\) maps('idlist') returns the standard projection identification strings for the available projections as a matrix of strings.
stdstr \(=\) maps(id_string) returns the specific standard projection identification string associated with a unique truncation abbreviation.

\section*{Examples}

To show the first five entries of the projections name list,
```

str1 = maps('namelist');
str1(1:5,:)
ans =
Balthasart Cylindrical
Behrmann Cylindrical
Bolshoi Sovietskii Atlas Mira
Braun Perspective Cylindrical
Cassini Cylindrical

```

The corresponding shorthand names are
```

str2 = maps('idlist');
str2(1:5,:)
ans =
balthsrt
behrmann
bsam
braun
cassini

```

These are the strings used, for example, when setting the axesm property MapProjection.

The functions setm and axesm recognize unique abbreviations (truncations) of these strings. The maps function can be used to convert such an abbreviation to the standard ID string:
```

stdstr = maps('merc')
stdstr =
mercator

```

When the function name alone is used,

\section*{maps}

MapTools Projections CLASS NAME ID STRING
Cylindrical Balthasart Cylindrical
balthsrt
Cylindrical Behrmann Cylindrical behrmann Cylindrical Bolshoi Sovietskii Atlas Mira* bsam Cylindrical Braun Perspective Cylindrical* braun Cylindrical Cassini Cylindrical cassini Cylindrical Central Cylindrical* ccylin Cylindrical Equal Area Cylindrical Cylindrical Equidistant Cylindrical Cylindrical Gall Isographic eqacylin eqdcylin giso

The actual result contains all defined projections.

\section*{See Also} axesm Create map axes
setm Modify the properties of a displayed map

\section*{Purpose Display map data without projection}

\section*{Syntax}
mapshow(s) displays the graphic features stored in the geographic data structure s. If s includes X and Y fields, then they are used directly to plot features in map coordinates. If Lat and Lon fields are present instead, then their coordinate values are projected to map coordinates if the axes has a projection. Otherwise, Lon is plotted as X and Lat as Y .
mapshow(s, Property1, Value1, Property2,Value2,...)
mapshow(x,y) or mapshow(x,y, ..., 'DisplayType', displaytype, ...) displays the equal-length coordinate vectors \(x\) and \(y . x\) and \(y\) can contain embedded NaNs, delimiting coordinates of lines or polygons. displaytype can be 'point', 'line', or 'polygon' and defaults to 'line'.
mapshow(x,y,z, ..., 'DisplayType', displaytype, ...) where \(x\) and \(y\) are M-by-N coordinate arrays, \(z\) is an M-by-N array of class double, and displaytype is 'surface', 'mesh', 'texturemap', or 'contour', displays a geolocated data grid, z. z can contain NaN values.
```

mapshow(x,y,I)
mapshow(x,y,BW)
mapshow(x,y,A,cmap)
mapshow(x,y,RGB)

```
where \(I\) is an intensity image, \(B W\) is a logical image, \(A\) is an indexed image with colormap cmap, or RGB is a true-color image, displays a geolocated image. The image is rendered as a texture map on a zero-elevation surface. If specified, 'DisplayType ' must be set to 'image '. Examples of geolocated images include a color composite from a satellite swath or an image originally referenced to a different coordinate system.
mapshow(x,R, ..., 'DisplayType', displaytype,...) where Z is class double and displaytype is 'surface', 'mesh', 'texturemap', or 'contour', displays a regular M-by-N data grid. R is a referencing matrix or referencing vector.
```

mapshow(I,R)
mapshow(BW,R)
mapshow(RGB,R)
mapshow(A,cmap,R)

```
displays a georeferenced image. It is rendered as an image object if the display geometry permits; otherwise, the image is rendered as a texture map on a zero-elevation surface. If specified, 'DisplayType' must be set to 'image'. mapshow(filename) displays data from filename, according to the type of file format. The DisplayType parameter is automatically set according to the following table:
\begin{tabular}{l|l}
\hline Format & DisplayType \\
\hline Shapefile & 'point ', 'line ', or 'polygon' \\
\hline GeoTIFF & 'image ' \\
\hline \begin{tabular}{l} 
TIFF/JPEG/PNG \\
with a world file
\end{tabular} & 'image ' \\
\hline ARC ASCII GRID & 'surface ' (can be overridden) \\
\hline SDTS raster & 'surface ' (can be overridden) \\
\hline
\end{tabular}
mapshow (ax, ...) sets the axes parent to AX. This is equivalent to
```

    mapshow(..., 'Parent', ax, ...)
    ```
\(\mathrm{h}=\) mapshow (...) returns a handle to a MATLAB graphics object, an array of object handles, or in the case of vector data, a map graphics object.
mapshow(..., param1, val1, param2, val2, ...) specifies parameter/value pairs that modify the type of display or set MATLAB graphics properties. Parameter names can be abbreviated and are case insensitive.

Parameters Parameters for mapshow include

\section*{mapshow}
- 'DisplayType ' - The DisplayType parameter specifies the type of graphic display for the data. The value must be consistent with the type of data being displayed, as shown in the following table:
\begin{tabular}{ll}
\hline Data Type & Value \\
\hline vector & 'point', 'line', or 'polygon' \\
\hline image & 'image' \\
\hline grid & 'surface','mesh', 'texturemap', or 'contour' \\
\hline
\end{tabular}

\section*{Graphics Properties}

In addition to specifying a parent axes, the following properties can be set for line, point, and polygon:
- DisplayType
\begin{tabular}{l|l}
\hline DisplayType & Property Name \\
\hline 'line' & 'Color','LineStyle', 'LineWidth', and 'Visible' \\
\hline 'point' & \begin{tabular}{l} 
'Marker', 'Color', 'MarkerEdgeColor', \\
\\
\hline 'MarkerFaceColor', 'MarkerSize', and 'Visible'
\end{tabular} \\
\hline & \begin{tabular}{l} 
'FaceColor', 'FaceAlpha','LineStyle', 'LineWidth', \\
'EdgeColor', 'EdgeAlpha', and 'Visible'
\end{tabular} \\
\hline
\end{tabular}

Refer to the MATLAB graphics documentation on line, patch, image, surface, and mesh for a complete description of these properties and their values.
- 'SymbolSpec '- The SymbolSpec parameter specifies the symbolization rules used for vector data through a structure returned by makesymbolspec. It is used only for vector data.

When both SymbolSpec and one or more graphics properties are specified, the graphics properties will override any settings in the symbol spec structure. See example 5 below.
To change the default symbolization rule for a property name/property value pair in the symbol spec, prefix the word 'Default' to the graphics property name (listed in the preceding table). See example 4 below.

Refer to the Handle Graphics documentation on lines and patches for a complete description of these properties and their values.

If PropertyN is 'SymbolSpec', then ValueN must be symbols. symbols should conform to the structure returned by makesymbolspec.

When you use 'SymbolSpec '/symbols and other property name/property value pairs together, the property name/property value pairs override any settings in symbols. To append the property name/property value pairs to the symbol spec, prefix the word 'Default' to the property name. See the example below.

\section*{Remarks}

\section*{Examples}

You can use mapshow to render vector data in an axesm figure. However, you cannot subsequently change the map projection using setm.

You can generally substitute mapshow for displaym if no map projection is required. However, there are limitations where display of specific objects is concerned. See the remarks under updategeostruct for further information.

\section*{Example 1}

Display the roads geographic data structure.
```

roads = shaperead('concord_roads.shp');
figure
mapshow(roads);

```

\section*{Example 2}

Display the roads shape and change the LineStyle.
```

figure
mapshow('concord_roads.shp','LineStyle',':');

```

\section*{Example 3}

Display the roads shape, and render using a SymbolSpec.
```

% Create a SymbolSpec to color local roads:
% * (ADMIN_TYPE=0) cyan, state roads (ADMIN_TYPE=3) red.
% Hide very minor roads (CLASS=6).
% Make all roads that are major or larger (CLASS=1-4)
% * have a LineWidth of 2.
roadspec = makesymbolspec('Line',...
{'ADMIN_TYPE',0,'Color','cyan'}, ...

```
```

{'ADMIN_TYPE',3,'Color','red'},...
{'CLASS',6,'Visible','off'},...
{'CLASS',[1 4],'LineWidth',2});

```
figure mapshow('concord_roads.shp','SymbolSpec', roadspec);

\section*{Example 4}

Override default properties of the SymbolSpec.
```

roadspec = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'}, ...
{'CLASS','Improved','Color','y'}, ...
{'CLASS','Primary 4L','Color','m'});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,...
'DefaultColor','b', 'DefaultLineStyle','-.');

```

\section*{Example 5}

Override a graphics property of the SymbolSpec.
```

roadspec = ...
makesymbolspec('Line',{'CLASS','Primary','Color','r'}, ...
{'CLASS','Improved','Color','y'}, ...
{'CLASS','Primary 4L','Color','m'});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,'Color','b');

```

\section*{Example 6}

Display the waterways and roads shapes in one figure.
```

figure
mapshow('concord_roads.shp');
mapshow(gca,'concord_hydro_line.shp','Color','b');
mapshow(gca,'concord_hydro_area.shp','FaceColor','b', ...
'EdgeColor','b');

```

\section*{Example 7}

View the Mount Washington SDTS DEM terrain data
\% View the Mount Washington terrain data as a mesh.
```

figure
h = mapshow('9129CATD.ddf','DisplayType','mesh');
Z = get(h,'ZData');
colormap(demcmap(Z))
% View the Mount Washington terrain data as a surface.
figure
mapshow('9129CATD.ddf');
colormap(demcmap(Z))
view(3); % View as a 3-d surface
axis normal;

```

\section*{Example 8}

Display the grid and contour lines of Mount Washington and Mount Dartmouth.
```

figure
[Z_W, R_W] = arcgridread('MtWashington-ft.grd');
[Z_D, R_D] = arcgridread('MountDartmouth-ft.grd');
mapshow(Z_W, R_W,'DisplayType','surface');
hold on
mapshow(gca,Z_W, R_W,'DisplayType','contour');
mapshow(gca,Z_D, R_D, 'DisplayType','surface');
mapshow(gca,Z_D, R_D,'DisplayType','contour');
colormap(demcmap(Z_W))
% Set the contour lines to the max surface value
zdatam(handlem('line'),max([Z_D(:)' Z_W(:)']));

```

\section*{Example 9}

Display an image with a worldfile.
```

figure
mapshow('concord_ortho_e.tif');

```

\section*{See Also}
arcgridread, geoshow, geotiffread, makesymbolspec, mapview, sdtsdemread, shaperead, updategeostruct

\section*{Purpose Trim line vector map to a specified region}
Syntax \begin{tabular}{l}
{\([\) lat,lon \(]=\) maptriml(lato,lono, latlim,lonlim) returns filtered } \\
\\
NaN-delimited vector map data sets from which all points lying outside the \\
desired latitude and longitude limits have been discarded. These limits are \\
specified by the two-element vectors latlim and lonlim, which have the form \\
[south-limit north-limit] and [west-limit east-limit], respectively.
\end{tabular}

Examples Following is a simple example:
```

lat0 = [1:10,9:-1:0]; lon0 = -30:-11;
[lat,lon] = maptriml(lat0,lon0,[3 7],[-29 -12]);
[lat lon]
ans =
NaN NaN
3 -28
4-27
5 -26
6 -25
7 -24
NaN NaN
7 -18
6 -17
5 -16
4 -15
3 -14
NaN NaN

```

Notice that trimmed line segment ends have NaNs inserted at trim points.

\section*{See Also}
maptrimp Trim patch map data to specified region
maptrims Trim surface data grid to specified region

\section*{Purpose}

Syntax

\section*{Examples}

Trim patch map data to a specified region
[lat,lon] = maptrimp(lat0,lon0,latlim,lonlim) returns adjusted patch map data sets. The patches must be input in NaN-delimited vectors lat0 and lon0. For any patch face completely outside the specified limits, the entire patch face is discarded. When parts of a patch are outside the limits, those data points are moved to lie on the limits. These limits are specified by the two-element vectors latlim and lonlim, which have the forms [south-limit north-limit] and [west-limit east-limit], respectively.

Make two patches using the scircle1 function, and display them:
```

[lat0,lon0] = scircle1([0 0]',[-90 90]',[70 70]');
axesm('pcarree','Grid','on',...
'MeridianLabel','on','ParallelLabel','on')
h = fillm(lat0,lon0,'green');

```


Now trim the patch data to lie between \(80^{\circ} \mathrm{S}\) and \(45^{\circ} \mathrm{N}\) latitude, and \(120^{\circ} \mathrm{W}\) and \(0^{\circ}\) longitude. The patch data is in two columns coming out of scircle1, so first you must turn it into NaN -delimited vectors.
```

latO = [latO; NaN NaN];
lonO = [lonO; NaN NaN];
[lat,lon] = maptrimp(lat0(:),lon0(:),[45 -80],[-120 0]);
clmo(h)
fillm(lat,lon,'green')

```


Notice that the patch face to the east, lying completely outside the allowed area, was removed. The western patch was trimmed to the required area.

See Also
maptriml Trim line vector map data to specified region
maptrims Trim surface data grid to specified region

\section*{Purpose}

Syntax

\section*{Description}

\section*{Examples}

Trim surface regular data grid data to a specified region
[submap,sublegend] = maptrims(map,refvec,latlim,lonlim) returns the subset of the input regular data grid between the latitude and longitude limits, in degrees, defined by the two-element vectors latlim and lonlim. refvec is the referencing vector of the input data grid; sublegend is the referencing vector of the output data grid.
[submap,sublegend] = maptrims(map,refvec,latlim,lonlim,scale) is a means of further reducing the size of the output matrix. The cells-per-degree scale of the original matrix is given by the first element of refvec. The desired cells-per-degree scale in the output map is given by scale, which must equally divide refvec(1). For example, if refvec(1) were 20 (cells per degree), then scale could be \(1,2,4,5,10\), or 20 .

The maptrims function selects a portion of a larger data grid defined by a latitude-longitude quadrangle.

The reduced matrix is created using resizem with a 'nearest' interpolation method.
```

load topo
[submap,sublegend] = maptrims(topo,topolegend,...
[80.25 85.3],[165.2 170.7])
submap =

| -2826 | -2810 | -2802 | -2793 |
| :--- | :--- | :--- | :--- |
| -2915 | -2913 | -2905 | -2884 |
| -3192 | -3186 | -3165 | -3122 |
| -3399 | -3324 | -3273 | -3214 |

sublegend =
1 85
1 6 6

```

The upper left corner of the map might differ slightly from that of the requested region. maptrims uses the corner coordinates of the first cell inside the limits.

\author{
See Also \\ maptriml \\ maptrimp \\ resizem
}

Trim line vector map data to specified region Trim patch map data to specified region

Resize a data grid

\section*{Purpose Interactive map viewer}

\section*{Description Use the Map Viewer to work with vector, image, and raster data grids in a map} coordinate system: load data, pan and zoom on the map, control the map scale of your screen display, control the order, visibility, and symbolization of map layers, annotate your map, and click to learn more about individual vector features. mapview complements mapshow and geoshow, which are for constructing maps in ordinary figure windows in a less interactive, script-oriented way.

Syntax mapview (with no arguments) starts a new Map Viewer in an empty state.

\section*{Importing Data}

The Map Viewer opens with no data loaded and an empty map display window. The first step is to import a data set. Use the options in the File menu to select data from a file or from the MATLAB workspace:

\section*{Import From File}

Use the file browsing dialog to open a file in one of the following formats: Shapefile, GeoTIFF, SDTS DEM, Arc ASCII Grid, TIFF, JPEG, or PNG with world file. This option imports the data into the viewer but does not add it to your workspace.

To view standard-format geodata files provided with the Mapping Toolbox, set your working directory or navigate the Map Viewer Open dialog to
```

matlabroot/toolbox/map/mapdemos

```

\section*{Import From Workspace}

Images: Use the Raster Data -> Image import dialog to select a referencing matrix and data name for the image from the list of workspace variables. If the image type is true-color (RGB), specify which band represents the red, green, and blue intensities.

Data grids: Use the Raster Data -> Grid import dialog to select X and Y geolocation and data grid array names from the list of workspace variables.

Vector data: Use the Vector Data -> Map coordinates import dialog to select \(X\) and \(Y\) variables for map coordinates from the list of workspace variables and identify the type of geometry to be displayed (Point, Line, or Polygon). The X
and Y variables can specify multiple line segments or multiple polygons if they contain NaNs at matching locations in the coordinate vectors.

Vector geographic data structure: Use the Vector Data -> Geographic data structure import dialog to select the struct that contains vector map data from the list of workspace variables.

Once you import your first data set, the Map Viewer automatically sets the limits of its map display window to the spatial extent of the imported data.

\section*{Working in \\ Map Coordinates}

Setting Map Units and Scale

As you move any of the Map Viewer cursors across the map display area, the coordinate readout in the lower left corners shows you the cursor position in map X and Y coordinates.

The Map Viewer requires that all currently viewed data sets possess the same coordinate system and length units. This is likely to be the case for data sets that originated from a common source. If it is not the case, you will need to adjust coordinates before importing data into the Map Viewer.

If some or all of your data is in geographic coordinates, use projfwd or mfwdtran to project latitudes and longitudes to your desired map coordinate system before you import it. When starting from a different projection, you must first unproject to latitude and longitude using projinv or minvtran, then reproject with projfwd or mfwdtran. You might also need to adjust the horizontal datum of your data (using, for example, the free GEOTRANS application from the Geospatial Sciences Division of the U.S. National Imagery and Mapping Agency (NIMA, http: / /www.nima.mil). If you simply need a change of units, multiply by the appropriate conversion factor obtained from unitsratio.
mapview can also display data in unprojected geographic coordinates, if you consistently substitute longitude for map X and latitude for map Y. Geographic coordinates must be consistently expressed in either degrees or radians (not both at once). When using geographic coordinates, do not specify the viewer's map units (see below); you can only use the Map Viewer's map scale display when working in linear units of length.

If you tell the Map Viewer which length unit you are using, it can calculate an approximate map scale for your onscreen display. Set the map units with either the drop-down menu at the bottom of the display or the Set Map Units item in the Tools menu.

The scale computed by the Map Viewer is displayed in the window just above the map units drop-down. To change your display scale while keeping the center of the map display fixed, simply edit this text box.

Make sure to format your text in the standard way (1:N, where \(N\) is a positive number such that a distance on the ground is \(N\) times the same distance on your screen, e.g., \(1: 24000\) ).

The scale is approximate because it depends on the MATLAB estimate of the size of your screen pixels. It is also approximate if your projection introduces significant distortion. If your data falls in a fairly small area and you use a conformal projection (e.g., UTM with all data in a single zone), the scale will be very consistent across your entire map.

\section*{Navigating Your Map}

By default, the Map Viewer sets the limits of your map window to match the extent of the first data set that you load. You will probably want to adjust this to see some areas in greater detail.

The Map Viewer provides several tools to control the limits of your map window and the map scale of the data display. Some are familiar from standard MATLAB figure windows.
- Zoom in: Drag a box to zoom in on a specific area or click a point to zoom in with that point centered in the map display.
- Zoom out: Click a point to zoom out with that point centered in the map display.
- Pan tool: Click, hold, and drag to reposition the selected point in the display window, while holding the map scale fixed. Release when you are satisfied with new display limits.
- Fit to window: Set the map display to enclose all currently loaded data layers. This is equivalent to selecting Fit to Window in the View menu.
- Back to previous view: Click this button once to return the map scale and display center to their values prior to the most recent zoom, pan, or scale change. Click repeatedly to undo earlier changes. This is equivalent to selecting Previous View in the View menu.

Another way to zoom in or out while keeping the center of the view fixed at the same map coordinates is to directly edit the map scale box at the bottom of the screen.

Managing Map Layers

\section*{Symbolizing When point, line, and polygon layers are loaded, the Map Viewer initializes Vector Features their graphics properties as follows:}

Each time you import a set of vectors, an image, or a data grid into the Map Viewer, the new data is stored in a new map layer. The layers form an ordered stack. Each layer is listed as an item in the Layers menu, with its position in the menu indicating its position in the stack.

When you import a new layer, the Map Viewer automatically places it at the top of the layer stack. To reposition a layer in the stack, select it in the Layers menu, slide right, and select To Top, To Bottom, Move Up, or Move Down from the pop-up submenu.

The vector features or raster in a given layer obscure coincident elements of any underlying layers. To control layers that are obscuring one another, you can also toggle layer visibility on and off. Use the item Visible in the slide-right menu. Or, simply remove a layer from the Map Viewer via the Remove item in the slide-right menu. Remember that even if a layer's visibility is on, the layer does not appear if its contents are located completely outside the current display limits or are obscured by another layer.
\begin{tabular}{|c|c|}
\hline Geometry & Properties \\
\hline \begin{tabular}{l}
Point \\
(line objects)
\end{tabular} & ```
LineStyle = 'none
Marker = 'x'
MarkerEdgeColor = <randomly generated value>
MarkerFaceColor = 'none'
``` \\
\hline \begin{tabular}{l}
Line \\
(line objects)
\end{tabular} & ```
Color = <randomly generated value>
LineStyle = '-'
Marker = 'none'
``` \\
\hline Polygon (patch objects) & \[
\begin{aligned}
& \text { EdgeColor }=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
& \text { FaceColor }=\text { <randomly generated value> }
\end{aligned}
\] \\
\hline
\end{tabular}

To override symbolism defaults for a vector layer, use makesymbolspec to create a symbol specification in the workspace. A symbol spec contains a set of rules for setting vector graphics properties based on the values of feature attributes. For instance, if you have a line layer representing roads of various
classes (e.g., major highway, secondary road, etc.), you can create a symbol spec to use a different color and/or line width and/or line style for each road class. See the makesymbolspec help for examples and to learn how to construct a symbol spec. If you regularly work with data sets sharing a common set of feature attributes, you might want to save one or more symbol specs in a MAT-file (or save calls to makesymbolspec in an M-file).

Once you have a symbol spec in your workspace, select your vector layer in the Layers menu, then slide right and click Set Symbol Spec, which opens a dialog box. Use the dialog box to select the symbol spec from your workspace.

\section*{Getting Information About Vector Features}

The Datatip tool and the Info tool provide different ways to check the attributes of vector features that you select graphically. Before using either tool you must designate one of your vector layers as active. (The default active layer is the first one that you imported.) Either use the Active Layer drop-down menu at the bottom of your screen or select the layer in the Layers menu, slide right, and select Active. Having a designated active layer ensures that when you click a feature you don't inadvertently select an overlapping feature from a different layer.
- Datatip tool: The Datatip tool displays a feature attribute in a text label each time you click a vector feature. By default the attribute is the first one in the layer's attribute list. To change which attribute is used, select the layer in the Layers menu, slide right, and click Set Layer Attribute. In the dialog that follows, select a different attribute, or Index. If you choose Index, the Map Viewer displays the one-based index value corresponding to a given feature - based on its position in the input file or workspace array. To remove a text label, right-click it and choose Delete datatip from the context menu. Or choose Delete all datatips from the context menu or the Tools menu.
- Info tool: The Info tool opens a separate text window each time you click a vector feature. The window displays all the attribute names and values for that feature, in contrast to the Datatip tool, which displays only the value of a single attribute. If you need to compare two or more features, simply click each one and view the info windows together. Use its close button to close an info window when you're done with it, or choose Close All Info Windows from the Tools menu.

\section*{Annotating Your Map}

Use the text, line, or arrow annotation tools to mark and highlight points of interest on your map, or select the corresponding items in the Insert menu. Note that to insert an additional object of the same type, you must reselect the appropriate tool. In addition, the Insert menu allows you to insert axis labels and a title. Use the Select annotations tool and Edit menu to modify or remove your annotations. The Map Viewer manages annotations separately from data layers; annotations always stay on top. Note that annotations cannot be saved as graphic objects, although you can export maps containing annotations to an image format as described below.

Creating and Using Additional Views

Use New View on the File menu to create an additional Map Viewer window linked to an existing window. Consider using an additional window when you want to see your map at different scales at the same time (e.g., a detailed view plus an overview), or when you want to simultaneously see different areas of the map at large scale. You can create as many additional windows as you need, and close them when you want. Your mapview session ends when you close the last window.

Options for creating a new viewer window include: Duplicate Current View, Full Extent, Full Extent of Active Layer, and Selected Area. Click and drag with the Select area tool to define a selected area.

A new viewer window differs from existing windows mainly in terms of the visible map extent and scale (it also omits annotations and any labels you added with the datatip tool). You will see the same layers in the same order with the same settings (including the active layer). Updates to layers (insertion/removal, order, visibility, label attribute, and symbolization) in one viewer window are propagated automatically to all the windows with which it is linked. Updates to annotations and datatip labels are not propagated between viewers. If you need two different layer configurations in different windows, launch a second mapview from the command line instead of creating an additional window. The views it contains will not be linked to previous ones.

Exporting Your
Map
The Map Viewer allows you to export all or part of your map for use in a publication or on a Web page. Use File->Save As Raster Map to export an image of either the current display extent or an area outlined with the Select area tool. Select a format (PNG, TIFF, JPEG) from the drop-down menu in the export dialog. For maps including vector layers, PNG (Portable Network

Graphics) is often the best choice. This format provides excellent quality, good compression, and is well supported by modern Web browsers.

\section*{See Also}
arcgridread, geoshow, geotiffread, makesymbolspec, mapshow, sdtsdemread, shaperead, updategeostruct, worldfileread

\section*{mat2dms}

\section*{Purpose Convert distinct matrix elements to dms format}
```

Syntax anglout = mat2dms(d,m,s) takes angles separated into three inputs, one each for degrees, minutes, and seconds, and converts them to single dms values.
anglout $=$ mat2dms $(\mathrm{d}, \mathrm{m}, \mathrm{s}, \mathrm{n})$ specifies the power of $10, \mathrm{n}$, to which the input seconds should be rounded before they are converted (that is, if a result is 12.567 seconds, and $n=-2$, the resulting seconds output would be 12.57 ). The default value of $n$ is -2 .
anglout $=$ mat2dms $([d, m, s], n)$ allows the inputs to be packed into a three-column matrix in which the columns represent degrees, minutes, and seconds, respectively.

```

\section*{Examples \\ anglout \(=\) mat2dms \((23,45,17.5)\) \\ anglout = \\ 2345.175}

See Also dms2mat Convert from dms to separated matrices

Purpose

See Also
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Syntax} & timeout \(=\) mat2hms (h,m,s) takes times separated into three inputs, one each for hours, minutes, and seconds, and converts them to single hms values. \\
\hline & timeout \(=\) mat2hms \((h, m, s, n)\) specifies the power of \(10, n\), to which the input seconds should be rounded before they are converted (that is, if a result is 12.567 seconds, and \(n=-2\), the resulting seconds output would be 12.57 ). The default value of n is -2 . \\
\hline & timeout \(=\) mat2hms ([h, m, s],n) allows the inputs to be packed into a three-column matrix in which the columns represent hours, minutes, and seconds, respectively. \\
\hline Examples & ```
timeout = mat2hms([ll3 35],[34 18],[29.8 17.0])
timeout =
``` \\
\hline & 1334.298 3518.17 \\
\hline
\end{tabular}

Convert distinct matrix elements to hms format
timeout = mat2hms ( \(\mathrm{h}, \mathrm{m}, \mathrm{s}\) ) takes times separated into three inputs, one each for hours, minutes, and seconds, and converts them to single hms values.
timeout \(=\) mat2hms \((h, m, s, n)\) specifies the power of \(10, n\), to which the input seconds should be rounded before they are converted (that is, if a result is 12.567 seconds, and \(n=-2\), the resulting seconds output would be 12.57 ). The default value of \(n\) is -2 .
timeout \(=\) mat2hms ([h,m,s], n ) allows the inputs to be packed into a three-column matrix in which the columns represent hours, minutes, and seconds, respectively.
```

timeout = mat2hms([[13 35],[34 18],[29.8 17.0])
1334.298
3518.17

```
hms2mat Convert from hms to separated matrices

\section*{Purpose Display contours of constant distortion on a map}

Syntax

Background

Examples
mdistort, with no input arguments, toggles the display of contours of projection-induced distortion on the current map axes. The magnitude of the distortion is reported in percent.
mdistort off removes the contours.
mdistort (parameter) or mdistort parameter displays contours of distortion for the specified parameter. Recognized parameter strings are 'area', 'angles ' for the maximum angular distortion of right angles, 'scale' or 'maxscale' for the maximum scale, 'minscale' for the minimum scale, 'parscale' for scale along the parallels, 'merscale' for scale along the meridians, and 'scaleratio' for the ratio of maximum and minimum scale. If omitted, the 'maxscale' parameter is displayed. All parameters are displayed as percent distortion except angles, which are displayed in degrees.
mdistort (parameter, levels) specifies the levels for which the contours are drawn. levels is a vector of values as used by contour. If empty, the default levels are used.
mdistort (parameter, levels, gsize) controls the size of the underlying graticule matrix used to compute the contours. gsize is a two-element vector containing the number of rows and columns. If omitted, the default Mapping Toolbox graticule size of [50 100] is assumed.
[h,ht] = mdistort(...) returns the handles to the line and text objects.
Map projections inevitably introduce distortions in the shape and size of objects as they are transformed from three-dimensional spherical coordinates to two-dimensional Cartesian coordinates. The amount and type of distortion vary between projections, over the projection, and with the selection of projection parameters such as standard parallels. This function provides a quantitative graphical display of distortion parameters.
mdistort is not intended for use with UTM. Distortion is minimal within a given UTM zone. mdistort issues a warning if a UTM projection is encountered.

Note the extreme area distortion of the Mercator projection. This makes it ill-suited for global displays.
```

figure
axesm mercator
load coast
framem;plotm(lat, long,'color',.5*[[1 1 1 1])
mdistort area

```


The lines of zero distortion for the Bonne projection follow the central meridian and the standard parallel.
```

figure
axesm bonne
load coast
framem;plotm(lat, long,'color',.5*[1 1 1])
mdistort angles
parallelui

```


An equidistant conic projection with properly chosen parallels can map the conterminous United States with less than 1.5\% distortion.
```

figure
usamap conus
mdistort('parscale', -2:.2:2)
parallelui

```


\section*{Remarks}

See Also
mdistort can help in the placement of standard parallels for projections. Standard parallels are generally placed to minimize distortion over the region of interest. The default parallel locations might not be appropriate for maps of smaller regions. By using mdistort and parallelui, you can immediately see how the movement of parallels reduces distortion.
tissot
Tissot indicatrices projected onto a map axes
distortcalc Calculate distortion parameters for a map projection
vfwdtran Transform vector azimuths to a projection space angle

\section*{Purpose Compute mean for geographic data}

Syntax

\section*{Background}
[latmean,lonmean] = meanm(lat,lon) returns row vectors of the geographic mean positions of the columns of the input latitude and longitude points.
[latmean,lonmean] = meanm(lat,lon, units) indicates the angular units of the data. When the standard angle string units is omitted, 'degrees ' is assumed.
[latmean,lonmean] = meanm(lat,lon,ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a spherical Earth, which is sufficient for most applications.

If a single output argument is used, then geomeans = [latmean, longmean]. This is particularly useful if the original lat and lon inputs are column vectors.

Finding the mean position of geographic points is more complicated than simply averaging the latitudes and longitudes. meanm determines mean position through three-dimensional vector addition. See "Geographic Statistics" in the "Mapping Applications" chapter of the Mapping Toolbox User's Guide documentation.

Create random latitude and longitude matrices:
```

lat = rand(3)
lat =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
lon = rand(3)
lon =
0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169
[latmean,lonmean] = meanm(lat,lon,'radians')
latmean =
0.6004 0.7395 0.4448
lonmean =

```

\section*{\(0.6347 \quad 0.6324 \quad 0.7478\)}

\section*{See Also}
\begin{tabular}{ll} 
filterm & Geographic filter for data sets \\
hista & Spatial equal area histogram \\
histr & Spatial equirectangular histogram \\
stdist & Standard distances for geographic data \\
stdm & Standard deviation for geographic data
\end{tabular}

Purpose
Construct a map graticule mesh for surface object display
Syntax
[latgrat,longrat] = meshgrat(map, refvec) constructs a graticule for the regular data grid map with the associated referencing vector refvec. The default graticule size is equal to the size of the map matrix.
[latgrat,longrat] = meshgrat(map,refvec, npts) returns a graticule mesh of size npts. The input npts is a two-element vector of the form [latitude-points longitude-points]. If npts is set to an empty matrix, then the graticule returned is the Mapping Toolbox default graticule size [50 100].
[latgrat,longrat] = meshgrat(lat,lon) can be used for data grids that are not regular in spacing (e.g., row one represents \(1^{\circ}\), row two represents \(1.34^{\circ}\) ) but are regular in orientation (rows are north-south, columns are east-west). The inputs lat and lon are vectors describing the latitudes and longitudes on a row-by-row and column-by-column basis for the data grid to be displayed. Regardless of the variable spacing of the matrix, the graticule is evenly spaced. In this form, meshgrat is similar to the MATLAB function meshgrid.
[latgrat,longrat] = meshgrat(latlim,lonlim, npts) returns a graticule mesh of size npts. The input vectors latlim and lonlim are two-element vectors specifying the graticule latitude and longitude limits. The input npts is a two-element vector of the form [latitude-points longitude-points]. If npts is set to an empty matrix, then the graticule returned is the Mapping Toolbox default graticule size [50 100].
[latgrat,longrat] = meshgrat(lat,lon,units) and [latgrat,longrat] = meshgrat(latlim,lonlim, npts, units) use the input units to specify the angle units of the input and output parameters. If omitted, 'degrees' is assumed.

\section*{Description}

Examples

The graticule mesh is a grid of points that are projected on a map axes and to which surface map objects are warped. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need very few graticules in the longitudinal direction, while complex curve-generating projections require more.

Make a (coarse) graticule for the entire world:
latlim = [-90 90]; longlim = [-180 180];
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{[latgrat,longrat] = meshgrat(latlim, longlim, [3 6])} \\
\hline -90.0000 & -90.0000 & -90.0000 & -90.0000 & -90.0000 & -90.0000 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 90.0000 & 90.0000 & 90.0000 & 90.0000 & 90.0000 & 90.0000 \\
\hline \multicolumn{6}{|l|}{longrat =} \\
\hline -180.0000 & -108.0000 & -36.0000 & 36.0000 & 108.0000 & 180.0000 \\
\hline -180.0000 & -108.0000 & -36.0000 & 36.0000 & 108.0000 & 180.0000 \\
\hline 180.0000 & 08.0000 & 36.0000 & 36.0000 & 8. & 180.0000 \\
\hline
\end{tabular}

These paired coordinates are the graticule vertices, which are projected according to the requirements of the desired map projection. Then a surface object like the topo map can be warped to the grid.

\section*{See Also}
meshm
pcolorm \(\quad\) Project a data grid in the \(z=0\) plane
surfacem Data grid warped to a projected graticule mesh
surfm Data grid projected on a map axes

\section*{Purpose}

Project 3-D lighted shaded relief of a regular data grid

Remarks

Examples
meshlsrm(map, refvec) displays the regular data grid colored according to elevation and surface slopes. The current axes must have a valid map projection definition.
meshlsrm(map, refvec, [azim elev]) displays the regular data grid with the light coming from the specified azimuth and elevation. Lighting is applied before the data is projected. Angles are in degrees, with the azimuth measured clockwise from North and elevation up from the zero plane of the surface. By default, the direction of the light source is East ( \(90^{\circ}\) azimuth) at an elevation of \(45^{\circ}\).
meshlsrm(map, refvec, [azim elev], cmap) displays the regular data grid using the provided colormap. The number of grayscales is chosen to keep the size of the shaded colormap below 256. By default, the colormap is constructed from 16 colors and 16 grays. If the vector of azimuth and elevation is empty, the default locations are used.
meshlsrm(map, refvec, [azim elev], cmap, clim) uses the provided color axis limits, which by default are computed from the data.
\(\mathrm{h}=\) meshlsrm (...) returns the handle to the surface drawn.
This function effectively multiplies two colormaps, one with color based on elevation, the other with a grayscale based on the slope of the surface, to create a new colormap. This produces an effect similar to using a light on a surface, but with all of the visible colors actually in the colormap. Lighting calculations are performed on the unprojected data.

Create a new colormap using demcmap, with white colors for the sea and default colors for land. Use this colormap for a lighted shaded relief map of the world.
```

load topo
[cmap,clim] = demcmap(topo,[],[1 1 1],[]);
axesm loximuth
meshlsrm(topo,topolegend,[],cmap,clim)

```

\begin{tabular}{lll} 
See Also & meshm & Regular data grid warped to a projected graticule mesh \\
pcolorm & Project a data grid in the \(z=0\) plane \\
shaderel & Construct cdata and colormap for colored shaded relief \\
surfacem & Data grid warped to a projected graticule mesh \\
surflm & Display a lighted data grid warped to a projected graticule \\
surfm & Data grid projected to a map axes \\
surflsrm & Project a 3-D lighted shaded relief of a geolocated data grid
\end{tabular}

\section*{Purpose \\ Warp regular data grid to a projected graticule mesh}

Syntax

Description

\section*{Examples}
\(\mathrm{h}=\mathrm{meshm}(\) map,refvec \()\) projects the regular data grid onto the current map axes. The handle, \(h\), of the displayed surface can be returned.
\(\mathrm{h}=\) meshm (map, refvec, npts) specifies the resolution of the graticule grid. The input npts is of the form [latitude-points longitude-points]. The default value of npts is [50 100] (the graticule has 50 vertices in the latitude direction and 100 vertices in the longitude direction).
\(\mathrm{h}=\mathrm{meshm}(\) map,refvec, npts,alt) sets the \(z\)-axis altitude of the graticule mesh. alt can be a scalar, in which case the map is plotted on a \(z=\) alt plane, or alt can be a matrix of size(alt) = npts, in which case the graticule mesh is plotted in 3-D.
h = meshm(map,refvec,PropertyName,PropertyValue,...) allows the input of property name/property value pairs to control the surface object properties. Any property supported by the standard MATLAB function surface except XData, YData, and ZData can be altered in this manner.

The meshm function warps a regular data grid to a graticule mesh, which is itself projected according to the MapProjection property of the current map axes. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting it. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need very few graticule points in the longitudinal direction, while complex curve-generating projections require more.
```

load topo
axesm miller
meshm(topo,topolegend,[90 180])
demcmap(topo)

```


See Also
meshgrat
pcolorm
Construct map graticule grid
Project a data grid in the \(z=0\) plane
surfacem
Data grid warped to a projected graticule mesh
surfm
Data grid projected to a map axes

\section*{Purpose Transform unprojected Greenwich data to a projected Cartesian coordinate system}
\([x, y]=m f w d t r a n(l a t, l o n)\) transforms unprojected Greenwich data to the projected Cartesian coordinate frame using the map projection defined for the current axes. No clipping or trimming of data is performed with this calling form.
\([x, y, z]=m f w d t r a n(l a t, l o n, a l t)\) transforms the three-dimensional data to the projected Cartesian coordinate frame using the map projection defined for the current axes. If alt = [] or alt is omitted, the default alt \(=0\) is used.
[x,y,z,struct] = mfwdtran(lat,lon,alt,object) clips and trims the data during the transformation process. Allowable object strings are 'surface', 'line', 'patch', 'light', 'text', and 'none'. 'none' results in no clipping or trimming of the input data. The output struct is a structure containing information about the clips and trims associated with the transformed object. This structure is also found in the displayed object's UserData property.
[...] = mfwdtran(mstruct,...) requires a valid map projection structure as the first argument. This structure is used to define the map projection calculations performed. No map axes need be displayed when using this calling form.

\section*{Examples \\ The following latitude and longitude data for the District of Columbia is} obtained from the usalo workspace:
```

load usalo
lat = state(51).lat;
lon = state(51).long;
[lat lon]
ans =
38.9000 -77.0700
38.9000 -77.0500
38.9000 -77.0700
38.8700 -77.0200
38.8000 -77.0200
38.7800 -77.0300
38.9000 -76.9000
39.0000 -77.0300
38.9500 -77.1200

```

Before projecting the data, it is necessary to define projection parameters. You can do this with the axesm function or with the defaultm function:
```

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

```

Now that the projection parameters have been set, transform the District of Columbia data into the Cartesian frame using the Mercator projection:
```

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]
ans =
-0.0004 0.0002
-0.0001 0.0002
-0.0004 0.0002
0.0003 -0.0003
0.0003 -0.0016
0.0001 -0.0019
0.0019 0.0002
0.0001 0.0019
-0.0011 0.0010
-0.0004 0.0002

```
\begin{tabular}{lll} 
See Also & defaultm & Initialize a default map data structure \\
gcm & Get current map data structure \\
minvtran & Map inverse transformation \\
& vfwdtran & Vector forward transformation \\
& vinvtran & Vector inverse transformation
\end{tabular}

\section*{minaxis}

Purpose Calculate semiminor axis from semimajor axis and eccentricity
Syntax \begin{tabular}{l} 
semiminor = minaxis(semimajor, eccentricity) returns the semiminor axis \\
length corresponding to the input semimajor axis and eccentricity. \\
semiminor = minaxis ([semimajor, eccentricity]) allows the inputs to be \\
packed into a single two-column input of the form [semimajor, \\
eccentricity].
\end{tabular}
Description
\begin{tabular}{l} 
The semiminor axis can be determined given both the semimajor axis and the \\
eccentricity, the two elements of a standard ellipsoid vector in the Mapping \\
Toolbox.
\end{tabular}

Examples Using the default values for the Earth,
```

semiminor = minaxis(almanac('earth','ellipsoid'))
semiminor =
6.3568e+03

```

See Also
\begin{tabular}{ll} 
almanac & Planetary data \\
\begin{tabular}{l} 
axes2ecc \\
majaxis
\end{tabular} & Related conversion functions
\end{tabular}
Purpose
Syntax
ExamplesTransform projected Cartesian data to an unprojected Greenwich coordinatesystem
[lat,lon] = minvtran \((x, y)\) transforms projected Cartesian data to an unprojected Greenwich coordinate frame using the map projection defined for the current axes. No data clips or trims are removed with this calling form.
[lat,lon, alt] = minvtran( \(x, y, z\) ) transforms the three-dimensional data to the unprojected Greenwich coordinate frame using the map projection defined for the current axes. If \(z=[]\) or \(z\) is omitted, the default \(z=0\) is used.
[lat,lon,alt] = minvtran(x,y,z,object,struct) removes all clips and trims from the input data. Allowable object strings are 'surface', 'line', 'patch', 'light', 'text', and 'none'. 'none' results in no removal of any clips or trims of the input data. The output struct is a structure containing information about the clips and trims associated with the transformed object, and is created by the function mfwdtran.
[...] = minvtran(mstruct, ...) requires a valid map projection structure as the first argument. This structure is used to define the map projection calculations performed. No map axes need be displayed when using this calling form.
Before using any transformation functions, it is necessary to create a map projection structure. You can do this with axesm or the defaultm function:
```

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

```

The following latitude and longitude data for the District of Columbia is obtained from the usalo workspace:
```

load usalo
lat = state(51).lat;
lon = state(51).long;
[lat lon]
ans =
38.9000 -77.0700
38.9000 -77.0500
38.9000 -77.0700

```

\section*{minvtran}
\begin{tabular}{ll}
38.8700 & -77.0200 \\
38.8000 & -77.0200 \\
38.7800 & -77.0300 \\
38.9000 & -76.9000 \\
39.0000 & -77.0300 \\
38.9500 & -77.1200 \\
38.9000 & -77.0700
\end{tabular}

This data can be projected into Cartesian coordinates of the Mercator projection using the mfwdtran function:
```

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]
ans =
-0.0004 0.0002
-0.0001 0.0002
-0.0004 0.0002
0.0003 -0.0003
0.0003 -0.0016
0.0001 -0.0019
0.0019 0.0002
0.0001 0.0019
-0.0011 0.0010
-0.0004 0.0002

```

To transform the projected \(x-y\) data back into the unprojected Greenwich frame, use the minvtran function:
```

[lat2,lon2] = minvtran(mstruct,x,y);
[lat2 lon2]
ans =
38.9000 -77.0700
38.9000 -77.0500
38.9000 -77.0700
38.8700 -77.0200
38.8000 -77.0200
38.7800 -77.0300
38.9000 -76.9000
39.0000 -77.0300
38.9500 -77.1200
38.9000 -77.0700

```

\author{
See Also \\ axesm
defaultm \\ gcm \\ mfwdtran \\ vfwdtran \\ vinvtran \\ Map axes definition and property setting \\ Initialize a default map data structure \\ Get current map data structure \\ Map forward transformation \\ Vector forward transformation \\ Vector inverse transformation
}

\section*{Purpose Project meridian labels on a map axes}

\section*{Syntax}

See Also
mlabel toggles the visibility of meridian labeling on the current map axes. mlabel ('on') sets the visibility of meridian labels to 'on'. mlabel('off') sets the visibility of meridian labels to 'off'.
mlabel('reset') resets the displayed meridian labels using the currently defined meridian label properties.
mlabel (parallel) sets the value of the MLabelParallel property of the map axes to the value of parallel. This determines the parallel upon which the labels are placed (see axesm). The options for parallel are a scalar latitude or the strings 'north', 'south', or 'equator'.
mlabel(MapAxesPropertyName, PropertyValue, ...) allows paired map axes' property names and property values to be passed in. For a complete description of map axes properties, see the axesm reference page in this guide.

Meridian label handles can be returned in h if desired.
axesm Define map axes and set map properties
mlabelzero22pi Display longitude labels in the range of 0 to 360 degrees
plabel Parallel labels projected on a map axes
setm Set map properties

Purpose

\section*{Syntax}

Description

Example

Display longitude labels in the range of 0 to 360 degrees
mlabelzero22pi
mlabelzero22pi displays longitude labels in the range of 0 to 360 degrees east of the prime meridian.
```

% create a map
figure('color','w'); axesm('miller','grid','on'); tightmap;
mlabel on; plabel on

```

\% Display longitude labels in the range of 0 to 360 degrees mlabelzero22pi

\section*{mlabelzero22pi}


\section*{See Also}
mlabel
Project meridian labels on a map axes

Purpose
Syntax eccentricity \(=\mathrm{n} 2 \mathrm{ecc}(\mathrm{n})\) returns the equivalent eccentricities for the input \(n\) parameters. If the input \(n\) is a two-column vector, only the second column is used. This allows two-element vectors to be used as rows of the input, because the form [semimajor-axis, n] is a complete representation of an ellipsoid (but
is not the standard form for ellipsoid vectors in the Mapping Toolbox). In all the form [semimajor-axis, \(n\) ] is a complete representation of an ellipsoid (but
is not the standard form for ellipsoid vectors in the Mapping Toolbox). In all other cases, all columns of the input are used.

\section*{Description}

\section*{Example}

See Also
Convert from the \(n\) to the eccentricity representation of the ellipsoid

Eccentricity and the parameter \(n\) are two methods of defining an ellipsoid. The definition of \(n\) is
(semimajor axis - semiminor axis)/(semimajor axis + semiminor axis)
```

ecc = n2ecc(0.00167922039463)
ecc =
0.08181919104285

```

This eccentricity is the default value for the Earth.
\begin{tabular}{ll} 
almanac & Planetary data \\
\begin{tabular}{l} 
ecc2flat \\
majaxis
\end{tabular} & Similar conversion functions \\
ecc2n & Convert from eccentricity to \(n\)
\end{tabular}
ecc2flat Similar conversion functions
majaxis
ecc2n Convert from eccentricity to \(n\)

Purpose Determine the names of valid graphics objects
Syntax objects = namem returns the object names for all objects on the current axes. The object name is defined as its tag, if the object Tag property is supplied.
Otherwise, it is the object Type. Duplicate object names are removed from the output string matrix.
objects = namem(handles) returns the object names for the objects specified by the input handles.
[objects,message] = namem(...) returns a string message indicating any error encountered.

The names returned are either set at object creation or defined by the user with the tagm function.

See Also
\begin{tabular}{ll} 
clma & Clear current map \\
clmo & Clear specified graphics objects \\
handlem & Get handles of displayed graphics objects \\
hidem & Hide specified graphics objects \\
showm & Show specified graphics objects \\
tagm & Assign a name to graphics object Tag property
\end{tabular}

Purpose
Syntax
Description

Convert pen-down delimited data to NaN -delimited data
dataout = nanclip(datain)
dataout = nanclip(datain, pendowncmd) returns the pen-down delimited data in the matrix datain as NaN -delimited data in dataout. When the first column of datain equals pendowncmd, a segment is started and a NaN is inserted in all columns of dataout. The default pendownemd is -1 .

Pen-down delimited data is a matrix with a first column consisting of pen commands. At the beginning of each segment in the data, this first column has an entry corresponding to a pen-down command. Other entries indicate that the segment is continuing. NaN-delimited data consists of columns of data, each segment of which ends in a NaN in every data column. Since there is no pen command column, the NaN-delimited format can represent the same data in one fewer columns; the remaining columns have more entries, one for each NaN (that is, for each segment).
```

datain = [-1 45 67; 0 23 54; 0 28 97; -1 47 89; 0 56 12]
datain =
-1 45 67 % Begin first segment
0}23 5
0 28 97
-1 47 89 % Begin second segment
0 56 12
dataout = nanclip(datain)
dataout =
45 67
23 54
28 97
NaN NaN % End first segment
47 89
56 12
NaN NaN % End second segment

```
See Also spcread Read space-delimited data

Purpose Create data grids containing NaNs


\section*{Purpose}

Determine Mercator-based navigational fix

Background
[latfix,lonfix] = navfix(lat,long,az) returns the intersection points of rhumb lines drawn parallel to the observed bearings, az, of the landmarks located at the points lat and long and passing through these points. One bearing is required for each landmark. Each possible pairing of the n landmarks generates one intersection, so the total number of resulting intersection points is the combinatorial \(n\) choose 2 . The calculation time therefore grows rapidly with \(n\).
[latfix,lonfix] = navfix(lat,long, range, casetype) returns the intersection points of Mercator projection circles with radii defined by range, centered on the landmarks located at the points lat and long. One range value is required for each landmark. Each possible pairing of the \(n\) landmarks generates up to two intersections (circles can intersect twice), so the total number of resulting intersection points is the combinatorial 2 times ( \(n\) choose 2). The calculation time therefore grows rapidly with \(n\). In this case, the variable casetype is a vector of zeros the same size as the variable range.
[latfix,lonfix] = navfix(lat,long, az_range, casetype) combines ranges and bearings. For each element of casetype equal to 1 , the corresponding element of az_range represents an azimuth to the associated landmark. Where casetype is a 0 , az_range is a range.
[latfix,lonfix] = navfix(lat,long,az_range, casetype,drlat,drlon) returns for each possible pairing of landmarks only the intersection that lies closest to the dead reckoning position indicated by drlat and drlon. When this syntax is used, all included landmarks' bearing lines or range arcs must intersect. If any possible pairing fails, the warning No Fix is displayed.

This is a navigational function. It assumes that all latitudes and longitudes are in degrees and all distances are in nautical miles. In navigation, piloting is the practice of fixing one's position based on the observed bearing and ranges to fixed landmarks (points of land, lighthouses, smokestacks, etc.) from the navigator's vessel. In conformance with navigational practice, bearings are treated as rhumb lines and ranges are treated as the radii of circles on a Mercator projection.

In practice, at least three azimuths (bearings) and/or ranges are required for a usable fix. The resulting intersections are unlikely to coincide exactly. Refer to
"Navigation" in the Mapping Toolbox User's Guide documentation for a more complete description of the use of this function.

\section*{Remarks}

\section*{Examples}

The outputs of this function are matrices providing the locations of the intersections for all possible pairings of the n entered lines of bearing and range arcs. These matrices therefore have \(n\)-choose- 2 rows. In order to allow for two intersections per combination, these matrices have two columns. Whenever there are fewer than two intersections for that combination, one or two NaNs are returned in that row.

When a dead reckoning position is included, these matrices are column vectors.

For a fully illustrated example of the application of this function, refer to the "Navigation" section in the Mapping Toolbox User's Guide documentation.

Imagine you have two landmarks, at \(\left(15^{\circ} \mathrm{N}, 30.4^{\circ} \mathrm{W}\right)\) and \(\left(14.8^{\circ} \mathrm{N}, 30.1^{\circ} \mathrm{W}\right)\). You have a visual bearing to the first of \(280^{\circ}\) and to the second of \(160^{\circ}\). Additionally, you have a range to the second of 12 nm . Find the intersection points:
```

[latfix,lonfix] = navfix([15 14.8 14.8],[-30.4 -30.1 -30.1],...
[280 160 12],[1 1 0])
latfix =
14.9591 NaN
14.9680 14.9208
14.9879 NaN
lonfix =
-30.1599 NaN
-30.2121 -29.9352
-30.1708 NaN

```

Here is an illustration of the geometry:


\section*{Limitations}

Traditional plotting and the navfix function are limited to relatively short distances. Visual bearings are in fact great circle azimuths, not rhumb lines, and range arcs are actually arcs of small circles, not of the planar circles plotted on the chart. However, the mechanical ease of the process and the practical limits of visual bearing ranges and navigational radar ranges ( \(\sim 30 \mathrm{~nm}\) ) make this limitation moot in practice. The error contributed because of these assumptions is minuscule at that scale.

\section*{See Also}
\begin{tabular}{ll} 
crossfix & Great circle fixing \\
gcxgc & Other intersection functions \\
gcxsc & \\
scxsc & \\
rhxrh & \\
polyxpoly &
\end{tabular}
\begin{tabular}{lll} 
See Also & dreckon & Compute dead reckoning positions for a track \\
gcwaypts & Find equally spaced waypoints along a great circle \\
legs & Find courses and distances between waypoints
\end{tabular}
\begin{tabular}{ll} 
navfix & Mercator-based navigational fixing \\
track & Connect navigational waypoints with track segments
\end{tabular}

\section*{Purpose}

Transform regular data grid to new coordinate system based on a new origin

\section*{Syntax}
[map,lat,lon] = neworig(map0, refvec,origin) returns the data in the original regular data grid map0, with its three-element referencing vector refvec, reallocated to the cells of the new (same-sized) data grid. This transformation is governed by the input origin. This is a three- (or two-) element vector of the form [latitude longitude orientation]. The latitude and longitude are the coordinates of the point in the original system that is the center of the output system. The orientation is the azimuth from the new origin point to the original North Pole in the new system. If origin has only two elements, the orientation is assumed to be \(0^{\circ}\). This origin vector might be the output of putpole or newpole. The outputs lat and lon are matrices the size of map that give a cell-by-cell registration of map to the coordinates of the original (mapo) system in latitude and longitude, respectively.
[map,lat,lon] = neworig(mapo, refvec,origin,direction) allows the specification of the operation. If the string direction is 'forward' (the default), the transformation occurs as described above. If the direction is 'inverse ', then the output map is the original system from which a transformed matrix map0 was derived, via the input origin. Note that if the matrix map1 is transformed forward to map2, and map2 is transformed inversely to map3, map3 will look very much like map1, but the two matrices will not be identical. This is because neworig is in fact projecting the values of the cells twice, rather than undoing the first transformation, and matrix data has granularity.
[map,lat,lon] = neworig(map0,refvec,origin,direction,units) allows the specification of the angular units of the origin vector, where units is any valid angle units string. The default is 'degrees'.

\section*{Description}

Limitations

The neworig function transforms a regular data grid into a new matrix in an altered coordinate system. An analytical use of the new matrix can be realized in conjunction with the newpole function. If a selected point is made the north pole of the new system, then when a new matrix is created with neworig, each row of the new matrix is a constant distance from the selected point, and each column is a constant azimuth from that point.
neworig only supports matrix maps that cover the entire globe.

\section*{Examples}

See Also

This is the topo map transformed to put Sri Lanka at the North Pole:
```

load topo
origin = newpole(7,80)
origin =
83.0000-100.0000 0
[map,lat,lon] = neworig(topo,topolegend,origin);
axesm miller
surfm(map,[30 30])
demcmap(topo)

```

newpole
Select point to place at North Pole
org2pol Pole of transformed coordinate system
putpole Origin of transformed coordinate system
rotatem Transform vector data to new coordinate system based on a new origin

Purpose
Syntax

Description

\section*{Examples}

See Also

Compute origin of a transformed coordinate system based on a new pole
origin = newpole(polelat, polelon) provides the origin vector for a transformed coordinate system based upon moving the point (polelat, polelon) to become the north pole singularity in the new system. The origin is a three-element vector of the form [latitude longitude orientation], where the latitude and longitude are the coordinates the new center (origin) had in the untransformed system, and the orientation is the azimuth of the true North Pole from the new origin point. For the newpole calculation, this orientation is constrained to be always \(0^{\circ}\).
origin = newpole(polelat, polelon, units) specifies the units of the inputs and output, where units is any valid angle units string. The default is 'degrees'.

When developing transverse or oblique projections, you need transformed coordinate systems. One way to define these systems is to establish the point in the original (untransformed) system that will become the new (transformed) north pole.

Take a point and make it the new North Pole:
```

origin = newpole(60,180)
origin =
30.0000 0 0

```

This makes sense: as a point \(30^{\circ}\) beyond the true North Pole on the original origin's meridian is pulled up to become the pole, the point originally \(30^{\circ}\) above the origin is pulled down into the origin spot.
neworig Transform regular data grid to new coordinate system
org2pol Pole of transformed coordinate system
putpole Origin of transformed coordinate system

\section*{nm2deg, nm2km, nm2rad, nm2sm}

\section*{Purpose Convert distance from nautical miles to other units}
\begin{tabular}{ll} 
Syntax & \begin{tabular}{l} 
distout \(=n m 2 d e g(d i s t i n)\) converts the input distance given in nautical miles \\
to degrees. distout \(=n m 2 k m(d i s t i n), ~ d i s t o u t ~\)
\end{tabular}\(=n m 2\) rad (distin), and \\
distout \(=n m 2 s m(d i s t i n)\) perform analogously, converting to kilometers, \\
radians, and statute miles, respectively.
\end{tabular}
distout = nm2deg(distin, radius)and distout = nm2rad(distin, radius) specify the radius of the sphere to use, because a degree (or radian) of arc length covers less distance, for example, on Mars than it does on the Earth. You can enter the radius as a number in nautical miles, as a call to the almanac function (e.g., almanac('mars', 'radius', 'nm')), or you can pass in a string planet name (e.g., 'mars'), and the function will make the appropriate call to the almanac function. The radius of the Earth is the default.

\section*{Examples}

How fast is 30 knots (nautical miles per hour) in kph?
```

distout = nm2km(30)
distout =
55.5600

```

See Also
distdim Convert distances between different units
\(\mathrm{km} 2 \mathrm{sm} \quad\) Other direct distance conversion functions
sm2deg

\section*{Purpose}

Syntax

Description

\section*{Examples}

Add graphic element pointing to the geographic North Pole
northarrow creates a default north arrow.
northarrow('property', value, ...) creates a north arrow using the specified property/value pairs. Valid entries for properties are 'latitude', 'longitude', 'facecolor', 'edgecolor', 'linewidth', and 'scaleratio'. The 'latitude' and 'longitude' properties specify the location of the north arrow. The 'facecolor', 'edgecolor', and 'linewidth' properties control the appearance of the north arrow. The 'scaleratio' property represents the size of the north arrow as a fraction of the size of the axes. A 'scaleratio' value of 0.10 creates a north arrow one-tenth \((1 / 10)\) the size of the axes. You can change the appearance ('facecolor', 'edgecolor', and 'linewidth') of the north arrow using the set command.
northarrow creates a north arrow symbol at the map origin on the displayed map. You can reposition the north arrow symbol by clicking and dragging its icon. Alternate clicking the icon creates an input dialog box that you can also use to change the location of the north arrow.

Modifying some of the properties of the north arrow results in replacement of the original object. Use HANDLEM( 'NorthArrow') to get the handles associated with the north arrow.

Create a map of the South Pole and then add the north arrow in the upper left of the map.
```

figure; worldmap('south pole')
northarrow('lat',-57,'lon',134);

```


Right-click the north arrow icon to activate the input dialog box. Increase the size of the north arrow symbol by changing the 'ScaleRatio' property.



Create a map of Texas and add the north arrow in the lower left of the map. figure; usamap('texas') northarrow('latitude',25,'longitude',-105,'linewidth',1.5);


Change the 'FaceColor' and 'EdgeColor' properties of the north arrow.
h = handlem('NorthArrow');
set(h,'FaceColor',[1.000 0.8431 0.0000],'EdgeColor',[0.0100 ... 0.0100 0.9000])


\section*{Limitations}

You can draw multiple north arrows on the map. However, the callbacks will only work with the most recently created north arrow. In addition, since it can be displayed outside the map frame limits, the north arrow is not converted into a "mapped" object. Hence, the location and orientation of the north arrow have to be updated manually if the map origin or projection changes.

\section*{Purpose}

Syntax

\section*{Examples}

Convert normalized angles to lie between \(-\pi\) and \(\pi\)
anglout \(=\) npi2pi(anglin) wraps the input angle anglin to lie on the range -180 to 180 (e.g., \(270^{\circ}\) is renamed \(-90^{\circ}\) ).
anglout \(=\) npi2pi(anglin, units) specifies the angle units with any valid angle units string units. The default is 'degrees'.
anglout \(=\) npi2pi(anglin, units,approach) specifies the approach logic for this wrapping. The approach string 'exact' calculates a mathematically precise wrap. 'inward' and 'outward' calculate more quickly by shifting the values by an epsilon either toward or away from the origin and performing a trigonometric wrap. The trigonometric wrap is inexact to allow for the fact that different computer math processors might give different (although trigonometrically identical) results ( \(180^{\circ}\) or \(-180^{\circ}\), for example). The offset prevents this.
```

npi2pi(315)
ans =
-45
npi2pi(181)
ans =
-179

```

See Also zero22pi Normalize angles to lie between 0 and \(2 \pi\)

\section*{Purpose Create data grids containing ones}

\(10-410\)
Purpose Compute pole of a transformed coordinate system based on a new origin
Syntax
Description
ExamplesPerhaps you want to make \(\left(30^{\circ} \mathrm{N}, 0^{\circ}\right)\) the new origin. Where does the North Poleend up in terms of the original coordinate system?
```

pole = org2pol([30 0 0])
pole =
60.0000 0 0

```
This makes sense: pull a point \(30^{\circ}\) down to the origin, and the North Pole is pulled down \(30^{\circ}\). A little less obvious example is the following:
```

pole = org2pol([5 40 30])
pole =
59.6245 80.0750 40.0000

```

\section*{See Also}
neworig Transform a regular data grid to a new coordinate system putpole Origin of transformed coordinate system based on a new pole

Purpose
Syntax

Background Maps are usually printed at a size that allows an easy comparison of distances measured on paper to distances on the Earth. The relationship of geographic

10-412

\section*{Examples}

Limitations
distance and paper distance is termed scale. It is usually expressed as a ratio, such as 1 to 100,000 or \(1: 100,000\) or \(1 \mathrm{~cm}=1 \mathrm{~km}\).

The small circle measures 10 cm across when printed.
```

axesm mercator
[lat,lon] = scircle1(0,0,km2deg(5));
plotm(lat,lon)
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
13.154 12.509
set(gca,'pos', [ 0 0 1 1])
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
10.195 10.195

```

The relationship between the paper and geographic coordinates holds only as long as there are no changes to the display that affect the axes limits or the relationship between geographic coordinates and projected coordinates.
Changes of this type include the ellipsoid or scale factor properties of the map axes, or adding elements to the display that cause MATLAB to modify the axes autoscaling. To be sure that the scale is correct, execute paperscale just before printing.

\section*{See Also}

Purpose Project patches onto the current map axes as separate objects
Syntax The patchesm function is very similar to the patchm function. The significant difference is that in patchesm, separate patches (delineated by NaNs in the inputs lat and lon) are separated and plotted as distinct patch objects on the current map axes. The advantage to this is that less memory is required. The disadvantage is that multifaced objects cannot be treated as a single object. For example, the archipelago of the Philippines cannot be treated and handled as a single Handle Graphics object.
\(\mathrm{h}=\) patchesm(lat,lon,cdata) and \(\mathrm{h}=\) patchesm(lat,lon, cdata, PropertyName, PropertyValue, ...) projects and displays patch (polygon) objects defined by their vertices given in lat and lon on the current map axes. lat and lon must be vectors. The color data, cdata, can be any color data designation supported by the standard MATLAB patch function. The object handle or handles, h , can be returned.
h = patchesm(lat,lon,PropertyName,PropertyValue,...) allows any property name/property value pair supported by patch to be assigned to the patchesm objects.
\(\mathrm{h}=\) patchesm(lat,lon,z,cdata) and \(\mathrm{h}=\) patchesm(lat,lon,z,cdata, PropertyName, PropertyValue,...) allows the assignment of an altitude, \(z\), to each patch object. The default altitude is \(z=0\).

\section*{Examples}
```

load coast
axesm sinusoid; framem
h = patchesm(lat,long,'b');

```

```

length(h)
ans =
238

```
See Also \begin{tabular}{ll} 
patchm \\
fill3m \\
fillm
\end{tabular}

Project patch objects on the current map axes Project 3-D patch objects onto the current map axes film Project 2-D patch objects onto the current map axes

Purpose

\section*{Syntax}

\section*{Examples}

Project patch objects onto the current map axes
This Mapping Toolbox function is very similar to the standard MATLAB patch function. Like its analog, and unlike higher level functions such as fillm and fill3m, patchm adds patch objects to the current map axes regardless of hold state. Except for XData, YData, and ZData, all line properties and styles available through patch are supported by patchm.
h = patchm(lat,lon, cdata) and h = patchm(lat,lon, cdata, PropertyName, PropertyValue, ...) projects and displays patch (polygon) objects defined by their vertices given in lat and lon on the current map axes. lat and lon must be vectors. The color data, cdata, can be any color data designation supported by the standard MATLAB patch function. The object handle or handles, \(h\), can be returned.
h = patchm(lat,lon, PropertyName, PropertyValue, ...) allows any property name/property value pair supported by patch to be assigned to the patchm object.
h = patchm(lat,lon,z,cdata) and h = patchm(lat,lon,z,cdata, PropertyName, PropertyValue, ...) allows the assignment of an altitude, \(z\), to each patch object. The default altitude is \(z=0\).
load coast
axesm sinusoid; framem
h = patchm(lat,long,'b');


10-416
```

length(h)
ans =
1

```

See Also
patchesm
fill3m
fillm

Project patches as separate objects
Project 3-D patch objects onto the current map axes
Project 2-D patch objects onto the current map axes

Purpose Project data grid in the \(z=0\) plane
Syntax \(\quad h=\) pcolorm (map) projects the data grid map on a graticule grid the size of map between the latitude and longitude limits of the current map axes. The handle \(h\) of the displayed surface can be returned.
\(\mathrm{h}=\) pcolorm(map, npts) results in a graticule grid defined by npts, which is a two-element vector of the form [latitude-points longitude-points]. The default npts is [50 100].
\(\mathrm{h}=\) pcolorm(lat,lon, map) allows three other methods of defining the graticule grid. If lat and lon are matrices, they represent the actual graticule vertices as might be returned by meshgrat. If vectors, they are the representative coordinates of the rows and columns, respectively, of such a grid. If they are two-element vectors, they are treated as latitude and longitude limits, and a graticule mesh the size of the default npts is calculated.
h = pcolorm(lat,lon,map,PropertyName,PropertyValue,...) allows the input of property name/property value pairs to control the surface object properties. Any property supported by the standard MATLAB function surface except XData, YData, and ZData can be altered in this manner.

\section*{Description}

\section*{Examples}

This function warps a data grid to a graticule mesh, which itself is projected according to the map axes property MapProjection. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting it. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need very few graticule points in the longitudinal direction, while complex curve-generating projections require more.
```

load topo
axesm miller
pcolorm(topo,[30 30])
demcmap(topo)

```


See Also
meshgrat
meshm
surfacem
surfm

Construct map graticule grid
Regular data grid warped to a projected graticule mesh
Data grid warped to a projected graticule mesh
Data grid projected to a map axes

Purpose Convert pixel coordinates to latitude-longitude coordinates
\begin{tabular}{|c|c|}
\hline Syntax & [lat, lon] = pix2latlon(r, row, col) calculates latitude-longitude coordinates lat, lon from pixel coordinates row, col. \(r\) is a 3-by-2 referencing matrix defining a two-dimensional affine transformation from pixel coordinates to spatial coordinates. row and col are vectors or arrays of matching size. The outputs lat and lon have the same size as row and col. \\
\hline Example & ```
% Find the latitude and longitude of the upper left and lower right
% outer corners of a 2-by-2 degree gridded data set.
R = makerefmat([1, 89], 2, 2);
[UL_lat, UL_lon] = pix2latlon(R, .5, .5)
[LR_lat, LR_lon] = pix2latlon(R, 90.5, 180.5)
``` \\
\hline See Also & latlon2pix, makerefmat, pix2map \\
\hline
\end{tabular}

Purpose

\section*{Syntax \\ Example \\ \([x, y]=\operatorname{pix2map}(R\), row, col) calculates map coordinates \(x, y\) from pixel coordinates row, col. R is a 3-by-2 referencing matrix defining a two-dimensional affine transformation from pixel coordinates to spatial coordinates. row and col are vectors or arrays of matching size. The outputs \(x\) and \(y\) have the same size as row and col. \\ \(s=p i x 2 m a p(R, r o w, c o l)\) combines \(X\) and \(Y\) into a single array s. If row and col are column vectors of length \(n\), then \(s\) is an \(n\)-by- 2 matrix and each row \((s(k,:))\) specifies the map coordinates of a single point. Otherwise, \(s\) has size [size(row) 2], and s(k1,k2,...,kn,:) contains the map coordinates of a single point. \\ [...] = pix2map ( \(\mathrm{R}, \mathrm{p}\) ) combines row and col into a single array p . If row and col are column vectors of length \(n\), then \(p\) should be an \(n\)-by- 2 matrix such that each row ( \(p(k,:)\) ) specifies the pixel coordinates of a single point. Otherwise, \(p\) should have size [size(row) 2], and p(k1,k2,...,kn,:) should contain the pixel coordinates of a single point. \\ ```
% Find the map coordinates for the pixel at (100,50). \\ R = worldfileread('concord_ortho_w.tfw'); \\ [x,y] = pix2map(R,100,50)
```}

See Also
Convert pixel coordinates to map coordinates
makerefmat, map2pix, pix2latlon, worldfileread

\section*{Purpose Compute pixel centers for georeferenced image or data grid}

Syntax \(\quad[x, y]=\) pixcenters ( \(R\), height, width) returns the spatial coordinates of a spatially-referenced image or regular gridded data set. \(R\) is the 3-by-2 affine referencing matrix. height and width are the image dimensions. If \(r\) does not include a rotation (i.e., \(r(1,1)=r(2,2)=0\) ), then \(x\) is a 1 -by-width vector and \(y\) is a height-by- 1 vector. In this case, the spatial coordinates of the pixel in row row and column col are given by \(x\) (col), \(y\) (row). Otherwise, \(x\) and \(y\) are each a height-by-width matrix such that \(x\) (col, row), \(y\) (col, row) are the coordinates of the pixel with subscripts (row, col).
[ \(x, y\) ] = pixcenters(r,sizea) accepts the size vector sizea = [height, width, ...] instead of height and width.
\([x, y]=\) pixcenters(info) accepts a scalar struct array with the fields
'RefMatrix' \(\quad 3\)-by-2 referencing matrix
'Height' Scalar number
'Width' Scalar number
[ \(\mathrm{x}, \mathrm{y}\) ] = pixcenters(..., 'makegrid') returns x and y as height-by-width matrices even if \(r\) is irrotational. This syntax can be helpful when you call pixcenters from within a function or script.

Notes

Example

For more information on referencing matrices, see the documentation for makerefmat.
pixcenters is useful for working with surf, mesh, or surface, and for coordinate transformations.
```

[Z,R] = arcgridread('MtWashington-ft.grd');
[x,y] = pixcenters(R, size(Z));
h = surf(x,y,Z); axis equal; colormap(demcmap(Z))
set(h,'EdgeColor','none')
xlabel('x (easting in meters)')
ylabel('y (northing in meters')
zlabel('elevation in feet')colormap(terrain)

```

10-422

\section*{See Also}
arcgridread, makerefmat, mapbbox, mapoutline, pix2map, worldfileread
The help for mapshow provides an alternative version of the preceding example.

\section*{plabel}

\section*{Purpose Project parallel labels on a map axes}

\section*{Syntax}

See Also
plabel toggles the visibility of parallel labeling on the current map axes. plabel ('on') sets the visibility of parallel labels to 'on'.
plabel('off') sets the visibility of parallel labels to 'off'.
plabel('reset') resets the displayed parallel labels using the currently defined parallel label properties.
plabel(meridian) sets the value of the PLabelMeridian property of the map axes to the value meridian. This determines the meridian upon which the labels are placed (see axesm). The options for meridian are a scalar longitude or the strings 'east', 'west', or 'prime'.
plabel(MapAxesPropertyName, PropertyValue, ...) allows paired map axes property names and property values to be passed in. For a complete description of map axes properties, see the axesm reference page in this guide.

Parallel label handles can be returned in h if desired.
axesm Define map axes and set map properties
setm Set map properties
mlabel Meridian labels projected on a map axes

\section*{Purpose}

Syntax

\section*{Description}

\section*{Example}

Project line objects onto current map axes in 3-D space
\(h=p l o t 3 m(l a t, l o n, z)\) displays projected line objects on the current map axes. lat and lon are the latitude and longitude coordinates, respectively, of the line object to be projected. Note that this ordering is conceptually reversed from the MATLAB line function, because the vertical ( \(y\) ) coordinate comes first. However, the ordering latitude, then longitude, is standard geographic usage. lat and lon must be the same size, and in the AngleUnits of the map axes. \(z\) is the altitude data associated with each point in lat and lon. The object handle for the displayed line can be returned in \(h\).
\(\mathrm{h}=\mathrm{plot} 3 \mathrm{~m}(\mathrm{lat}\), lon,linetype) allows the specification of the line style, where linetype is any string recognized by the MATLAB line function.
h = plot3m(lat,lon,PropertyName,PropertyValue, ...) allows the specification of any number of property name/property value pairs for any properties recognized by the MATLAB line function except for XData, YData, and ZData.
plot3m is the mapping equivalent of the MATLAB plot3 function.
```

    axesm sinusoid; framem; view(3)
    [lats,longs] = interpm([45 -45 -45 45 45 -45]',...
        [-100 -100 100 100 -100 -100]',1);
    z = (1:671)'/100;
    plot3m(lats,longs,z,'g')
    ```


\section*{See Also}

\section*{linem}
plot3
plotm

Project line objects onto current map axes
Plot lines and points in 3-D space (see the online MATLAB Function Reference documentation)

Project lines onto current map axes in 2-D space

\section*{Purpose}

Project 2-D lines onto current map axes

\section*{plotm}

\begin{tabular}{lll} 
See Also & linem & Project line objects onto current map axes \\
plot & Linear plot (see the online MATLAB Function \\
& Reference documentation)
\end{tabular}

\section*{Purpose Colormap for political maps}

Syntax polcmap applies a random muted colormap to the current figure. The size of the colormap is the same as the existing colormap.
polcmap (ncolors) creates a colormap with the specified number of colors.
polcmap(ncolors, maxsat) controls the maximum saturation of the colors.
Larger maximum saturation values produce brighter, more saturated colors. If omitted, the default is 0.5 .
polcmap(ncolors, huelimits, saturationlimits, valuelimits) controls the colors. Hue, saturation, and value are randomly selected values within the limit vectors. These are two-element vectors of the form [min max]. Valid values range from 0 to 1 . As the hue varies from 0 to 1 , the resulting color varies from red, through yellow, green, cyan, blue, and magenta, back to red. When the saturation is 0 , the colors are unsaturated; they are simply shades of gray. When the saturation is 1 , the colors are fully saturated; they contain no white component. As the value varies from 0 to 1 , the brightness increases.
cmap \(=\) polcmap (...) returns the colormap without applying it to the figure.

\section*{Remarks}

You cannot use polcmap to alter the colors of patches drawn by geoshow or mapshow. The patches must have been rendered by displaym.

\section*{Example}
```

usamap('conus','none')
framem off; gridm off; mlabel off; plabel off
load usalo
displaym(state)
polcmap

```

\section*{polcmap}


\section*{See Also}
demcmap
colormap

Colormaps for digital elevation maps
Color lookup table

\section*{Purpose}

Syntax

Limitations

Example

Perform polygon Boolean operations
[lat,lon] = polybool(flag, x1, y1, x2,y2) performs the polygon Boolean operation identified by flag. Valid flag strings are one of the following: ('intersection', 'and', '\&'), ('union', 'or', '|', '+', 'plus'), ('exclusiveor', 'xor') and ('subtraction', 'minus', '-'). The polygon inputs are NaN -delimited vectors or cell arrays containing individual polygons in each element with the outer face separated from the subsequent inner faces by NaNs. The result is output as NaN-delimited vectors.
[lat,lon] = polybool(flag, x1, y1, x2,y2,outputformat) controls the format of the resulting polygons. If outputformat is 'vector', the result is returned as vectors with NaNs separating the faces. No distinction is made between outer and inner faces of polygons. If outputformat is 'cutvector', inner faces are connected to the enclosing polygon face by inserting a cut. If outputformat is 'cell', the result is returned as cell arrays containing individual polygons in each element, with the outer face separated from the subsequent inner faces by NaNs. If omitted, 'vector' is assumed.

Polygons are assumed to be in a Cartesian coordinate system. Therefore, geographic data that encompasses a pole cannot be used directly. Use flatearthpoly to convert polygons to Cartesian coordinates.
```

theta = (0:pi/6:2*pi)';
lat1 = sin(theta);
lon1 = cos(theta);
lat2 = [0 1 -1 0]';
lon2 = [0 2 2 0]';
[latb,lonb] = polybool('intersection',lat1,lon1,lat2,lon2);
axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')
patchm(latb,lonb,'g')

```

```

[latb2,lonb2] = polybool('xor',lat1,lon1,lat2,lon2,'cell')
latb2 =
[ 6x1 double]
[15x1 double]
lonb2 =
[ 6x1 double]
[15x1 double]

```

See Also
bufferm Compute buffer zones for vector data
polyjoin Convert polygon segments from cell array to vector format
polysplit Extract segments of NaN-delimited polygon vectors to cell arrays

Purpose
Syntax

See Also

Polygon branch cuts for holes
[lat2,long2] = polycut(lat,long) connects the contour and holes of polygons using optimal branch cuts. Polygons are input as NaN-delimited vectors, or as cell arrays containing individual polygons in each element with the outer face separated from the subsequent inner faces by NaNs. Multiple polygons outputs are separated by NaNs.
polybool, polysplit, polyjoin

\section*{polyioin}

Purpose Convert polygon segments from cell array to vector format

\begin{abstract}
Syntax
[lat,lon] = polyjoin(latcells,loncells) converts polygons from cell array format to vector format. In cell array format, each element of the cell array is a separate polygon. Each polygon can consist of an outer contour followed by holes separated with NaNs. In vector format, each vector can contain multiple faces separated by NaNs. There is no distinction between outer contours and holes.
\end{abstract}

\section*{Example}
```

latcells = {[1 2 3]'; 4; [5 6 7 8 NaN 9]'};
loncells = {[9 8 7]'; 6; [5 4 3 2 NaN 1]'};
[lat,lon] = polyjoin(latcells,loncells);
[lat lon]
ans =
1 9
8
3
NaN NaN
4 6
NaN NaN
5 5
4
7 3
8 2
NaN NaN
9 1

```
See Also
polybool Perform polygon Boolean operations
polycut Implement polygon branch cuts for holes
polysplit Extract segments of NaN -delimited polygon vectors to cell arrays

\section*{Purpose}

Syntax

Example

Merge line segments with matching endpoints
[lat2,lonc2 = polymerge(lat,lon) combines vector line segments with identical endpoints. polymerge compares the endpoints of all line segments and combines those that match. The line can be input as vectors of latitude and longitude with NaNs delimiting segments. The line can also be input as cell arrays, with each element of a cell array containing a line segment. The resulting line is in the same format as the input.
[lat2,lonc2 = polymerge(lat,lon,tol) combines line segments whose endpoints are separated by less than the circular tolerance. If omitted, tol \(=0\) is assumed. The tolerance is in the same units as the polygon input.
[lat2,lonc2 = polymerge(lat,lon,tol,outputformat) controls the format of the resulting polygons. If outputformat is 'vector', the result is returned as vectors with NaNs separating the segments. If outputformat is 'cell', the result is returned as cell arrays containing segments in each element. If omitted, 'vector' is assumed.
```

lat = [1 2 3 NaN 6 7 8 9 NaN 6 5 4 3 NaN 12 13 14 NaN 9 10 11 12]';
lon = lat;
[lat2,lon2] = polymerge(lat,lon);
[lat2 lon2]
ans =
14 14
13 13
12 12
12 12
11 11
10 10
9 9
9 9
8
7
6 6
6 6
5 5
4 4
3 3

```

3
3
2
2
1
1
\(\begin{array}{lll}\text { See Also } & \text { polyjoin } \\ \text { polysplit }\end{array} \quad \begin{aligned} & \text { Convert polygon segments from cell array to vector format } \\ & \text { Extract segments of NaN-delimited polygon vectors to cell } \\ & \text { arrays }\end{aligned}\)

Purpose

\section*{Syntax}

Example

Extract segments of NaN -delimited polygon vectors to cell arrays
[latcells,loncells] = polysplit(lat,lon) returns the NaN-delimited segments of the vectors lat and lon as cell arrays. Each element of the cell array contains one segment.
```

lat = [1 2 3 NaN 4 NaN 5 6 7 8 9]';
lon = [9 8 7 NaN 6 NaN 5 4 3 2 1]';
[latcells,loncells] = polysplit(lat,lon);
[latcells' loncells']
ans =
[3x1 double] [3x1 double]
[ 4] [ 6 [ 6]
[5x1 double] [5x1 double]

```

See Also
polybool Perform polygon Boolean operations
polyjoin Convert polygon segments from cell array to vector format

\section*{polyxpoly}

\section*{Purpose Compute line or polygon intersection points}

Syntax \(\quad[x i, y i]=\) polyxpoly \((x 1, y 1, x 2, y 2)\) returns the intersection points of two sets of lines and/or polygons.
[xi,yi] = polyxpoly(...,'unique') returns only unique intersections.
[xi,yi,ii] = polyxpoly(...) also returns a two-column index of line segment numbers corresponding to the intersection points.

\section*{Example}
```

[lat,lon]=extractm(usalo('state'),'california');
[lat,lon]=reducem(lat,lon);
lat0 = 37; lon0 = -122; rad = 500;
[latc,lonc] = scircle1(lat0,lon0,km2deg(rad));
usamap('california','lineonly')
plotm(lat0,lon0,'r*')
plotm(latc,lonc,'r')
[loni,lati] = polyxpoly(lon,lat,lonc,latc);
plotm(lati,loni,'bo')

```

See Alsocrossfix Compute cross fix positions for bearings and rangesgcxgc Compute the intersection points between two great circlesgcxsc Compute the intersection points between a great and a smallcircle
navfix Perform Mercator-based navigational fixing
rhxrh Compute the intersection point between two rhumb lines
scxsc Compute the intersection points for pairs of small circles

\section*{previewmap}

Purpose View map at printed size
Syntax previewmap

\section*{Background}

Description

Examples

The appearance of a map onscreen can differ from the final printed output. This results from the difference in the size and shape of the figure window and the area the figure occupies on the printed page. A map that appears readable on screen might be cluttered when the printed output is smaller. Likewise, the relative position of multiple axes can appear different when printed. This function resizes the figure to the printed size.
previewmap changes the size of the current figure to match the printed output. If the resulting figure size exceeds the screen size, the figure is enlarged as much as possible.

Is the text small enough to avoid overlapping in a map of Europe?
```

worldmap europe
h = displaym(worldlo('POtext'));
trimcart(h)
rotatetext(h)
orient landscape
tightmap
hidem(gca)
previewmap

```


Limitations
See Also
pagedlg Page position dialog box
paperscale Figure paper size for a given map scale
axesscale Resize axes for equivalent scale

\section*{project}

\section*{Purpose Project a displayed graphics object on a map axes}

Syntax project (h) takes unprojected objects with handles \(h\) that are displayed on map axes and projects them. For example, project takes a line created on a map axes with the plot function and projects it as though it had been created with the plotm function. This can be useful if a standard MATLAB function was accidentally executed. The map structure of the existing map axes determines the specifics of the projection. If \(h\) is the handle of the map axes, then all the children of \(h\) are projected. Do not attempt this if any children of \(h\) have already been projected!
project(h, 'xy') specifies that the XData of the unprojected objects corresponds to longitudes and the YData to latitudes. This is the default assumption.
project (h, 'yx') specifies that the XData of the unprojected objects corresponds to latitudes and the YData to longitudes.

Example Create an axes, plot a line, then project it:



The line is straight in \(x-y\) space, but when converted to a projected map object, it bends with the projection.
\begin{tabular}{lll} 
See Also & linem & Project line objects \\
patchm & Project patch objects \\
surfacem & Project data grid \\
& textm & Project text objects
\end{tabular}

\section*{projfwd}

Purpose Forward map projection using the PROJ. 4 map projection library
Syntax \(\quad[x, y]=\operatorname{projfwd}(p r o j\), lat, lon) returns the \(x\) and \(y\) map coordinates from the forward projection transformation. proj is a structure defining the map projection. proj can be an mstruct or a GeoTIFF info structure. lat and lon are arrays of the latitude and longitude coordinates.

For a complete list of GeoTIFF info and map projection structures that you can use with projfwd, see the reference page for projlist.

\section*{Examples}

\section*{Example 1}

Display a projected image and its corner points.
1 Get the info structure for the image:
info = geotiffinfo('boston.tif');
2 Project the latitude and longitude bounding box corners of the georeferenced image boston.tif.
```

[x, y] = projfwd(info, ...
info.CornerCoords.LAT, ...
info.CornerCoords.LON)

```

3 Display the image and corners:
figure
mapshow('boston.tif')
mapshow(gca, [x; x(1)],[y; y(1)],'Color', 'cyan')

\section*{Example 2}

Overlay boston.tif on top of boston_ovr.jpg.
1 Obtain the info structure:
info = geotiffinfo('boston.tif')
2 Read the boston_ovr.jpg image and its worldfile:
[I, cmap] = imread('boston_ovr.jpg')
R = worldfileread(getworldfilename('boston_ovr.jpg')
3 Create a latitude and longitude grid:
[lon, lat] = pixcenters(R, size(I), 'makegrid');

4 Project the grid to the same projection as boston.tif:
[x, y] = projfwd\{info, lat, lon);
5 Overlay boston_ovr.jpg on boston.tif:
figure
mapshow(x, y, I, cmap);
hold on
mapshow'boston.tif');
See Also
geotiffinfo, mfwdtran, minvtran, projinv, projlist

\section*{projinv}

Purpose Inverse map projection using the PROJ. 4 map projection library
Syntax [lat, lon] = projinv(proj, x, y) returns the latitude and longitude values from the inverse projection transformation. proj is a structure defining the map projection. proj can be a map projection mstruct or a GeoTIFF info structure. x and y are \(x-y\) map coordinate arrays. For a complete list of GeoTIFF info and map projection structures that you can use with projinv, see the reference page for projlist.

Example

See Also

Display boston.tif in a Mercator projection.
1 Obtain the info structure and read the image:
```

info = geotiffinfo('boston.tif');
[I, cmap] = geotiffread('boston.tif';

```

2 Create a grid for the image and convert it to latitude and longitude:
[x, y] = pixcenters(info.RefMatrix, size(I), 'makegrid'); [lat, lon] = projinv(info, \(x, y)\);

3 Use extractm to obtain state boundary coordinates for Massachusetts from the usahi data base, and create a Mercator projection using its latitude and longitude limits:
```

figure; axesm('mercator')
[slat, slon] = extractm(usahi('stateline'), 'Massachusetts');
setm('maplonlimit', [min(slon(:)) max(slon(:))], ...
'maplatlimit', [min(slat(:)) max(slat(:))])

```

4 Display the stateline boundary and the image:
```

geoshow(slat, slon, 'color', 'black')
geoshow(lat, lon, ind2rgb8(I, cmap))
tightmap

```
geotiffinfo, mfwdtran, minvtran, projfwd, projlist

\section*{Purpose}

Syntax

List map projections supported by projfwd and projinv
projlist(listmode) displays a table of projection names, IDs, and availability. listmode is a string with value 'mapprojection', 'geotiff', 'geotiff2mstruct', or 'all'. The default value is 'mapprojection'.

S = projlist(listmode) returns a structure array containing projection names, IDs, and availability. The output of projlist for each listmode is described below:
- mapprojection - Lists the map projection IDs that are available for use with projfwd and projinv. The output structure contains the fields
- Name - Projection name
- MapProjection - Projection ID string
- geotiff - Lists the GeoTIFF projection IDs that are available for use with projfwd and projinv. The output structure contains the fields
- Geotiff - GeoTIFF projection ID string.
- Available- Logical array with values 1 or 0
- geotiff2mstruct - Lists the GeoTIFF projection IDs that are available for use with geotiff2mstruct. The output structure contains the fields
- Geotiff - GeoTIFF projection ID string
- MapProjection - Projection ID string
- all- Lists the map and GeoTIFF projection IDs that are available for use with projfwd and projinv. The output structure contains the fields
- GeoTIFF— GeoTIFF projection ID string
- MapProjection - Projection ID string
- info - Logical array with values 1 or 0
- mstruct - Logical array with values 1 or 0

\section*{Description}
projfwd and projinv can be used to process certain forward or inverse map projections. These functions are implemented in C using the PROJ. 4 library. projlist provides a convenient list of the projections that can be used with projfwd or projinv. Because projfwd and projinv accept either a map projection structure (mstruct) or a GeoTIFF info structure, projlist provides separate lists for each case. It can also list the projections for which a GeoTIFF info structure can be converted to an mstruct.

\section*{Examples}

See Also
geotiff2mstruct, projfwd, projinv, maplist, maps
```

s=projlist
S =
1x19 struct array with fields:
Name
MapProjection
s=projlist('geotiff2mstruct')
s =
1x19 struct array with fields:
GeoTIFF
MapProjection

```
geotiffzmstruct, projfw, projinv, maplist, maps

Purpose
Syntax

Description

Examples

Compute the origin of a transformed coordinate system
origin = putpole(pole) returns an origin vector required to transform a coordinate system in such a way as to put the true North Pole at a point specified by the three- (or two-) element vector pole. This vector is of the form [latitude longitude meridian], specifying the coordinates in the original system at which the true North Pole is to be placed in the transformed system. The meridian is the longitude upon which the new system is to be centered, which is the new pole longitude if omitted. The output is a three-element vector of the form [latitude longitude orientation], where the latitude and longitude are the coordinates in the untransformed system of the new origin, and the orientation is the azimuth of the true North Pole in the transformed system.
origin = putpole(pole, units) allows the specification of the angular units of the origin vector, where units is any valid angle units string. The default is 'degrees'.

When developing transverse or oblique projections, you need transformed coordinate systems. One way to define these systems is to establish the point in the original (untransformed) system that will become the new (transformed) origin.

Pull the North Pole down the \(0^{\circ}\) meridian by \(30^{\circ}\) to \(60^{\circ} \mathrm{N}\). What is the resulting origin vector?
```

origin = putpole([60 0])
origin =
30.0000 0 0

```

This makes sense: when the pole slid down \(30^{\circ}\), the point that was \(30^{\circ}\) north of the origin slid down to become the origin. Following is a less obvious transformation:
```

origin = putpole([60 80 0]) % constrain to original central
% meridian
origin =
4.9809 0 29.6217
origin = putpole([60 80 40]) % constrain to arbitrary meridian
origin =

```
4.9809
40.0000
29.6217

\section*{See Also}
neworig
Transform regular data grid to new coordinate system
org2pol Pole of a transformed coordinate system based on a new origin

\section*{Purpose}

Project three-dimensional quiver plot on map axes
Syntax

\section*{Examples}
\(\mathrm{h}=\) quiver3m(lat,lon, alt, \(\mathrm{u}, \mathrm{v}, \mathrm{w})\) displays velocity vectors with components ( \(u, v, w\) ) at the geographic points (lat,lon) and altitude alt on a displayed map axes. The inputs \(u\), \(v\), and \(w\) determine the direction of the vectors in latitude, longitude, and altitude, respectively. The function automatically determines the length of these vectors to make them as long as possible without overlap. The object handles of the displayed vectors can be returned in \(h\).
\(\mathrm{h}=\) quiver3m(lat,lon, alt, \(\mathrm{u}, \mathrm{v}, \mathrm{w}\), linespec) allows the control of the line specification of the displayed vectors with a linespec string recognized by the MATLAB line function. If symbols are indicated in linespec, they are plotted at the start points of the vectors, i.e., the input points (lat,lon,alt).
\(\mathrm{h}=\) quiver3m(lat,lon, alt, \(\mathrm{u}, \mathrm{v}, \mathrm{w}\), linespec,'filled') results in the filling in of any symbols specified by linespec.
h = quiver3m(lat,lon, alt, u,v,w,scale), h = quiver3m(lat,lon,alt,u,v,w,linespec,scale) and h = quiver3m(lat,lon, alt, u,v,w,linespec,scale,'filled') alters the automatically calculated vector lengths by multiplying them by the scalar value scale. For example, if scale is 2 , the displayed vectors are twice as long as they would be if scale were 1 (the default). When scale is set to 0 , the automatic scaling is suppressed and the length of the vectors is determined by the inputs. In this case, the vectors are plotted from (lat,lon, alt) to (lat+u,lon+v,alt+w).

Plot 3-D quiver vectors from London ( \(51.5^{\circ} \mathrm{N}, 0^{\circ}\) ) and New Delhi ( \(29^{\circ} \mathrm{N}, 77.5^{\circ} \mathrm{E}\) ), both at an altitude of 0 . Suppress the automatic scaling. Terminate both vectors at an altitude of 1 ; the London vector should terminate \(100^{\circ}\) southward and \(70^{\circ}\) eastward, while the New Delhi vector should terminate \(50^{\circ}\) northward and \(10^{\circ}\) eastward.
```

load coast
axesm miller; view(3)
plotm(lat,long)
lat0 = [51.5,29]; lon0 = [0 77.5]; alt = [0 0];
u = [-40 50]; v = [-70 10]; w = [1 1];
quiver3m(lat0,lon0,alt,u,v,w,'m')

```

\section*{quiver3m}


\section*{See Also}
quiverm
quiver3

Two-dimensional quiver plot projected on map axes
Three-dimensional velocity plot (see the online MATLAB Function Reference documentation)

\section*{Purpose}

Syntax

Project two-dimensional quiver plot on map axes
\(h\) = quiverm(lat,lon, \(u, v\) ) displays velocity vectors with components ( \(u, v\) ) at the geographic points (lat,lon) on displayed map axes. All four inputs should be in the AngleUnits of the map axes. The inputs \(u\) and \(v\) determine the direction of the vectors in latitude and longitude, respectively. The function automatically determines the length of these vectors to make them as long as possible without overlap. The object handles of the displayed vectors can be returned in \(h\).
h = quiverm(lat,lon, u,v,linespec) allows the control of the line specification of the displayed vectors with a linespec string recognized by the MATLAB line function. If symbols are indicated in linespec, they are plotted at the start points of the vectors, i.e., the input points (lat,lon).
\(h=q u i v e r m(l a t, l o n, u, v, l i n e s p e c, ' f i l l e d ')\) results in the filling in of any symbols specified by linespec.
\(h=q u i v e r m(l a t, l o n, u, v, s c a l e)\) and \(h=q u i v e r m(l a t, l o n, u, v\), linespec, scale, 'filled') alter the automatically calculated vector lengths by multiplying them by the scalar value scale. For example, if scale is 2 , the displayed vectors are twice as long as they would be if scale were 1 (the default). When scale is set to 0 , the automatic scaling is suppressed, and the length of the vectors is determined by the inputs. In this case, the vectors are plotted from (lat,lon) to (lat \(+u, l o n+v\) ).

Example
Plot quiver vectors from Land's End ( \(50^{\circ} \mathrm{N}, 5.4^{\circ} \mathrm{W}\) ) and Majorca ( \(39.7^{\circ} \mathrm{N}, 2.9^{\circ} \mathrm{E}\) ) in a direction corresponding to \(+5^{\circ}\) latitude and \(+3^{\circ}\) longitude. Use automatic scaling.
```

load coast

```
load coast
axesm('eqacon','MapLatLimit',[30 60],'MapLonLimit',[-10 10])
axesm('eqacon','MapLatLimit',[30 60],'MapLonLimit',[-10 10])
framem; plotm(lat,long)
framem; plotm(lat,long)
lat0 = [50 39.7]; lon0 = [-5.4 2.9];
lat0 = [50 39.7]; lon0 = [-5.4 2.9];
u = [5 5]; v = [3 3];
u = [5 5]; v = [3 3];
quiverm(lat0,lon0,u,v,'r')
```

quiverm(lat0,lon0,u,v,'r')

```


See Also
quiver3m quiver

Three-dimensional quiver plot projected on map axes
Quiver or velocity plot (see the online MATLAB Function Reference documentation)

Purpose

\section*{Syntax}

\section*{Remarks}

Example
There are \(180^{\circ}\) in \(\pi\) radians:

\section*{See Also} equivalent measure in degrees. (provided the radius is known).
```

anglout $=$ rad2deg (pi)
anglout =
180
anglout =
180

```
angledim Convert angle units

Convert angle (or distance) units from radians to degrees
anglout \(=\) rad2deg(anglin) converts angles input in radians to the

This is both an angle conversion function and a distance conversion function, because arc length can be a measure of distance in either radians or degrees
deg2dms Other direct angle conversion functions
dms2rad
deg2rad Convert degrees to radians
distdim Convert distances between different units
nm2km
Other direct distance conversion functions
sm2deg

Purpose \(\quad\) Convert angle units from radians to dms or dm

Syntax

Example
anglout \(=\) rad2dms(anglin) converts angles input in radians to the equivalent measure in degrees-minutes-seconds ( \(d m s\) ) format.
angleout \(=\) rad2dm(anglin) converts angles input in radians to the equivalent measure in degrees-minutes \((d m)\) format. This is the dms format, properly rounded to just degrees and minutes.
```

rad2dms(1)
ans =
5717.45
rad2dm(1)
ans =

```
5718.00

See Also
angledim Convert angle units
deg2rad Other direct angle conversion functions
dms2rad
dms2mat Convert from dms to separated matrix components
mat2dms Convert from separated matrices input to dms

\section*{Purpose}

Syntax

Examples
How long is a trip around the equator in statute miles?
```

distout = rad2sm(2*pi)
distout =
2.4874e+04

```

How about on Jupiter?
```

distout = rad2sm(2*pi,'jupiter')
distout =
2.7284e+05

```

\section*{See Also}
distdim Convert distances between different units
nm2km Other direct distance conversion functions
sm2deg
rad2deg Convert radians to degrees

\section*{Purpose Calculate radii of curvature on an ellipsoid}

Syntax \(\quad r=\) rcurve(ellipsoid, lat) or \(r=r c u r v e(' p a r a l l e l ', e l l i p s o i d, l a t) ~\) returns the parallel radius of curvature at the latitude lat for a given elliptical definition, where ellipsoid is a two-element ellipsoid vector. This is the radius of the small circle encompassing the ellipsoid at the given latitude. The radius is a distance in units consistent with the semimajor axis, the first element of ellipsoid.
\(r=\) rcurve(ellipsoid, lat, units) specifies the units of the input lat, where units is any valid angle units string. The default is 'degrees'.
\(r=\) rcurve('meridian',ellipsoid, lat, units) returns the meridianal radius, which is the radius of curvature at the latitude lat for the ellipse described by a meridian on the ellipsoid.
\(r=r c u r v e(' t r a n s v e r s e ', e l l i p s o i d, l a t, u n i t s)\) returns the transverse radius, which is the radius of a curve described by the intersection of the ellipsoid with a plane normal to the surface of the ellipsoid at the latitude lat.

Examples
The radii of curvature of the default ellipsoid at \(45^{\circ}\), in kilometers:
```

r = rcurve('transverse',almanac('earth','ellipsoid','km'),45,...
'degrees')
r =
6.3888e+03
r = rcurve('meridian',almanac('earth','ellipsoid','km'),45,...
'degrees')
r =
6.3674e+03
r = rcurve('parallel',almanac('earth','ellipsoid','km'),45,...
'degrees')
r =
4.5024e+03

```

See Also
rsphere
Radii of auxiliary spheres

\section*{Purpose}

Read fields or records from a fixed-format file

\section*{Syntax}
struc \(=\) readfields(fname,fstruc) reads all the records from a fixed format file. fname is a string containing the name of the file. If it is empty, the file is selected interactively. fstruc is a structure defining the format of the file. The contents of fstruc are described below. The result is returned in a structure.
struc = readfields(fname,fstruc,recordIDs) reads only the records specified in the vector recordIDs. For example, recordIDs = [llll \(\left.1 \begin{array}{lll}1 & 2 & 3\end{array}\right]\). All the fields in the selected records are read.
struc = readfields(fname,fstruc,fieldIDs) reads only the fields specified in the cell array fieldIDs. For example, fieldIDs = \(\left.\begin{array}{lll}1 & 2 & 4\end{array}\right\}\). The selected fields are read from all the records. fieldIDs can be used in place of recordIDs in all calling forms.
struc \(=\) readfields(fname,fstruc,recordIDs,mformat) opens the file with the specified machine format. mformat must be recognized by fopen.
struc \(=\) readfields(fname,fstruc, recordIDs,mformat,fid) reads from a file that is already open. fid is the file identifier returned by fopen. The records are read starting from the current location in the file.
struc = readfields(fname,fstruc,recordIDs,mformat,fid,'sparse') disables error messages when the number of elements read does not agree with the stated format of the file. This is useful for formatted files with empty fields. Use fid = [ ] for files that are not already open. This option is only compatible with reading selected records.

Background Map data is often provided as binary or ASCII files with a fixed format. Writing your own functions to read the data into MATLAB can be difficult and time-consuming, particularly for binary files. This function allows you to read the data by simply specifying the format of the file.

\section*{Examples Write a binary file and read it.}
```

fid = fopen('testbin','wb');
for i = 1:3
fwrite(fid,['character' num2str(i) ],'char');
fwrite(fid,i,'int8');
fwrite(fid,[i i],'int16');

```

\section*{readfields}
```

        fwrite(fid,i,'integer*4');
        fwrite(fid,i,'real*8');
    end
fclose(fid);
fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64'; fs(5).name = 'field 5';
s = readfields('testbin',fs);
s(1)
ans =
field1: 'character1'
field2: 1
field3: [1 1]
field4: 1
field5: 1

```

\section*{Limitations Formatted numbers must stay within the width specified for them. Files must} have a size that is an integer multiple of the computed record length. This is potentially a problem for formatted files on DOS platforms that use a carriage return/line-feed line ending everywhere except the last record. File sizes are not checked when an open file is provided.

\section*{Remarks}

The format of the file is described in the input argument fstruc. fstruc is a structure with one entry for every field in the file. fstruc has three required fields: length, name, and type. For fields containing binary data of the type that would be read by fread, length is the number of elements to be read, name is a string containing the field name under which the read data is stored in the output structure, and type is a format string recognized by fread. Repetition modifiers such as '40*char' are not supported. Fields with empty field names are omitted from the output.

The following fstruc definition is for a file with a 40-character field, a field containing two integers, and a field with a single-precision floating-point number.
```

fstruc(1).length = 40;
fstruc(1).name = 'character Field'; % spaces will be suppressed
filestruc(1).type = 'char';
fstruc(2).length = 2;
fstruc(2).name = 'integer Field'; % spaces will be suppressed
fstruc(2).type = 'int16';
fstruc(3).length = 1;
fstruc(3).name = 'float Field'; % spaces will be suppressed
fstruc(3).type = 'real*4';

```

The type can also be a fscanf and sscanf-style format string of the form ' \(\% \mathrm{nX}\) ', where n is the number of characters within which the formatted data is found, and \(X\) is the conversion character such as ' \(g\) ' or ' \(d\) '. For formatted fields, the length entry in fstruc is the number of elements, each of which has the width specified in the type string. Fortran-style double-precision output such as ' 0.0000 ' can be read using a type string such as ' \(\% \mathrm{nD}\) ', where n is the number of characters per element. This is an extension to the C-style format strings accepted by sscanf. Users unfamiliar with C should note that ' \(\% d\) ' is preferred over '\%i' for formatted integers. MATLAB follows C in interpreting '\%i' integers with leading zeros as octal. Line-ending characters in ASCII files must also be counted in the fstruc specification. Note that the number of line-ending characters differs across platforms.

A field specification for a formatted field with two integers each six characters wide would be of the form
```

fstruc(4).length = 2;
fstruc(4).name = 'Elevation Units';
fstruc(4).type = '%6d'

```

To summarize, length is the number of elements for binary numbers, the number of characters for strings, and the number of elements for formatted data.

You can omit fields from all output by providing an empty string for the fstruc name field.
\begin{tabular}{lll} 
See Also & grepfields & Search within fields of a fixed format file \\
readmtx & Read a matrix stored in a file \\
textread & Read formatted text files \\
spcread & Read columns of data from an ASCII text file \\
dlmread & Read ASCII delimited file
\end{tabular}

Purpose
Syntax

Background

\section*{Remarks}

\section*{Examples}

Read the Fifth Fundamental Catalog of Stars
struc = readfk5(filename) reads the FK5 file and returns the contents in a structure. Each star is an element in the structure, with the different data items stored in appropriately named fields.
struc \(=\) readfk5(filename, struc) appends the data in the file to the existing structure struc.

The Fifth Fundamental Catalog of Stars (FK5), Parts I and II, is a compilation of data on more than 4500 stars. The catalog contains positions, errors in positions, proper motions, and characteristics such as magnitudes, spectral types, parallaxes, and radial velocities. There are also cross-references to the identities of stars in other catalogs. It was compiled by researchers at the Astronomisches Rechen-Institut in Heidelberg.

Positions are given in terms of right ascension and declination. "Astronomical Data" in Chapter 8 of the Mapping Toolbox User's Guide documentation shows how to convert these to latitude and longitude for display by the Mapping Toolbox.

The Fifth Fundamental Catalog of Stars (FK5), Parts I and II, is available over the Internet by anonymous FTP at the following:
ftp://adc.gsfc.nasa.gov/pub/adc/archives/catalogs/1/1149A/
ftp://adc.gsfc.nasa.gov/pub/adc/archives/catalogs/1/1175/
The readme files have more complete descriptions of the data.
```

FK5 = readfk5('FK5.dat');
FK5e = readfk5('FK5_ext.dat');
whos
Name Size Bytes Class
FK5 1x1535 5042752 struct array
FK5e 1x3117 10226424 struct array
FK5e(1)
ans =

```

FK5: 2003
RAh: 0
RAm: 5
```

            RAs: 1.1940
            pmRA: 0.6230
            DEd: 27
            DEm: 40
            DEs: 29.0100
            pmDE: -1.1100
        RAh1950: 0
        RAm1950: 2
        RAs1950: 26.5900
        pmRA1950: 0.6210
        DEd1950: 27
        DEm1950: 23
        DEs1950: 47.4400
        pmDE1950: -1.1100
        EpRA1900: 51.7200
        e_RAs: 2
        e_pmRA: 9
    EpDE1900: 46.8200
e_DEs: 3.4000
e_pmDE: 14
Vmag: 6.4700
n_Vmag:
SpType: 'G5'
plx: []
RV: 12
AGK3R: '38'
SRS: ''
HD: '225292'
DM: 'BD+26 4744'
GC: '48'
See Also dms2deg Convert angles from deg:min:sec to degrees
hms2hr Convert time from hrs:min:sec to hours
scatterm Construct a thematic map with proportional symbols
References See references [5] and [6] in the Bibliography located at the end of this chapter.

```

Purpose
Read a matrix stored in a file

\section*{Syntax}
mtx \(=\) readmtx(fname, nrows, ncols, precision) reads a matrix stored in a file. The file contains only a matrix of numbers with the dimensions nrows by ncols stored with the specified precision. Recognized precision strings are described below.
mtx = readmtx(fname, nrows, ncols,precision, readrows, readcols) reads a subset of the matrix. readrows and readcols specify which rows and columns are to be read. They can be vectors containing the row or column numbers, or two-element vectors of the form [start end], which are expanded using the colon operator to start: end. To read just two rows or columns, without expansion by the colon operator, provide the indices as a column matrix.
mtx = readmtx(fname, nrows, ncols, precision, readrows, readcols,mforma \(t\) ) specifies the machine format used to write the file. mformat can be any string recognized by fopen. This option is used to automatically swap bytes for files written on platforms with a different byte ordering.
mtx \(=\) readmtx (fname, nrows, ncols, precision, readrows, readcols, mforma \(t\), nheadbytes) skips the file header, whose length is specified in bytes.
mtx = readmtx(fname,nrows,ncols,precision, readrows,readcols,mforma \(t\), nheadbytes, nRowHeadBytes) also skips a header that precedes every row of the matrix. The length of the header is specified in bytes.
mtx = readmtx (fname, nrows, ncols, precision, readrows, readcols,mforma \(t\), nheadbytes, nRowHeadBytes, nRowTrailBytes) also skips a trailer that follows every row of the matrix. The length of the trailer is specified in bytes.
mtx \(=\) readmtx (fname, nrows, ncols, precision, readrows, readcols,mforma \(t\), nheadbytes, nRowHeadBytes, nRowTrailBytes, nFileTrailBytes) accounts for the length of data following the matrix. The sizes of the components of the matrix are used to compute an expected file size, which is compared to the actual file size.
mtx = readmtx(fname, nrows, ncols,precision, readrows, readcols,mforma \(t\), nheadbytes, nRowHeadBytes, nRowTrailBytes, nFileTrailBytes, recordle \(n\) ) overrides the record length calculated from the precision and number of columns, and instead uses the record length given in bytes. This is used for formatted data with extra spaces or line breaks in the matrix.

\section*{Background}

Examples

Limitations
Remarks

Map data is often provided as binary or ASCII files with a fixed format. Writing your own functions to read the data into MATLAB can be difficult and time-consuming, particularly for binary files. This function allows you to read the data by simply specifying the format of the file.

Write and read a binary matrix file:
```

fid = fopen('binmat','w');
fwrite(fid,1:100,'int16');
fclose(fid);
mtx = readmtx('binmat',10,10,'int16')
mtx =

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

mtx = readmtx('binmat',10,10,'int16',[2 5],3:2:9)
mtx =
13 15 17 19
23 25 27 29
33
43 45 47 49

```

Every row of the matrix must have the same number of elements.
This function reads files that have a general format consisting of a header, a matrix, and a trailer. Each row of the matrix can have a certain number of bytes of extraneous information preceding or following the matrix data.

Both binary and formatted data files can be read. If the file is binary, the precision argument is a format string recognized by fread. Repetition modifiers such as '40*char' are not supported. If the file is formatted,
precision is a fscanf and sscanf-style format string of the form ' \(\% \mathrm{nX}\) ', where \(n\) is the number of characters within which the formatted data is found, and \(x\) is the conversion character such as ' \(g\) ' or ' \(d\) '. Fortran-style double-precision output such as ' 0.0 000' can be read using a precision string such as '\%nD', where \(n\) is the number of characters per element. This is an extension to the C-style format strings accepted by sscanf. Users unfamiliar with C should note that ' \(\%\) d' is preferred over ' \(\% \mathrm{i}\) ' for formatted integers. MATLAB follows C in interpreting ' \(\% \mathrm{i}\) ' integers with leading zeros as octal. Formatted files with line endings need to provide the number of trailing bytes per row, which can be 1 for platforms with carriage returns or line-feed (Macintosh, UNIX), or 2 for platforms with carriage returns and line-feeds (DOS).
\begin{tabular}{lll} 
See Also & readfields & Read fields or records from a fixed format file \\
textread & Read formatted text files \\
spcread & Read columns of data from an ASCII text file \\
dlmread & Read ASCII delimited file
\end{tabular}

Purpose Compute position at a specified azimuth and range
Syntax

Examples
[latout, lonout] = reckon(lat, lon, rng, az), for scalar inputs, calculates a position (latout, lonout) at a given range rng and azimuth az along a great circle from a starting point defined by lat and lon. lat and lon are in degrees. The range is in degrees of arc length on a sphere. The input azimuth is in degrees, measured clockwise from due north. reckon calculates multiple positions when given four non-scalar inputs of matching size.
[latout, lonout] = reckon(lat, lon, rng, az, units), where units is any valid angle units string, specifies the angular units of the inputs and outputs, including rng. The default value is 'degrees'.
[latout, lonout] = reckon(lat, lon, rng, az, ellipsoid) calculates positions along a geodesic on an ellipsoid, as specified by the two-element vector ellipsoid. The range, rng, is in linear distance units matching the units of the semimajor axis of the ellipsoid (the first element of ellipsoid).
[latout, lonout] = reckon(lat, lon, rng, az, ellipsoid, units) calculates positions on the specified ellipsoid with lat, lon, az, latout, and lonout in the specified angle units.
[latout, lonout] = reckon(track,...) calculates positions on great circles (or geodesics) if track is ' gc ' and along rhumb lines if track is 'rh '. The default value is ' gc '.

What are the coordinates of the point 600 nautical miles northwest of London, \(\mathrm{UK}\left(51.5^{\circ} \mathrm{N}, 0^{\circ}\right)\), in a great circle sense?
```

dist = nm2deg(600) % convert nm distance to degrees
dist =
9.9933
pt1 = reckon(51.5,0,dist,315) % northwest is 315 degrees
pt1 =
57.8999 -13.3507

```

Now, where would a plane taking off from London and traveling on a constant northwesterly course for 600 nautical miles end up?
```

pt2 = reckon('rh',51.5,0,dist,315)
pt2 =

```
```

58.5663 -12.3699

```

How far apart are these points (distance in great circle sense)?
```

separation = distance('gc',pt1,pt2)
separation =
0.8430
nmsep = deg2nm(separation) % convert answer to nautical miles
nmsep =
50.6156

```

Over 50 nautical miles separate the two points.
See Also
\begin{tabular}{ll} 
azimuth & Azimuth between two points on the globe \\
distance & Calculate distances between points on a ellipsoid \\
distdim, \\
distance & Distance between two points on the globe \\
km2deg & Convert distance units \\
dreckon & Navigational dead reckoning \\
track & Tracing paths on the globe \\
track1 & \\
track2 &
\end{tabular}

\section*{Purpose Reduce the number of points in vector data}

Syntax

Examples

\section*{Remarks}
[latout,lonout] = reducem(latin,lonin) reduces the number of points in vector map data. In this case the tolerance is computed automatically.
[latout,lonout] = reducem(latin,lonin,tol) uses the provided tolerance. The units of the tolerance are degrees of arc on the surface of a sphere.
[latout, lonout, cerr] = reducem(...) in addition returns a measure of the error introduced by the simplification. The output cerr is the difference in the arc length of the original and reduced data, normalized by the original length.
[latout,lonout, cerr,tol] = reducem(...) also returns the tolerance used in the reduction, which is useful when the tolerance is computed automatically.

Compare the original and reduced outlines of the District of Columbia from the usahi atlas data:
```

load usahi
[lat,long] = extractm(stateline,'district');
[latout,lonout,cerr] = reducem(lat,long);

```


Vector data is reduced using the Douglas-Peucker line simplification algorithm. This method recursively subdivides a polygon until a run of points can be replaced by a straight line segment, with no point in that run deviating from the straight line by more than the tolerance. The distances used to decide on which runs of points to eliminate are computed in a Plate Carrée projection.

Reduced geographic data might not always be appropriate for display. If all intermediate points in a data set are reduced, then lines appearing straight in one projection are incorrectly displayed as straight lines in others.

\author{
See Also
}
interpm
resizem Resize a data grid

\section*{refmat2vec}

Purpose Convert a referencing matrix to a referencing vector
```

Syntax refvec = refmat2vec(R,s) converts a referencing matrix, R, to the referencing
vector refvec. R is a 3-by-2 referencing matrix defining a two-dimensional
affine transformation from pixel coordinates to spatial coordinates.s is the size of the array (data grid) that is being referenced. refvec is a 1-by-3 referencing vector with elements [cells/angleunit north-latitude west-longitude].

```

\author{
Example
}

See Also
makerefmat, refvec2mat

\section*{refvec \(2 m a t\)}

Purpose
Syntax
R = refvec2mat (refvec, s) converts a referencing vector, refvec, to the
referencing matrix R. refvec is a 1-by-3 referencing vector with elements
[cells/angleunit north-latitude west-longitude]. \(s\) is the size of the array (data
grid) that is being referenced. \(R\) is a 3-by-2 referencing matrix defining a
two-dimensional affine transformation from pixel coordinates to spatial
coordinates.
See Also

\section*{Purpose Resize a data grid}

Syntax map \(=\) resizem (mapo,\(m)\) resizes an original data grid, mapo, by a resizing factor m . For example, if m is 0.5 , the number of rows and the number of columns will be cut in half. The result is the resized map map.
map \(=\) resizem(map0, \(\left[\begin{array}{rl}r & c\end{array}\right)\) resizes map0 so that the output map, map, has \(r\) rows and c columns.
map \(=\) resizem(map0,m,method) specifies the method of interpolation. The string method 'nearest' results in nearest-neighbor interpolation, the default, 'cubic' results in bicubic interpolation, and 'linear' results in bilinear interpolation.
[map,refvec] = resizem(map0,m,refvec0) resizes a regular data grid with a referencing vector, refvec 0 , and returns a regular data grid and its referencing vector, refvec.

This case requires a resizing factor, \(m\), rather than the [ \(r\) c] vector, as referencing vectors only have meaning for regular data grids (that is, rows represent the same angular dimension as columns).

When the map size is being reduced, resizem lowpass filters the map before interpolating to avoid aliasing. By default, this filter is designed using FIR1, but can be specified using
- resizem (..., method, \(h\) ) The default filter is 11-by-11
- resizem (. . ., method, \(n\) ) uses an n-by-n filter
- resizem (.. . method, 0 ) turns off the filtering

Unless a filter \(h\) is specified, resizem does not filter when 'nearest' is used. These filters are associated with the MATLAB Image Processing Toolbox.

\section*{Example Double the size of a map:}
```

map = [1 2; 3 4]
map =
1 2
3 4
newmap = resizem(map,2)
newmap =

```
\begin{tabular}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2 \\
3 & 3 & 4 & 4 \\
3 & 3 & 4 & 4
\end{tabular}

\section*{Purpose \\ Restack objects within the axes}

Syntax

Examples
Restack the patch objects of California and Texas to lie above the U.S.
```

    axesm miller
    load usalo
    h = displaym(state,'california');
    displaym(state,'texas');
    displaym(conus)
    restack(h,'top')
    restack('Texas','top')

```


\section*{Remarks}

See Also

This function is the function-line equivalent of the stacking buttons in the mobjects graphical user interface. The stacking order is the order of the children of the axes.
mobjects GUI for manipulating objects displayed on an axes

\section*{Purpose}

Provide intersection coordinates for pairs of rhumb lines

Description

\section*{Examples}

\section*{Limitations}
[newlat, newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2) returns in newlat and newlon the location of the intersection point for each pair of rhumb lines input in rhumb line notation. For example, the first line in the pair passes through the point (lat1,lon1) and has a constant azimuth of az1. When the two rhumb lines are identical or do not intersect (conditions that are not, in general, apparent by inspection), two NaNs are returned instead and a warning is displayed. The inputs must be column vectors.
[newlat, newlon] = rhxrh(lat1,lon1, az1,lat2,lon2,az2,units) specifies the units used, where units is any valid units string. The default units are 'degrees'.

For any pair of rhumb lines, there are three possible intersection conditions: the lines are identical, they intersect once, or they do not intersect at all (except at the poles, where all nonequatorial rhumb lines meet - this is not considered an intersection). rhxrh does not allow multiple rhumb line intersections, although it is possible to construct cases in which such a condition occurs. See the discussion of Limitations below.

Rhumb line notation consists of a point on the line and the constant azimuth of the line.

Given a starting point at \(\left(10^{\circ} \mathrm{N}, 56^{\circ} \mathrm{W}\right)\), a plane maintains a constant heading of \(35^{\circ}\). Another plane starts at \(\left(0^{\circ}, 10^{\circ} \mathrm{W}\right)\) and proceeds at a constant heading of \(310^{\circ}\left(-50^{\circ}\right)\). Where would their two paths cross each other?
```

[newlat,newlong] = rhxrh(10, -56,35,0,-10,310)
newlat =
26.9774
newlong =
-43.4088

```

Rhumb lines are specifically helpful in navigation because they represent lines of constant heading, whereas great circles have, in general, continuously changing heading. In fact, the Mercator projection was originally designed so that rhumb lines plot as straight lines, which facilitates both manual plotting with a straightedge and numerical calculations using a Cartesian planar representation. When a rhumb line proceeds off the left or right edge of this

\section*{rhxrh}
representation at some latitude, it reappears on the other edge at the same latitude and continues on the same slope. For rhumb lines where this occurs for example, one with a heading of \(85^{\circ}\) - it is easy to imagine another rhumb line, say one with a heading of \(0^{\circ}\), repeatedly intersecting the first. The real-world uses of rhumb lines make this merely an intellectual exercise, however, for in practice it is always clear which crossing line segment is relevant. The function rhxrh returns at most one intersection, selecting in each case that line segment containing the input starting point for its computation.

\section*{See Also}
gcxgc
Other intersection functions
gexsc
scxsc
crossfix
polyxpoly
navfix Navigational fixing

\section*{Purpose}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Syntax} & \multicolumn{4}{|l|}{rootlayr allows the mlayers tool to be used with workspace constructs a cell array that contains all the structure variab workspace. This cell array is returned in the variable ans, an input to mlayers. If there is an existing variable named overwritten.} \\
\hline & \multicolumn{4}{|l|}{The recommended calling procedure is rootlayr;mlayers (ans} \\
\hline \multirow[t]{14}{*}{Examples} & \multicolumn{4}{|l|}{rootlayr creates a cell array named ans, consisting of the variables in the following workspace.} \\
\hline & \multicolumn{4}{|l|}{whos} \\
\hline & Name & Size & Bytes & Class \\
\hline & borders & \(1 \times 1\) & 38390 & struc \\
\hline & lats & \(2345 \times 1\) & 18760 & doubl \\
\hline & lons & 2345x1 & 18760 & doubl \\
\hline & nation & 1x1 & 70224 & struc \\
\hline & states & \(1 \times 51\) & 254970 & struc \\
\hline & rootlayr & & & \\
\hline & ans & & & \\
\hline & ans = & & & \\
\hline & [1x1 & ruct] & & \\
\hline & [1x1 & ruct] & & \\
\hline & [1x5 & ruct] & & \\
\hline
\end{tabular}

The function mlayers (ans) can now be used to activate the mlayers tool for the structures contained in ans.

See Also

Interactive geographic data structure manipulation (see Chapter 12, "GUI Reference")

\section*{Purpose Transform vector data to a new coordinate system based on a new origin}

\section*{Syntax}

Description The rotatem function transforms vector map data to a new coordinate system.
An analytical use of the new data can be realized in conjunction with the newpole function. If a selected point is made the north pole of the new system, then when new vector data is created with rotatem, the distance of every data point from this new north pole is its new colatitude ( \(90^{\circ}\) minus latitude). The absolute difference in the great circle azimuths between every pair of points from their new pole is the same as the difference in their new longitudes.

\section*{Examples}

What are the coordinates of Rio de Janeiro \(\left(23^{\circ} \mathrm{S}, 43^{\circ} \mathrm{W}\right)\) in a coordinate system in which New York \(\left(41^{\circ} \mathrm{N}, 74^{\circ} \mathrm{W}\right)\) is made the North Pole? Use the newpole function to get the origin vector associated with putting New York at the pole:
```

nylat = 41; nylon = -74;
riolat = -23; riolon = -43;
origin = newpole(nylat,nylon);
[riolat1,riolon1] = rotatem(riolat,riolon,origin,...
'forward','degrees')
riolat1 =
19.8247
riolon1 =
-149.7375

```

What does this mean? For one thing, the colatitude of Rio in this new system is its distance from New York. Compare the distance between the original points and the new colatitude:
```

dist = distance(nylat,nylon,riolat,riolon)
dist =
70.1753
90-riolat1
ans =
70.1753

```

\section*{See Also}
neworig Transform regular data grid to new coordinate system based on a new origin
newpole \(\quad\) Select point to place at North Pole
org2pol Pole of transformed coordinate system
putpole Origin of transformed coordinate system

Purpose
Syntax

\section*{Examples}

Rotate text to the projected graticule
rotatetext rotates displayed text objects to account for the curvature of the graticule. The objects are selected interactively from a graphical user interface. rotatetext (objects) rotates the selected objects. objects can be a name string recognized by handlem or a vector of handles to displayed text objects. rotatetext (objects,'inverse') removes the rotation added by an earlier use of rotatetext. If omitted, 'forward' is assumed.

Add text to a map and rotate the text to the graticule.
```

worldmap('usa','lineonly')
h = displaym(worldlo('POtext'));
trimcart(h)
rotatetext(h)

```


See Also
vfwdtran Transform vector azimuths to a projection space angle
vinvtran Transform vector azimuths from a projection space angle

Purpose

\section*{Syntax}

Examples

Round numbers at specified powers of 10
outnum = roundn(innum) rounds the elements of innum to the nearest one-hundredth.
outnum \(=\) roundn (innum, \(n\) ) specifies the power of 10 to which the elements of innum are rounded. For example, if \(n=2\), round to the nearest hundred \(\left(10^{2}\right)\).

Using generated numbers, round them to significant tenths, ones, and tens figures (note that your original numbers could differ):
```

fullfig = 1000*magic(2)/7
fullfig =
142.8571 428.5714
571.4286 285.7143
tenths = roundn(fullfig,-1)
tenths =
142.9000 428.6000
571.4000 285.7000
units = roundn(fullfig,0)
units =
143 429
571 286
tens = roundn(fullfig,1)
tens =
140 430
570 290

```

See Also
epsm Map precision

Purpose
Syntax

Compute auxiliary sphere radii
\(r=r s p h e r e(' b i a x i a l ', e l l i p s o i d)\) calculates the radius of a biaxial auxiliary sphere for the ellipsoid specified by the two-element ellipsoid vector ellipsoid. The output, \(r\), is the radius of this sphere in units consistent with the semimajor axis, that is, the first element of ellipsoid. The biaxial radius is calculated by averaging the semimajor and semiminor axes of the ellipsoid, giving each equal weight.
\(r=r s p h e r e(' b i a x i a l ', e l l i p s o i d, m e t h o d)\) specifies the averaging method. If the string method is 'mean' (the default), an arithmetic mean is used. If method is 'norm', a geometric mean is used.
\(r=r s p h e r e(' t r i a x i a l ', e l l i p s o i d)\) results in a triaxial radius, which is calculated by averaging the ellipsoidal axes while giving double weight to the semimajor axis to reflect its role in two of the ellipsoid's three dimensions.
\(r=r s p h e r e(' e q a v o l ', e l l i p s o i d)\) returns the radius of a sphere with a volume equal to that of the ellipsoid.
\(r=r s p h e r e(' a u t h a l i c ', e l l i p s o i d)\) returns the radius of a sphere with a surface area equal to that of the ellipsoid.
\(r=r s p h e r e(' r e c t i f y i n g ', e l l i p s o i d)\) returns the radius of a sphere with meridional distances equal to those of the ellipsoid.
\(r=r s p h e r e(' c u r v e ', e l l i p s o i d, l a t, m e t h o d, u n i t s)\) returns a radius that is the result of averaging the meridional and transverse radii of curvature at the specified latitude, lat. The units of the input lat can be specified by the valid angle units string units. The default units are 'degrees', the default averaging method is 'mean ', and the default latitude is \(45^{\circ}\).
\(r=r s p h e r e(' e u l e r ', l a t 1, l o n 1, l a t 2, l o n 2, e l l i p s o i d) ~ a n d ~\)
\(r\) = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid, units) calculate a radius using Euler's Theorem. This calculation requires the specification of an arc that is defined by its endpoints, (lat1,lon1) and (lat2,lon2).

The rsphere function calculates the radii of auxiliary spheres for the ellipsoid. An auxiliary sphere is a sphere that shares certain desired characteristics with the ellipsoid.

\section*{Examples}

Different criteria result in different spheres:
```

r = rsphere('biaxial',almanac('earth','ellipsoid','km'))
r =
6.3674e+03
r = rsphere('triaxial',almanac('earth','ellipsoid','km'))
r=
6.3710e+03
r = rsphere('curve',almanac('earth','ellipsoid','km'))
r =
6.3781e+03

```

\section*{See Also}
rcurve Radii of curvature for the ellipsoid

\section*{Purpose}

Read predicted global 2-minute ( 4 km ) topography from satellite bathymetry

\section*{Syntax}

\section*{Background}

\section*{Remarks}
[latgrat,longrat, z] = satbath reads the global topography file for the entire world, returning every 50th point. The result is returned as a general data grid.
[latgrat,longrat, z] = satbath(scalefactor) returns the data for the entire world, subsampled by the integer scalefactor. A scalefactor of 10 returns every 10th point. The matrix at full resolution has 6336 by 10800 points.
[latgrat,longrat, z] = satbath(scalefactor,latlim,lonlim) returns data for the specified region. The returned data extends slightly beyond the requested area. If omitted, the entire area covered by the data file is returned. The limits are two-element vectors in units of degrees, with latlim in the range [-90 90] and lonlim in the range [-180 180].
[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim,gsize) controls the size of the graticule matrices. gsize is a two-element vector containing the number of rows and columns desired. If omitted, a graticule the size of the data grid is returned.

This is a global bathymetric model derived from ship soundings and satellite altimetry by W.H.F. Smith and D.T. Sandwell. The model was developed by iteratively adjusting gravity anomaly data from Geosat and ERS-1 against historical track line soundings. This technique takes advantage of the fact that gravity mirrors the large variations in the ocean floor as small variations in the height of the ocean's surface. The computational procedure uses the ship track line data to calibrate the scaling between the observed surface undulations and the inferred bathymetry. Land elevations are reduced-resolution versions of GTOPO30 data.

Land elevations are given in meters above mean sea level. The data is stored in a Mercator projection grid. As a result, spatial resolution varies with latitude. The grid spacing is 2 minutes (about 4 kilometers) at the equator.

This data is available over the Internet, but subject to copyright. The data file is binary, and should be transferred with no line-ending conversion or byte swapping. This function carries out any byte swapping that might be required. The data requires about 133 MB uncompressed.

The data is available over the Internet via anonymous FTP from
<ftp://topex.ucsd.edu/pub/global_topo_2min/>
Download the latest version of file topo_x.2.img, where \(x\) is the version number, and rename it topo_6.w.img for compatibility with the satbath function.

Some documentation is also available over the World Wide Web from
<http://topex.ucsd.edu/marine_topo/mar_topo.html>
and
<http://www.ngdc.noaa.gov/mgg/announcements/announce_predict.htm l>

\section*{Examples}

See Also
tbase
gtopo30
egm96geoid

Read the data for the Falklands Islands (Islas Malvinas) at full resolution.


Purpose

\section*{Syntax}

\section*{Background}

Examples

Add graphic scale
scaleruler toggles the display of a graphic scale. If no graphic scale is currently displayed in the current map axes, one is added. If any graphic scales are currently displayed, they are removed.
scaleruler on adds a graphic scale to the current map axes. Multiple graphic scales can be added to the same map axes.
scaleruler off removes any currently displayed graphic scales.
scaleruler (property, value, ...) adds a graphic scale and sets the properties to the values specified.

Cartographers often add graphic elements to the map to indicate its scale. Perhaps the most commonly used is the graphic scale, a ruler-like object that shows distances on the ground at the correct size for the projection.

Create a map, add a graphic scale with the default settings, and shift it up a bit. Add a second scale showing nautical miles, and change the tick marks and direction.
```

worldmap('guatemala','patchonly')
scaleruler
setm(handlem('scaleruler1'), 'YLoc',.205)
scaleruler('units','nm')
setm(handlem('scaleruler2'),...
'MajorTick', 0:100:300,'MinorTick', 0:25:50,...
'TickDir','down','MajorTickLength',km2nm(20),...
'MinorTickLength' , km2nm(12.5))

```


\section*{Remarks}

You control graphic scale objects using setm and getm. The function setm(h), where \(h\) is the handle to a graphic scale object, displays a list of graphic scale properties. The current values for a displayed graphic scale object can be retrieved using getm. The properties of a displayed graphic scale object can be modified using setm.

Modifying the properties of the graphic scale results in the replacement of the original object. For this reason, handles to the graphic scale object will change. Use handlem('scaleruler') to get a list of the current handles to all graphic scale objects. Use handlem( 'scalerulerN'), where \(N\) is an integer, to get the handle to a particular graphic scale. Use namem to see the names of existing graphic scale objects. The name of a graphic scale object is also stored in the read-only 'Children' property, which is accessed using getm.

Use scaleruler off, clmo scaleruler, or clmo scalerulerN to remove the scale rulers. The handles to the components of the graphic scale are hidden, so using delete removes only the baseline. In that event, you can remove the remaining elements of the graphic scale with the function
delete(findall(gca, 'Tag', 'scalerulerN')), where \(N\) is the corresponding integer.

You can reposition the graphic scale object by dragging the baseline with the mouse. You can also change the position by modifying the 'XPos' and 'YPos' properties using setm.

\section*{Object Properties}

\section*{Properties That Control Appearance}

Color ColorSpec \{no default
Color of the displayed graphic scale - Controls the color of the graphic scale lines and text. You can specify a color using a vector of RGB values or one of the MATLAB predefined names. By default, the graphic scale is displayed in black ([000]).
```

FontAngle {normal} | italic | oblique

```

Angle of the graphic scale label text - Controls the appearance of the graphic scale text components. Use any font angle string recognized by MATLAB.

FontName courier | \{helvetica\} | symbol | times
Font family name for all graphic scale labels - Sets the font for all displayed graphic scale labels. To display and print properly FontName must be a font that your system supports.
```

FontSize scalar in units specified in FontUnits {9}

```

Font size - Specifies the font size to use for all displayed graphic scale labels, in units specified by the FontUnits property. The default point size is 9 .
```

FontUnits }\quad\mathrm{ inches | centimeters | normalized | {points} |
pixels

```

Units used to interpret the FontSize property - When set to normalized, the toolbox interprets the value of FontSize as a fraction of the height of the axes. For example, a normalized FontSize of 0.16 sets the text characters to a font whose height is one-tenth of the axes' height. The default units, points, are equal to \(1 / 72\) of an inch.

FontWeight light | \{normal\} | demi | bold
Select bold or normal font - The character weight for all displayed graphic scale labels.

\section*{Label}
string
Label text for the graphic scale - Contains a string used to label the graphic scale. The text is displayed centered on the scale. The label is often used to indicate the scale of the map, for example " \(1: 50,000,000\)."

LineWidth scalar \{0.5\}
Graphic scale line width - Sets the line width of the displayed scale. The value is a scalar representing points, which is 0.5 by default.

\section*{MajorTick vector}

Graphic scale major tick locations - Sets the major tick locations for the graphic scale. The default values are chosen to give a reasonably sized scale. You can specify the locations of the tick marks by providing a vector of locations. These are usually equally spaced values as generated by start:step:end. The values are distances in the units of the Units property.

MajorTickLabel Cell array of strings
Graphic scale major tick labels - Sets the text labels associated with the major tick locations. By default, the labels are identical to the major tick locations. You can override these by providing a cell array of strings. There must be as many strings as tick locations.

MajorTickLength scalar
Length of the major tick lines - Controls the length of the major tick lines. The length is a distance in the units of the Units property.

\section*{MinorTick \\ vector}

Graphic scale minor tick locations - Sets the minor tick locations for the graphic scale. The default values are chosen to give a reasonably sized scale. You can specify the locations of the tick marks by providing a vector of locations. These are usually equally spaced values as generated by start:step:end. The values are distances in the units of the Units property.

\section*{MinorTickLabel strings}

Graphic scale minor tick labels - Sets the text labels associated with the minor tick locations. By default, the label is identical to the last minor tick location. You can override this by providing a string label.

\section*{MinorTickLength scalar}

Length of the minor tick lines - Controls the length of the minor tick lines. The length is a distance in the units of the Units property.

RulerStyle \{ruler\} | lines | patches
Style of the graphic scale - Selects among three different kinds of graphic scale displays. The default ruler style looks like the MATLAB \(x\)-axis. The lines style has three horizontal lines across the tick marks. This type of graphic scale is often used on maps from the U.S. Geological Survey. The patches style has alternating black and white rectangles in place of lines and tick marks.

TickDir \{up\} | down
Direction of the tick marks and text - Controls the direction in which the tick marks and text labels are drawn. In the default up direction, the tick marks and text labels are placed above the baseline, which is placed at the location given in the XLoc property. In the down position, the tick marks and labels are drawn below the baseline.

\section*{TickMode \{auto\} | manual}

Tick locations mode - Controls whether the tick locations and labels are computed automatically or are user-specified. Explicitly setting the tick labels or locations results in a 'manual' tick mode. Setting any of the tick labels or locations to an empty matrix resets the tick mode to 'auto'. Setting the tick mode to 'auto' clears any explicitly specified tick locations and labels, which are then replaced by default values.

\section*{XLoc \\ scalar}
\(X\)-location of the graphic scale - Controls the horizontal location of the graphic scale within the axes. The location is specified in the axes Cartesian projected coordinates. Use showaxes to make the Cartesian grid labels visible. You can also move the graphic scale by dragging the baseline with the mouse.

\section*{YLoc scalar}

Y-location of the graphic scale - Controls the vertical location of the graphic scale within the axes. The location is specified in the axes Cartesian projected coordinates. Use showaxes to make the Cartesian grid labels visible. You can also move the graphic scale by dragging the baseline with the mouse.

\section*{Properties That Control Scaling}

\section*{Azimuth scalar}

Azimuth of scale computation - The scale of a map varies, within the projection, with geographic location and azimuth. This property controls the azimuth along which the scaling between geographic and projected coordinates is computed. The azimuth is given in the current angle units of the map axes. The default azimuth is 0 .

\section*{Lat \\ scalar}

Latitude of scale computation - The scale of a map varies, within the projection, with geographic location and azimuth. This property controls the geographic location at which the scaling between geographic and projected coordinates is computed. The latitude is given in the current angle units of the map axes. The default location is the center of the displayed map.

\section*{Long \\ scalar}

Longitude of scale computation - The scale of a map varies, within the projection, with geographic location and azimuth. This property controls the geographic location at which the scaling between geographic and projected coordinates is computed. The longitude is given in the current angle units of the map axes. The default location is the center of the displayed map.

\section*{Radius almanac body or scalar}

Planetary radius - The radius property controls the scaling between angular and surface distances. If radius is a string, then it is evaluated as an almanac body to determine the spherical radius. If numerical, it is the radius of the desired sphere in the same units as the Units property. The default is 'earth'.

Units (valid distance unit strings)
Surface distance units - Defines the distance units displayed in the graphic scale. Units can be any distance unit string recognized by distdim. The distance string is also used in the last graphic scale text label.

\section*{Other Properties}

Children (read-only)
Name string of graphic scale elements - Contains the tag string assigned to the graphic elements that compose the graphic scale. All elements of the graphic
scale have hidden handles except the baseline. You do not normally need to access the elements directly.

\section*{See Also}
\begin{tabular}{ll} 
distance & Calculate distances between points on an ellipsoid \\
surfdist & \begin{tabular}{l} 
Interactive tool for distance, azimuth, and reckoning \\
calculations
\end{tabular} \\
axesscale & Resize axes for equivalent scale \\
paperscale & Figure paper size for a given map scale \\
distortcalc & Calculate distortion parameters for a map projection \\
mdistort & Display contours of constant distortion on a map
\end{tabular}

\section*{Purpose \(\quad\) Construct a thematic map with proportional symbols}

\section*{Syntax scatterm(lat,lon, s, c) displays colored circles at the locations specified by} the vectors lat and lon (which must be the same size). The area of each marker is determined by the values in the vector s (in points \({ }^{2}\) ) and the colors of each marker are based on the values in c. s can be a scalar, in which case all the markers are drawn the same size, or a vector the same length as lat and lon.

When c is a vector the same length as lat and lon, the values in c are linearly mapped to the colors in the current colormap. When c is a length(lat)-by-3 matrix, the values in c specify the colors of the markers as RGB values. c can also be a color string.
scatterm(lat,lon) draws the markers in the default size and color.
scatterm(lat, lon, s) draws the markers with a single color.
scatterm (..., m) uses the marker \(m\) instead of ' \(o\) '.
scatterm(...,'filled') fills the markers.
scatterm, without any inputs, activates a GUI to project point data onto the current map axes.
\(\mathrm{h}=\) scatterm (...) returns handles of patches created.

\section*{Examples}

Plot the seamount data provided with MATLAB as symbols with the color proportional to the height.
```

load seamount
worldmap([-49 -47.5],[-150 -147.5],'none')
scatterm(y,x,5,z)
scaleruler

```


See Also stem3m

Project stem plot on map axes

\section*{scircle 1}

\section*{Purpose}

Compute coordinates of a small circle path from center, radius, and arc limits

Syntax

Background
[latc,lonc] = scircle1(lat,lon,rng) returns the coordinates of points along small circles centered at the points provided in lat and lon with radii given in rng. These radii must in this case be given in the same angle units as the center points ('degrees'). The coordinates for multiple small circles are stored in separate columns of latc and lonc.
[latc,lonc] = scircle1(lat,lon, rng,az) specifies the arc section of the small circle for which points are returned. The input az is a one- or two-column vector. When az has a single column, points are returned for the arc segment from \(0^{\circ}\) azimuth clockwise to the positive entries in az (counterclockwise for negative entries). When az has two columns, the returned points correspond to arc segments from the first-column entry clockwise to the second-column entry. When az is empty or not provided, points for the entire small circle are returned.
[latc,lonc] = scircle1(lat,lon,rng,az,units) specifies the units for the inputs and outputs, where units is any valid angle units string. The default value is 'degrees'.
[latc,lonc] = scircle1(lat,lon,rng,az,ellipsoid,units) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is the sphere, which is sufficient for most applications. When a ellipsoid is input, the range inputs in rng must be in the units of the ellipsoid semimajor axis, rather than in the angle units specified by units.
[latc,lonc] = scircle1(lat,lon,rng,az,ellipsoid,units,npts) specifies the number of output points, npts, returned per small circle. The default value of npts is 100 .
[latc,lonc] = scircle1(track,lat,lon,rng...) specifies the logic with which ranges are calculated. If the string track is ' gc ' (the default), great circle distance is used. It track is 'rh', rhumb line distance is used.
pts = scircle1(lat,lon,rng) returns the points in a two-column output pts.
A small circle is the locus of all points an equal surface distance from a given center. For true small circles, this distance is always calculated in a great circle sense; however, the scircle1 function allows a locus to be calculated using
distances in a rhumb line sense as well. An example of a small circle is all points exactly 100 miles from the Washington Monument. Parallels on the globe are all small circles. Great circles are a subset of small circles, specifically those with a radius of \(90^{\circ}\) or its angular equivalent, so all meridians on the globe are small circles as well.

Small circle notation consists of a center point and a radius in units of angular arc length.

\section*{Examples}

Create and plot a small circle centered at \(\left(0^{\circ}, 0^{\circ}\right)\) with a radius of \(10^{\circ}\) :
```

axesm('mercator','MapLatLimit',[30 -30],'MapLonLimit',[-30 30]);
[latc,longc] = scircle1(0,0,10);
plotm(latc,longc,'g')

```

If the desired radius is known in some nonangular distance unit, use the radius returned by the almanac function as the ellipsoid to set the range units (use an empty azimuth entry to indicate a full circle):
```

earthradius = almanac('earth','radius','nm');
[latc,longc] = scircle1(0,0,550,[],earthradius);
plotm(latc,longc,'r')

```

For just an arc of the circle, enter an azimuth range:
```

[latc,longc] = scircle1(0,0,5,[-30 70]);
plotm(latc,longc,'m')

```

\section*{scircle 1}


See Also
\begin{tabular}{ll} 
scircle2 & Small circle from center and perimeter point \\
track & Connect waypoints with track segments \\
scircleg & Interactive small circles \\
trackg & Interactive tracks \\
track1 & Great circles and rhumb lines \\
track2 &
\end{tabular}

\section*{Purpose}

\section*{Syntax}

Compute coordinates of a small circle path from center and perimeter point
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2) returns the coordinates of points along small circles centered at the points provided in lat1 and lon1, which pass through the points provided in lat2 and lon2. The coordinates of multiple small circles are stored in separate columns of latc and lonc.
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,units) specifies the units for the inputs and outputs, where units is any valid angle units string. The default value is 'degrees'.
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is the sphere, which is sufficient for most applications.
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,npts) specifies the number of output points, npts, returned per small circle. The default value of npts is 100 .
[latc, lonc] = scircle2(track, lat1,lon1, lat2, lon2...) specifies the logic with which ranges are calculated. If the string track is ' gc ' (the default), great circle distance is used. If track is 'rh', rhumb line distance is used.
pts = scircle2(lat1,lon1,lat2,lon2) returns the points in a two-column output pts.

\section*{Background}

\section*{Examples}

A small circle is the locus of all points an equal surface distance from a given center. For true small circles, this distance is always calculated in a great circle sense; however, the scircle2 function allows a locus to be calculated using distances in a rhumb line sense as well. An example of a small circle is all points exactly 100 miles from the Washington Monument.

Plot the locus of all points the same distance from New Delhi as Kathmandu:
```

axesm('mercator','MapLatlimit',[0 40],'MapLonLimit',[60 110]);
load coast
plotm(lat,long,'k'); % For reference
lat1 = 29; lon1 = 77.5; % New Delhi
lat2 = 27.6; lon2 = 85.5; % Kathmandu
plotm([lat1 lat2],[lon1 lon2],'b*') % Plot the cities

```

\section*{scircle2}
```

[latc,lonc] = scircle2(lat1,lon1,lat2,lon2);
plotm(latc,lonc,'b')

```


See Also
\[
\begin{array}{ll}
\text { scircle1 } & \text { Small circle from center and radius } \\
\text { track } & \text { Connect waypoints with track segments }
\end{array}
\]
track1 Great circles and rhumb lines track2

\section*{Purpose}

Syntax

\section*{Description}

\section*{Background}

See Also

Display small circle defined via mouse clicks
\(\mathrm{h}=\) scircleg(ncirc) brings forward the current map axes and waits for the user to make ( \(2 \times \mathrm{ncirc}\) ) mouse clicks. The output h is a vector of handles for the ncirc small circles, which are then displayed.
h = scircleg(ncirc, npts) specifies the number of plotting points to be used for each small circle. npts is 100 by default.
\(\mathrm{h}=\) scircleg(ncirc,linestyle) specifies the line style for the displayed small circles, where linestyle is any line style string recognized by the standard MATLAB function line.
h = scircleg(ncirc,PropertyName,PropertyValue,...) allows property name/property value pairs to be set, where PropertyName and PropertyValue are recognized by the line function.
[lat,lon] = scircleg(ncirc,npts,...) returns the coordinates of the plotted points rather than the handles of the small circles. Successive circles are stored in separate columns of lat and lon.
h = scircleg(track, ncirc,...) specifies the logic with which ranges are calculated. If the string track is ' gc ' (the default), great circle distance is used. If track is 'rh' , rhumb line distance is used.

This function is used to define small circles for display using mouse clicks. For each circle, two clicks are required: one to mark the center of the circle and one to mark any point on the circle itself, thereby defining the radius.

A small circle is the locus of all points an equal surface distance from a given center. For true small circles, this distance is always calculated in a great circle sense; however, the scircleg function allows a locus to be calculated using distances in a rhumb line sense as well. You can modify the circle after creation by shift-clicking it. The circle is then in edit mode, during which you can change the size and position by dragging control points, or by entering values into a control panel. Shift-clicking again exits edit mode.
scircle1 Small circle from center, azimuth, and radius
scircle2 Small circle from center and perimeter point

\section*{Purpose Provide intersection coordinates for pairs of small circles}

Syntax

Description

\section*{Examples}

\section*{Remarks}
[newlat, newlon] = scxsc(lat1,lon1, range1,lat2,lon2, range2) returns in newlat and newlon the locations of the points of intersection of two small circles in small circle notation. For example, the first small circle in a pair would be centered on the point (lat1,lon1) with a radius of range1 (in angle units). The inputs must be column vectors. If the circles do not intersect, or are identical, two NaNs are returned and a warning is displayed. If the two circles are tangent, the single intersection point is returned twice.
[newlat, newlon]=scxsc(lat1,lon1, range1, lat2,lon2, range2, units) specifies the angle units used for all inputs, where units is any valid angle units string. The default units are 'degrees'.

For any pair of small circles, there are four possible intersection conditions: the circles are identical, they do not intersect, they are tangent to each other and hence they intersect once, or they intersect twice.

Small circle notation consists of a center point and a radius in units of angular arc length.

Given a small circle centered at \(\left(10^{\circ} \mathrm{S}, 170^{\circ} \mathrm{W}\right)\) with a radius of \(20^{\circ}(\sim 1200\) nautical miles), where does it intersect with a small circle centered at ( \(3^{\circ} \mathrm{N}\), \(179^{\circ} \mathrm{E}\) ), with a radius of \(15^{\circ}(\sim 900\) nautical miles \()\) ?
```

[newlat,newlong] = scxsc(-10,-170,20,3,179,15)
newlat =
-8.8368 9.8526
newlong =
169.7578 -167.5637

```

Note that in this example, the two small circles cross the date line.
Great circles are a subset of small circles - a great circle is just a small circle with a radius of \(90^{\circ}\). This provides two methods of notation for defining great circles. Great circle notation consists of a point on the circle and an azimuth at that point. Small circle notation for a great circle consists of a center point and a radius of \(90^{\circ}\) (or its equivalent in radians or dms units).
See Also
gc2sc
gcxgc
gexsc
rhxrh
crossfix
polyxpoly

Convert great circle to small circle notation
Other intersection functions

\section*{sdtsdemread}

Purpose Read data from an SDTS raster/DEM data set

\begin{abstract}
Syntax
\end{abstract}

Example

See Also
arcgridread, makerefmat, mapshow, sdtsinfo

\section*{Purpose}

Syntax

Field Descriptions

Information about an SDTS data set
info = sdtsinfo(filename) returns a structure whose fields contain information about the contents of a SDTS data set.
filename is a string that specifies the name of the SDTS catalog directory file, such as 7783CATD. DDF. The filename can also include the directory name. If filename does not include the directory, then it must be in the current directory or in a directory on the MATLAB path. If sdtsinfo cannot find the SDTS catalog file, it returns an error.

If any of the other files in the data set as specified by the catalog file is missing, a warning message is returned. Subsequent calls to read data from the file might also fail.

The info structure contains the following fields:
\begin{tabular}{ll} 
Filename & \begin{tabular}{l} 
String containing the name of the catalog directory \\
file of the SDTS transfer set
\end{tabular} \\
Title & \begin{tabular}{l} 
String containing the name of the data set
\end{tabular} \\
ProfileID & \begin{tabular}{l} 
String containing the Profile Identifier, e.g., 'SRPE: \\
SDTS RASTER PROFILE and EXTENSIONS'
\end{tabular} \\
ProfileVersion & \begin{tabular}{l} 
String containing the Profile Version Identifier, e.g., \\
'VER 1.1199801 '
\end{tabular} \\
MapDate & \begin{tabular}{l} 
String specifying the date associated with the \\
cartographic information contained in the data set
\end{tabular} \\
DataCreationDate & \begin{tabular}{l} 
String specifying the creation date of the data set
\end{tabular} \\
HorizontalDatum & \begin{tabular}{l} 
String representing the horizontal datum to which \\
the data is referenced
\end{tabular} \\
MapRefSystem & \begin{tabular}{l} 
String describing the projection and reference system \\
used: 'GEO', 'SPCS', 'UTM', 'UPS', or ' '
\end{tabular} \\
ZoneNumber & \begin{tabular}{l} 
Scalar value representing the zone number
\end{tabular} \\
XResolution & \begin{tabular}{l} 
Scalar value representing the X component of the \\
horizontal coordinate resolution
\end{tabular}
\end{tabular}

\section*{sdtsinfo}
\begin{tabular}{|c|c|c|}
\hline & YResolution & Scalar value representing the Y component of the horizontal coordinate resolution \\
\hline & NumberOfRows & Scalar value representing the number of rows of the DEM \\
\hline & NumberOfCols & Scalar value representing the number of columns of the DEM \\
\hline & HorizontalUnits & String specifying the units used for the horizontal coordinate values \\
\hline & VerticalUnits & String specifying the units used for the vertical coordinate values \\
\hline & MinElevation & Scalar value of the minimum elevation value for the data set \\
\hline & MaxElevation & Scalar value of the maximum elevation value for the data set \\
\hline Example & info = sdtsin & '9129CATD. DDF ') ; \\
\hline See Also & sdtsdemread, make & fmat \\
\hline
\end{tabular}

Purpose

\section*{Syntax}

\section*{Example}

Convert time units from seconds to hms or hm
timeout = sec2hms(timein) converts times input in seconds to the equivalent measure in the hours-minutes-seconds ( hms ) format.
timeout \(=\) sec2hm(timein) converts times input in seconds to the equivalent measure in the hours-minutes ( hm ) format. This is the hms format, properly rounded to just hours and minutes.
```

sec2hms(3661)
ans =
101.01
sec2hm(3661)
ans =
101.00

```

\section*{See Also}
hms2mat Convert from hms to separated matrix components
mat2hms Convert from separated matrices input to hms
sec2hm Other direct time conversion functions
hr2sec
timedim Convert times between different units

Purpose Convert time from seconds to hours
\begin{tabular}{ll} 
Syntax & \begin{tabular}{l} 
timeout \(=\sec 2 \mathrm{hr}\) (timein) converts times input in seconds to the equivalent \\
measure in hours.
\end{tabular} \\
Example & \begin{tabular}{l}
\(\sec 2 h r(1000)\) \\
ans \(=\) \\
0.2778
\end{tabular} \\
See Also & \begin{tabular}{l} 
hr2sec \\
hms2sec \\
timedim
\end{tabular} \\
& Other direct time conversion functions
\end{tabular}

\section*{Purpose}

Syntax

Examples
Find the coordinates of row 45 , column 65 of topo:

\section*{See Also}

Convert data grid rows and columns to latitude-longitude
[lat,lon] = setltln(map,refvec,row,col) returns the latitude and longitudes associated with the input row and column coordinates of the input map with a referencing vector of refvec.
mat = setltln(map,refvec, row, col) returns the coordinates in a single two-column matrix of the form [latitude longitude].
[lat,lon,badindx] = setltln(map, refvec, row, col) returns the indices of the elements of the row and col vectors that lie outside the input map. The outputs lat and lon always ignore these points; the third output accounts for them.
```

load topo
[lat,lon,badindx] = setltln(topo,topolegend,45,65)
lat =
-45.5000
lon $=$
64.5000
badindx =
[] \% Empty because the point is valid
topo
[lat,lon,badindx] = setltln(topo,topolegend,45,65)
[] % Empty because the point is valid

```
ltln2val Latitude and longitude to matrix entry value
pix2latlon Convert pixel coordinates to latitude-longitude coordinates
setpostn Latitude and longitude to row and column

\section*{Purpose Modify the properties of a displayed map}

Syntax setm(axishndl, PropertyName, PropertyValue, ...) sets the properties of the map axes specified by its handle to the given values. The map properties must be recognized by axesm.
setm(texthndl, 'MapPosition', position) alters the position of the projected text object specified by its handle to the [latitude longitude] or the [latitude longitude altitude] specified by the position vector.
setm(surfhndl, 'Graticule', lat, lon, alt) alters the graticule of the projected surface object specified by its handle. The graticule is specified by the latitude and longitude matrices, specifying locations of the graticule vertices. The altitude can be specified by a scalar, or by a matrix providing a value for each vertex.
setm(surfhndl, 'MeshGrat', npts, alt) alters the mesh graticule of projected surface objects displayed using the meshm function. In this case, the two-element vector npts specifies the graticule size in the manner described under meshm. The altitude can be a scalar or a matrix with a size corresponding to npts.

Examples \(\quad\) Display a map axes and alter it:
```

axesm('bonne','Frame','on','Grid','on')

```

The standard Bonne projection has a standard parallel at \(30^{\circ} \mathrm{N}\).


Setting this standard parallel to \(0^{\circ}\) results in a Sinusoidal projection: setm(gca, 'MapParallels', 0)


See Also
axesm
getm

Create and set map axes properties
Get map object properties

\section*{Purpose Convert latitude-longitude to data grid rows and columns}
```

Syntax [row,col] = setpostn(map,refvec,lat,long) returns the row and column
indices of the input regular data grid with a referencing vector of refvec for the
points specified by the vectors lat and long. All angles are in degrees.
indx = setpostn(map,refvec,lat,long) returns the single-value indices of
map(:).
[row,col,badindx] = setpostn(map,refvec,lat,long) also returns the
indices of lat and long corresponding to points outside map. These points are
always ignored in row and col.
Examples What are the matrix coordinates in topo of Denver, Colorado, at
(39.7}\mp@subsup{}{}{\circ}\textrm{N},10\mp@subsup{5}{}{\circ}\textrm{W})
load topo
[row,col] = setpostn(topo,topolegend,39.7,105)
row =
1 3 0
col =
1 0 5

```

See Also
latlon2pix Convert latitude-longitude coordinates to pixel coordinates
ltln2val Latitude and longitude to matrix entry value
setltln Row and column to latitude and longitude

Purpose
Syntax

Remarks

Examples

Construct cdata and colormap for colored shaded relief
[cindx, cimap, clim] = shaderel(X,Y,Z,cmap) constructs the colormap and color indices to allow a surface to be displayed in colored shaded relief. The colors are proportional to the magnitude of \(Z\), but modified by shades of gray based on the surface normals to simulate surface lighting. This representation allows both large and small-scale differences to be seen. \(X, Y\), and \(Z\) define the surface. cmap is the colormap used to create the new shaded colormap cimap. cindx is a matrix of color indices to cimap, based on the elevation and surface normal of the \(Z\) matrix element. clim contains the color axis limits.
[cindx, cimap, clim] = shaderel(X,Y,Z,cmap,[azim elev]) places the light at the specified azimuth and elevation. By default, the direction of the light is East ( \(90^{\circ}\) azimuth) at an elevation of \(45^{\circ}\).
[cindx, cimap, clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl) chooses the number of grays to give a cimap of length cmapl. By default, the number of grayscales is chosen to keep the shaded colormap below 256. If the vector of azimuth and elevation is empty, the default locations are used.
[cindx, cimap, clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl,clim) uses the color limits to index \(Z\) into cmap.

This function effectively multiplies two colormaps, one with color based on elevation, the other with a grayscale based on the slope of the surface, to create a new color map. This produces an effect similar to using a light on a surface, but with all of the visible colors actually in the colormap. Lighting calculations are performed on the unprojected data.

Display the peaks surface with a shaded colormap:
```

[X,Y,Z] = peaks(100);
cmap = hot(16);
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap);
surf(X,Y,Z,cindx); colormap(cimap); caxis(clim)
shading flat

```


\section*{See Also}
caxis
colormap
light \(\quad\) Create a light object (see the online MATLAB Function Reference documentation)
meshlsrm Project 3-D lighted shaded relief of a regular data grid
surf 3-D shaded surface plot (see the online MATLAB Function Reference documentation)
surflsrm Project 3-D lighted shaded relief of a geolocated data grid

Purpose

\section*{Syntax}

Field Descriptions

Information about a shapefile
info = shapeinfo(filename) returns a structure, info, whose fields contain information about the contents of a shapefile.

The shapefile format was defined by the Environmental Systems Research Institute (ESRI) to store nontopological vector geometry and attribute information for spatial features. A shapefile consists of a main file, an index file, and an xBASE table. All three files have the same base name and are distinguished by the extensions .SHP, .SHX, and .DBF, respectively (e.g., given the base name 'roads' the shapefile filenames would be 'roads.SHP', 'roads.SHX', and 'roads.DBF').
filename can be the base name or the full name of any one of the component files. shapeinfo reads all three files as long as they exist in the same directory and have valid file extensions. If the main file (with extension .SHP) is missing, shapeinfo returns an error. If either of the other files is missing, shapeinfo returns a warning.

The info structure contains the following fields:
\begin{tabular}{ll} 
Filename & Char array containing the names of the files that were read \\
ShapeType & \begin{tabular}{l} 
String containing the shape type
\end{tabular} \\
BoundingBox & \begin{tabular}{l} 
Numerical array of size 2-by-N that specifies the minimum \\
(row 1) and maximum (row 2) values for each dimension of \\
the spatial data in the shapefile
\end{tabular} \\
Attributes & \begin{tabular}{l} 
Structure array of size 1-by-numAttributes that describes \\
the attributes of the data
\end{tabular} \\
NumFeatures & The number of spatial features in the shapefile
\end{tabular}

The Attributes structure contains these fields:
- Name - String containing the attribute name as given in the xBASE table
- Type - String specifying the MATLAB class of the attribute data returned by shaperead. The following attribute (xBASE) types are supported:
Numeric, Floating, Character, and Date

\section*{Purpose}

\section*{Syntax}

\section*{Supported Shape Types}

Read vector feature coordinates and attributes from a shapefile
\(\mathrm{s}=\) shaperead(filename) returns an N-by-1 version 2 geographic data structure (geostruct2) array, S , containing an element for each nonnull spatial feature in the shapefile. \(S\) combines feature coordinates/geometry and attribute values.
[s, a] = shaperead(filename) returns an N-by-1 geostruct2 array, s, and a parallel N-by-1 attribute structure array, a. Each array contains an element for each nonnull spatial feature in the shapefile.
[s, a] = shaperead(filename, param1, val1, param2, val2,...) returns a subset of the shapefile contents in \(s\) or [ \(s, a]\), as determined by the parameters 'RecordNumbers', 'BoundingBox', 'Selector', or 'Attributes'. In addition, the parameter 'UseGeoCoords' can be used in cases where you know that the \(x\)-and \(y\)-coordinates in the shapefile actually represent longitude and latitude.

The shapefile format was defined by the Environmental Systems Research Institute (ESRI) to store nontopological vector geometry and attribute information for spatial features. A shapefile consists of a main file, an index file, and an xBASE table. All three files have the same base name and are distinguished by the extensions .SHP, .SHX, and .DBF, respectively (e.g., given the base name 'concord_roads' the shapefile filenames would be 'concord_roads.SHP', 'concord_roads.SHX', and 'concord_roads.DBF').
filename can be the base name or the full name of any one of the component files. shaperead reads all three files as long as they exist in the same directory and have valid file extensions. If the main file (with extension .SHP) is missing, shaperead returns an error. If either of the other files is missing, shaperead returns a warning.
shaperead supports the ordinary 2-D shape types: 'Point', 'Multipoint', 'PolyLine', and 'Polygon'. ('Null Shape' features can also be present in a Point, Multipoint, PolyLine, or Polygon shapefile, but are ignored.) shaperead does not support any 3-D or "measured" shape types: 'PointZ', 'PointM', 'MultipointZ', 'MultipointM', 'PolyLineZ', 'PolyLineM', 'PolygonZ', 'PolylineM', or 'Multipatch'.

\section*{shaperead}

Output
Structure
The fields in the output structure arrays s and a depend on (1) the type of shape contained in the file and (2) the names and types of the attributes included in the file:
\begin{tabular}{l|l|l}
\hline Field Name & Field Contents & Comment \\
\hline Geometry & Shape type string & \\
\hline BoundingBox & \begin{tabular}{l} 
[minX minY; \\
maxX maxY]
\end{tabular} & \begin{tabular}{l} 
Omitted for shape type \\
'Point '
\end{tabular} \\
\hline X or Lon & Coordinate vector & \begin{tabular}{l} 
NaN separators used in \\
multipart PolyLine and \\
Polygon shapes
\end{tabular} \\
\hline Y or Lat & Coordinate vector & \begin{tabular}{l} 
NaN separators used in \\
multipart PolyLine and \\
Polygon shapes
\end{tabular} \\
\hline attr1 & Value of first attribute & \begin{tabular}{l} 
Included in output s if \\
output a is omitted
\end{tabular} \\
\hline attr2 & Value of second attribute & \begin{tabular}{l} 
Included in output s if \\
output a is omitted
\end{tabular} \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}

The names of the attribute fields (listed above as Attr1, Attr2, ...) are determined at run-time from the xBASE table (with extension .DBF) and/or optional, user-specified parameters. There can be many attribute fields, or none at all.

\section*{Field Descriptions}
- Geometry - String with one of the following values: 'Point ', 'MultiPoint', 'Line', or 'Polygon'. (Note that these match the standard shapefile types, except that for shape type 'Polyline' the value of the Geometry field is simply 'Line '.)
- BoundingBox - Contains a 2-by-2 numerical array specifying the minimum and maximum feature coordinate values in each dimension
(min([x,y]); max([x,y], where \(x\) and \(y\) are N-by-1 and contain the combined coordinates of all parts of the feature).
- \(X\) and \(Y\) / Lon and Lat (Coordinate vector) - 1-by-N arrays of class double. For 'Point' shapes, they are 1-by-1. In the case of multipart 'Polyline' and 'Polygon' shapes, NaNs are added to separate the lines or polygon rings. In addition, one terminating NaN is added to support horizontal concatenation of the coordinate data from multiple shapes.
- Attribute fields - Attribute names, types, and values are defined within a given shapefile. The following four types are supported: Numeric, Floating, Character, and Date. shaperead skips over other attribute types. The field names in the output shape structure are taken directly from the shapefile if they contain no spaces or other illegal characters and there is no duplication of field names (e.g., an attribute named 'BoundingBox', 'PointData', etc., or two attributes with the same names).
Otherwise, the following "name mangling" is applied: Illegal characters are replaced by ' _'. If the first character in the attribute name is illegal, a leading ' \(Z\) ' is added. Numerals are appended if needed to avoid duplicate names. The attribute values for a feature are taken from the shapefile and stored as doubles or character arrays:
\begin{tabular}{l|l}
\hline Attribute Type in Shapefile & MATLAB Storage \\
\hline Numeric & double (scalar) \\
\hline Float & double (scalar) \\
\hline Character & char array \\
\hline Date & char array \\
\hline
\end{tabular}

\section*{Parameter-Value Options}

By default, shaperead returns an entry for every nonnull feature and creates a field for every attribute. Use the first three parameters below (RecordNumbers, BoundingBox, and Selector) to be selective about which features to read. Use
the fourth parameter (Attributes) to control the attributes to keep. Use the fifth (GeodeticCoords) to control the output field names.
\begin{tabular}{l|l|l}
\hline Name & Description of Value & Purpose \\
\hline RecordNumbers & \begin{tabular}{l} 
Integer-valued vector, \\
class double
\end{tabular} & \begin{tabular}{l} 
Screen out features whose \\
record numbers are not listed.
\end{tabular} \\
\hline BoundingBox & \begin{tabular}{l} 
2-by-(2, 3, or 4) array, \\
class double
\end{tabular} & \begin{tabular}{l} 
Screen out features whose \\
bounding boxes fail to \\
intersect the selected box.
\end{tabular} \\
\hline Selector & \begin{tabular}{l} 
Cell array containing \\
a function handle and \\
one or more attribute \\
names. Function must \\
return a logical scalar.
\end{tabular} & \begin{tabular}{l} 
Screen out features for which \\
the function, when applied to \\
the corresponding attribute \\
values, returns false.
\end{tabular} \\
\hline Attributes & \begin{tabular}{l} 
Cell array of attribute \\
names
\end{tabular} & \begin{tabular}{l} 
Omit attributes that are not \\
listed. Use \{\} to omit all \\
attributes. Also sets the order \\
of attributes in the structure \\
array.
\end{tabular} \\
\hline UseGeoCoords & Scalar logical & \begin{tabular}{l} 
If true, replace X and Y field \\
names with 'Lon ' and 'Lat ', \\
respectively. Defaults to false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}
```

% Read the entire concord_roads.shp shapefile, including the
% attributes,
% in concord_roads.dbf.
S = shaperead('concord_roads.shp');
% Restrict output based on a bounding box and read only two
% of the feature attributes.
bbox = [2.08 9.11; 2.09 9.12] * 1e5;
S = shaperead('concord_roads','BoundingBox',bbox,...
'Attributes',{'STREETNAME','CLASS'});

```

See Also shapeinfo, updategeostruct

10-522

\section*{Purpose}

Syntax

See Also

Toggle display of Cartesian MATLAB axes
showaxes toggles the visibility of the axes between the 'on' and 'off' conditions.
showaxes('on') sets the color of the axes (the XColor and YColor properties) to black.
showaxes('off') sets the color of the axes (the XColor and YColor properties) to the background color, effectively making them invisible. This is the default condition for map axes.
showaxes('hide') sets the Visible property of the axes to 'on'.
showaxes('show') sets the Visible property of the axes to 'off'.
showaxes('reset') sets the axes properties to the default map axes settings.
showaxes (color) sets the color of the axes (the XColor and YColor properties) to the color specified by any valid color string.
showaxes (color) sets the color of the axes (the XColor and YColor properties) to the color specified by the input RGB triple.
axesm Map axes creation

Purpose
Syntax

See Also

Show specified graphics objects
showm brings up a dialog box for selecting the objects to show (set their Visible property to 'on').
showm (handle) shows the objects specified by a vector of handles.
showm (object) shows those objects specified by the object string, which can be any string recognized by the handlem function.
\begin{tabular}{ll} 
clma & Clear current map \\
clmo & Clear specified graphics objects \\
handlem & Get handles of displayed map objects \\
hidem & Hide specified graphics objects \\
namem & Determine names of valid graphics objects \\
tagm & Assign a name to graphics object tag property
\end{tabular}

\section*{Purpose}

Syntax

Examples

\section*{See Also}

Determine row and column dimensions needed for a regular data grid
[ \(r, c\) ] = sizem(latlim, lonlim, scale) returns the required size for a regular data grid lying between the latitude and longitude limits specified by the two-element input vectors latlim and lonlim, which are of the form [south-limit north-limit] and [west-limit and east-limit], respectively. The scale is the desired cells-per-degree measure of the desired data grid.
rc = sizem(latlim, lonlim, scale) returns the size of the matrix in one two-element vector.
[r,c,refvec] = sizem(latlim,lonlim,scale) also returns the referencing vector for the desired regular data grid.

How large a matrix would be required for a map of the world at a scale of 25 matrix cells per degree? (That's \(25 \times 25=625\) cells per "square" degree.)
```

[r,c] = sizem([90,-90],[-180,180],25)
r =
4 5 0 0
c =
9000

```

Bear in mind for memory purposes - \(9000 \times 4500=4.05 \times 10^{7}\) entries!
\begin{tabular}{ll} 
findm & Coordinates of nonzero map entries \\
limitm & Matrix map limits \\
nanm & Create special maps \\
onem \\
spzerom \\
zerom
\end{tabular}

\section*{sm2deg, sm2km, sm2nm, sm2rad}

\section*{Purpose Convert distance from statute miles to other units}
\begin{tabular}{|c|c|}
\hline Syntax & \begin{tabular}{l}
distout = sm2deg(distin) converts the input distance given in statute miles to degrees. distout \(=\) sm2km(distin), distout \(=\) sm2rad(distin), and distout = sm2nm(distin) perform analogously, converting to kilometers, radians, and nautical miles, respectively. \\
distout = sm2deg(distin,radius) and distout = sm2rad(distin,radius) specify the radius of the sphere to use, since a degree (or radian) of arc length covers less distance, for example, on Mars than it does on the Earth. You can enter the radius as a number in statute miles, as a call to the almanac function (e.g., almanac('mars', 'radius', 'sm')), or you can pass in a string planet name (e.g., 'mars'), and the function will make the appropriate call to the almanac function. The radius of the Earth is the default.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

See Also
distdim Convert distances between different units
\(\mathrm{km} 2 \mathrm{sm} \quad\) Other direct distance conversion functions
nm2deg

Purpose
Syntax

Examples

Remarks

Remove discontinuities in longitudes
ang \(=\) smoothlong(angin) removes discontinuities in longitude data. The resulting angles can cover more than one revolution.
ang = smoothlong(angin, units) uses the units defined by the input string units. If omitted, default units of 'degrees' are assumed.
```

    long = npi2pi(0:10:720);
    long2 = smoothlong(long);
    figure;hold on
    plot(long,'--'); plot(long2)
    xlabel 'Point Number'; ylabel Longitude
    ```


This function can remove large jumps in longitude that might otherwise result in spurious data when you are interpolating with interpm.
See Also
npi2pi
zero22pi
Truncate angles into the -180 deg to 180 deg range Truncate angles into the 0 deg to 360 deg range
interpm Interpolate vector data to a specified data separation

Purpose
Syntax mat = spcread reads an ASCII file of space-delimited data in two columns and returns the data in a matrix, mat. The file is selected by dialog box.
mat \(=\operatorname{spcread}(f i l e n a m e)\) specifies the file from which to read by its name, given as the string filename.
mat \(=\) spcread (cols) specifies the number of columns of space-delimited data in the file with the integer cols. The default value of cols is 2 .

\section*{Remarks}

See Also
nanclip
Convert pen-down delimited data to NaN -delimited data

\section*{Purpose Create a sparse data grid of zeros}


\section*{Purpose}

Syntax

Background

\section*{Description}

Examples

Compute standard distance of geographic data
dist \(=\) stdist(lat,lon) returns a row vector of the latitude and longitude geographic standard distance for the data points specified by the columns of lat and lon.
dist = stdist(lat,lon, units) indicates the angular units of the data. When the standard angle string units is omitted, 'degrees ' is assumed. Output measurements are in terms of these units (as arc length distance).
dist \(=\) stdist(lat,lon, ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a spherical Earth, which is sufficient for most applications. Output measurements are in terms of the distance units of the ellipsoid vector.
dist = stdist(lat,lon,ellipsoid,units,method) specifies the method of calculating the standard distance of the data. The default, 'linear' , is simply the average great circle distance of the data points from the centroid. Using 'quadratic ' results in the square root of the average of the squared distances, and 'cubic' results in the cube root of the average of the cubed distances.

The function stdm provides independent standard deviations in latitude and longitude of data points. stdist provides a means of examining data scatter that does not separate these components. The result is a standard distance, which can be interpreted as a measure of the scatter in the great circle distance of the data points from the centroid as returned by meanm.

The output distance can be thought of as the radius of a circle centered on the geographic mean position, which gives a measure of the spread of the data.

Generate latitude and longitude matrices using the worldlo data set (compare with the example for stdm):
```

load worldlo
lat=[PPpoint(2:5).lat]
lat =
5.3386 24.5808 5.4619 36.8862
lon=[PPpoint(2:5).long]
lon =
-3.7602 54.9619 -0.3450 35.5141

```
```

dist= stdist(lat,lon)
dist =
26.5282

```
\begin{tabular}{lll} 
See Also & meanm & Mean of geographic data \\
& stdm & Standard deviation of geographic data
\end{tabular}

\section*{Purpose}

Syntax

Background

\section*{Examples}

Compute standard deviation for geographic data
[latdev,londev] = stdm(lat,lon) returns row vectors of the latitude and longitude geographic standard deviations for the data points specified by the columns of lat and lon.
[latdev,londev] = stdm(lat,lon,ellipsoid) specifies the elliptical definition of the Earth to be used with the two-element ellipsoid vector. The default ellipsoid model is a spherical Earth, which is sufficient for most applications. Output measurements are in terms of the distance units of the ellipsoid vector.
[latdev,londev] = stdm(lat,lon,units) indicates the angular units of the data. When the standard angle string units is omitted, 'degrees' is assumed. Output measurements are in terms of these units (as arc length distance).

If a single output argument is used, then geodevs = [latdev longdev]. This is particularly useful if the original lat and lon inputs are column vectors.

Determining the deviations of geographic data in latitude and longitude is more complicated than simple sum-of-squares deviations from the data averages. For latitude deviation, a straightforward angular standard deviation calculation is performed from the geographic mean as calculated by meanm. For longitudes, a similar calculation is performed based on data departure rather than on angular deviation. See "Geographic Statistics" in the "Mapping Applications" chapter of the Mapping Toolbox User's Guide documentation.

Create latitude and longitude matrices using the worldlo data set (compare with the example for stdist):
```

load worldlo
lat=[PPpoint(2:5).lat]
lat =
5.3386 24.5808 5.4619 36.8862
lon=[PPpoint(2:5).long]
lon =
-3.7602 54.9619 -0.3450 35.5141
[latstd,lonstd]=stdm(lat,lon)
latstd =

```

> 8.9962
> lonstd \(=\)
> 159.1153
\begin{tabular}{lll} 
See Also & departure & Departure of longitudes at specific latitudes \\
filterm & Geographic filter for data sets \\
hista & Spatial equal-area histogram \\
& histr & Spatial equirectangular histogram \\
meanm & Mean for geographic data \\
& stdist & Standard distances for geographic data
\end{tabular}

\section*{Purpose}

Project a stem plot map on the current map axes
h = stem3m(lat,lon, z) displays a stem plot on the current map axes. Stems are located at the points (lat,lon) and extend from an altitude of 0 to the values of \(z\). The coordinate inputs should be in the same AngleUnits as the map axes. It is important to note that the selection of \(z\)-values will greatly affect the 3-D look of the plot. Regardless of AngleUnits, the \(x\) and \(y\) limits of the map axes are at most \(-\pi\) to \(+\pi\) and \(-\pi / 2\) to \(+\pi / 2\), respectively. This means that for most purposes, appropriate \(z\) values would be on the order of 1 to 3 , not 10 to 30 . The axes DataAspectRatio property can be used to adjust the appearance of the graphic. The handles of the displayed stem lines can be returned in \(h\).
h = stem3m(lat,lon, z,LineType) allows the style of the stem plot's lines to be specified with any string LineType recognized by the MATLAB line function.
h = stem3m(lat,lon,z,PropertyName,PropertyValue,...) allows any property/value pair recognized by the MATLAB line function to be specified for the stems.

\section*{Description}

Examples

A stem plot displays data as lines extending normal to the \(x y\)-plane, in this case, on a map.
```

load coast
axesm sinusoid; view(3)
h = framem; set(h,'zdata',zeros(size(lat)))
plotm(lat,long)
ptlat = [0 30 30 -50 -78]';
ptlon = [0 30 -70 65 -35]';
ptz = [1 1.5 2 .5 1]';
stem3m(ptlat,ptlon,ptz,'r-')

```


See Also
scatterm
Thematic map with proportional symbols

Purpose
Syntax \begin{tabular}{l} 
angles = str2angle(strings) converts the formatted \\
degrees-minutes-seconds strings to numeric angles in units of degrees. \\
Examples of recognized formats are \(123^{\circ} 30^{\prime} 000^{\prime \prime} \mathrm{S}, 123-30-00 \mathrm{~S}, 123 \mathrm{~d} 30 \mathrm{~m} 00 \mathrm{sS}\), \\
and 1233000 S . The seconds field can contain a fractional component in all but \\
the last form. Strings can be a character matrix or a cell array vector of strings.
\end{tabular}

Convert formatted dms angle strings to numbers
angles = str2angle(strings) converts the formatted degrees-minutes-seconds strings to numeric angles in units of degrees. Examples of recognized formats are \(123^{\circ} 30^{\prime} 00 " \mathrm{~S}, 123-30-00 \mathrm{~S}, 123 \mathrm{~d} 30 \mathrm{~m} 00 \mathrm{sS}\), and 1233000S. The seconds field can contain a fractional component in all but the last form. Strings can be a character matrix or a cell array vector of strings.
```

strs = {'23`30''00"N', '23-30-00S', '123d30m00sE', '1233000W'} strs =     '2330'00"N' '23-30-00S' '123d30m00sE' '1233000W' str2angle(strs) ans =             23.5             -23.5             123.5             -123.5 strs = strvcat(strs{:}) strs = 23`}30'00"
23-30-00S
123d30m00sE
1233000W
str2angle(strs)
ans =
23.5
-23.5
123.5

```

\section*{str2angle}
- 123.5

\author{
See Also \\ angl2str \\ Angle conversion to a string
}

\section*{Purpose}

Syntax

\section*{Description}

\section*{Examples}

Warp data grid to a projected graticule mesh
\(\mathrm{h}=\) surfacem(map) projects the data grid map on a graticule grid the size of map between the latitude and longitude limits of the current map axes. The handle \(h\) of the displayed surface can be returned.
h = surfacem(map, npts) results in a graticule grid defined by npts, which is a two-element vector of the form [latitude-points longitude-points]. The default npts is [50 100] (the graticule has 50 vertices in the latitude direction and 100 vertices in the longitude direction).
h = surfacem(lat,lon,map) allows greater graticule control through the inputs lat and lon. If matrices, they are the graticule vertex coordinates as might be returned by meshgrat. If vectors, they are the representative coordinates of the rows and columns, respectively, of such a grid. If they are two-element vectors, they are treated as latitude and longitude limits, and a graticule mesh the size of the default npts is calculated internally.
\(\mathrm{h}=\operatorname{surfacem}(\) lat, lon, map, alt) sets the \(z\)-axis altitude of the graticule mesh. alt must be the same size as lat. If no alt is supplied, the mesh is plotted at \(\mathrm{z}=0\), unless lat is the same size as map, in which case \(\mathrm{zdata}=\) map, and a \(3-\mathrm{D}\) topographical map results.
h = surfacem(lat,lon,map,PropertyName,PropertyValue,...) allows the input of property name/property value pairs to control the surface object properties. Any property supported by the standard MATLAB function surface except XData, YData, and ZData can be altered in this manner.

Unlike meshm and surfm, this function adds surfaces to the current axes, regardless of hold state. This function warps a data grid to a graticule mesh, which itself is projected according to the map axes MapProjection property. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting it. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need very few graticule points in the longitudinal direction, while complex curve-generating projections require more.
```

load topo
axesm miller
surfacem(topo,[30 30])

```
```

demcmap(topo)

```


See Also
meshgrat meshm
pcolorm
surfm

Construct map graticule grid
Regular data grid warped to a projected graticule mesh
Projected data grid in the \(\mathrm{z}=0\) plane
Matrix map projected on a map axes

\section*{Purpose}

Project three-dimensional shaded surface with lighting on a map axes
\(\mathrm{h}=\) surflm(map) displays the data grid map projected to a graticule grid the size of map in accordance with the current map axes MapProjection property. It is displayed with a default light source. The handle \(h\) of the displayed surface object can be returned.
\(\mathrm{h}=\) surflm(map,s) specifies the direction of the light source. s is a two- or three-element vector that specifies the direction from the surface map to the light source. \(s=\left[s x\right.\) sy sz] or \(s=\left[\right.\) azimuth elevation]. The default sis \(45^{\circ}\) counterclockwise from the current view direction.
h = surflm(lat,lon, map) allows you to specify your graticule. lat and lon can be vectors with elements corresponding to map rows and columns, respectively, or they can be matrices the size of map. The resulting graticule is the size of map.
\(\mathrm{h}=\) surflm(lat,lon,map, \(\mathrm{s}, \mathrm{k})\) specifies the reflectance constant. k is a four-element vector defining the relative contributions of ambient light, diffuse reflection, specular reflection, and the specular shine coefficient. \(\mathrm{k}=[\mathrm{ka}, \mathrm{kd}, \mathrm{ks}\), shine] and defaults to [.55 . 6 . 4 10].

\section*{Description}

\section*{Examples}
surflm is like surfm except that it shades the monochrome map surface with a light source, and the only allowed graticule is the size of the map matrix.

To see this, type the following. The graticule is the size of topo ( \(180 \times 360\) ) and is rendered in 3-D, so it might take a while. It is also memory intensive:
```

load topo
axesm miller
surflm(topo)

```

See Also surfm Matrix map projected on map axes

Purpose
Syntax

Remarks

Examples

Project 3-D lighted shaded relief of a geolocated data grid
surfsrlm(lat,long, map) displays the geolocated data grid, colored according to elevation and surface slopes. The current axes must have a valid map projection definition.
surfsrlm(lat,long, map, [azim elev]) displays the geolocated data grid with the light coming from the specified azimuth and elevation. Lighting is applied before the data is projected. Angles are in degrees, with the azimuth measured clockwise from North, and elevation up from the zero plane of the surface. By default, the direction of the light source is east ( \(90^{\circ}\) azimuth) at an elevation of \(45^{\circ}\).
surfsrlm(lat,long, map, [azim elev], cmap) displays the geolocated data grid using the provided colormap. The number of grayscales is chosen to keep the size of the shaded colormap below 256. By default, the colormap is constructed from 16 colors and 16 grays. If the vector of azimuth and elevation is empty, the default locations are used.
surfsrlm(lat,long, map, [azim elev],cmap, clim) uses the provided color axis limits, which are, by default, automatically computed from the data.
\(\mathrm{h}=\operatorname{surfsrlm}(\ldots)\) returns the handle to the surface drawn.
This function effectively multiplies two colormaps, one with color based on elevation, the other with a grayscale based on the slope of the surface, to create a new colormap. This produces an effect similar to using a light on a surface, but with all of the visible colors actually in the colormap. Lighting calculations are performed on the unprojected data.

Create a new colormap using demcmap with white colors for the sea and default colors for land. Use this colormap for the lighted shaded relief map of the Middle East region:
```

load mapmtx
[cmap,clim] = demcmap(map1,[],[1 1 1],[]);
axesm loximuth
surflsrm(lt1,lg1,map1,[],cmap,clim)

```

See Also \begin{tabular}{ll} 
meshlsrm \\
meshm \\
pcolorm \\
shaderel \\
surfacem \\
surflm \\
surfm
\end{tabular}

Project 3-D lighted shaded relief of a regular data grid
Display a regular data grid warped to a projected graticule Projected data grid in the \(\mathrm{z}=0\) plane Construct cdata and colormap for colored shaded relief Display a data grid warped to a projected graticule Display a lighted data grid warped to a projected graticule Display a data grid warped to a projected graticule

\section*{Purpose Project data grid on a map axes}

Syntax

Description

\section*{Examples}
```

load topo
axesm miller
[meshlat,meshlon] = meshgrat(topo,topolegend,[90 180]);
surfm(meshlat,meshlon,topo)
demcmap(topo)

```


\section*{See Also}
meshgrat meshm
pcolorm
Projected data grid in the \(\mathrm{z}=0\) plane
surfacem
Construct map graticule grid
Regular data grid warped to projected graticule mesh

Matrix map warped to projected graticule mesh

\section*{Purpose Assign a name to a graphics object in its Tag property}

\section*{Syntax}

Examples
Normally, a plotted line has a name of 'line ':
axesm miller
lats = [3 2112 3]; longs = [7 8978 9]; h=plotm(lats,longs);
untagged = namem(h)
untagged =
line
The tagm function can rename it:
```

tagm(h,'testpath');
tagged = namem(h)
tagged =
testpath

```

\section*{See Also}
clmo Clear specified graphics objects
handlem Get handles of displayed graphics objects
hidem Hide specified graphics objects
namem Determine names of valid graphics objects
showm Show specified graphics objects

Purpose
Syntax

Background

\section*{Remarks}

TerrainBase global 5-minute digital terrain data extraction
[datagrid,refvec] = tbase(scalefactor) reads the data for the entire world, reducing the resolution of the data by the specified scale factor. The result is returned as a regular data grid and an associated referencing vector.
[datagrid, refvec] = tbase(scalefactor,latlim,lonlim) reads the data for the part of the world within the latitude and longitude limits. The limits must be two-element vectors in units of degrees.

TerrainBase is a global model of terrain and bathymetry on a regular 5-minute grid (approximately 10 km resolution). It is a compilation of the best available public domain data from almost 20 different sources, including the DCW-DEM and ETOPO5. The model is currently under development and will be updated as new data sources become available. The data set was created by the National Geophysical Data Center and World Data Center-A for Solid Earth Geophysics in Boulder, Colorado.

Elevations and depths are given in meters above or below mean sea level.
The tbase.bin file is available on CD-ROM from
NOAA/NGDC
Mail Code E/GC3
325 Broadway
Boulder, CO 80303
USA
Tel: (303) 497-6338
Fax: (303) 497-6513
and via the Internet at
ftp://ftp.ngdc.noaa.gov/Solid_Earth/cdroms/TerrainBase_94/data/
No byte-swapping or line-ending conversion is required.
A summary of the model can be found at
ftp://ftp.ngdc.noaa.gov/Solid_Earth/Topography/tbase_5min/
tbase.txt

Examples Read every tenth point in the data set:
\begin{tabular}{lcrl} 
[datagrid,refvec] \\
whos \\
Name & tbase(10); & & \\
& Size & Bytes & Class \\
datagrid & \(216 \times 432\) & 746496 & double array \\
refvec & \(1 \times 3\) & 24 & double array
\end{tabular}
```

limitm(datagrid,refvec)
ans =
-90 90 0 360

```

Read data for Korea and Japan at the full resolution:
```

scalefactor = 1; latlim = [30 45]; lonlim = [115 145];
[datagrid,refvec] = tbase(scalefactor,latlim,lonlim);
whos datagrid
Name Size Bytes Class
datagrid 180x360 518400 double array

```

\section*{See Also}
\begin{tabular}{ll} 
gtopo30 & Read elevation data from GTOPO30 \\
etopo5 & Read data from the ETOPO5 data set \\
usgsdem & Read USGS digital elevation maps
\end{tabular}

\section*{Purpose}

Project text annotation on map axes

\section*{Syntax}

Example The handles \(h\) of the displayed strings can be returned. The default altitude is 0 . are supported by textm.
\(\mathrm{h}=\mathrm{textm}(\mathrm{lat}\), lon, string) displays the strings (rows) of the matrix of strings string at the geographic locations specified by the vectors lat and lon.
\(\mathrm{h}=\) textm(lat,lon, z, string) displays the strings at the \(z\)-axis altitudes z .
h = textm(lat,lon,z,string,PropertyName, PropertyValue, ...) sets the text object properties. All properties supported by the MATLAB text function

The feature of textm that distinguishes it from the standard MATLAB text function is that the text object is projected appropriately. Type the following:
```

axesm sinusoid
framem('FEdgeColor','red')
textm(60,90,'hello')

```

```

figure; axesm miller
framem('FEdgeColor','red')
textm(60,90,'hello')

```
(hello

The string 'hello' is placed at the same geographic point, but it appears to have moved relative to the axes because of the different projections. If you change the projection using the setm function, the text moves as necessary. Use text to fix text objects in the axes independent of projection.
\begin{tabular}{lll} 
See Also & axesm & Create map axes object \\
text & Create text object in current axes (see the online \\
& & MATLAB Function Reference documentation)
\end{tabular}

\section*{Purpose}

Syntax

\section*{Background}

Read TIGER MIF (MapInfo Interchange Format) thinned boundary files
tigermif (namesstruc) reads a TIGER thinned boundary file in the MIF format. The user selects the file interactively, but must provide the structure containing the names (as returned by the fipsname function). The patch data is returned in a Mapping Toolbox geographic data structure.
tigermif(namesstruc, filename) reads the MIF file named in the string filename. The filename is provided with the .MIF extension. If the file is not found, a dialog box is activated to allow the user to select a file interactively.
tigermif(namesstruc,filename, pstruc) appends the patch data to the existing structure, pstruc.
tigermif(namesstruc, filename, pstruc, tstruc) appends the data in the file to the existing patch and text geographic data structures, pstruc and tstruc. The text structure contains labels for the patches. This form is used with two output arguments. The arguments for the existing structures can be set to empty matrices if none are available.
tigermif(namesstruc, filename, pstruc, tstruc, getcodes) returns only the data matching the scalar or vector of numeric FIPS codes.
pstruc \(=\) tigermif(...) saves the returned patch data in pstruc.
[pstruc,tstruc] = tigermif(...) saves the returned patch data in pstruc and text labels in tstruc. Both are geographic data structures.

TIGER Thinned Boundary files are lower resolution extracts from the U.S. Census Bureau's detailed TIGER/Line database. U.S. state and county boundaries are available in the MapInfo Interchange format (MIF).

\section*{Remarks}

\section*{Examples}

The data files are available over the Internet from
ftp://ftp.census.gov/pub/tiger/boundary/
Extremely limited documentation on the files is available on the World Wide Web from
http://www.census.gov/ftp/pub/geo/www/tiger/mif.txt
and
http://www.census.gov/ftp/pub/geo/www/tiger/resource.html
Read the names file (contains the names of U.S. states and territories):
```

namestruc = fipsname('st_name.dat')
namestruc =
1x57 struct array with fields:
name
id

```

Read the file containing Hawaii's thinned state boundaries and text labels into a Mapping Toolbox geographic data structure:
```

[ps,ts] = tigermif(namestruc,'ST15.MIF')
ps =
lat: [1585x1 double]
long: [1585x1 double]
type: 'patch'
otherproperty: {}
tag: 'Hawaii'
altitude: []
ts =
lat: 21.1343
long: -157.9524
type: 'text'
tag: 'maptext'
otherproperty: {1x2 cell}
string: {1x1 cell}
altitude: []

```

Read the file containing Alaska's thinned state boundaries, and append it to the Hawaii data:
```

[ps,ts] = tigermif(namestruc,'ST02.MIF',ps,ts)
ps =
1x2 struct array with fields:
lat
long
type
otherproperty
tag
altitude
ts =
1x2 struct array with fields:
lat
long
type
tag
otherproperty
string
altitude

```

Get the state boundaries and text labels for part of New England. The FIPS codes for Connecticut, Massachusetts, and Rhode Island are 9, 25, and 44, respectively:
```

[ps,ts] = tigermif(namestruc,'ST_LOW48.MIF',[],[],[9 25 44])
ps =
1x3 struct array with fields:
lat
long
type
otherproperty
tag
altitude
ts =
1x3 struct array with fields:
lat
long
type
tag

```
```

otherproperty
string
altitude

```
\begin{tabular}{lll} 
See Also & dcwdata & Read selected data from the Digital Chart of the World \\
fipsname & Read TIGER thinned boundary file FIPS names \\
tgrline & Read data from TIGER/Line files \\
tigerp & Read TIGER ArcInfo Format thinned boundary files
\end{tabular}

\section*{Purpose}

Syntax

\section*{Background}

Remarks

Read TIGER p and pa (ArcInfo format) thinned boundary files
tigerp (namesstruc) reads a TIGER thinned boundary file in the ArcInfo format. The user selects the file interactively, but must provide the structure containing the names (as returned by the fipsname function). The patch data is returned in a Mapping Toolbox geographic data structure.
tigerp(namesstruc, filename) reads the ArcInfo file named in the string filename. The filename is provided without the '_p' or '_pa' extension.
tigerp(namesstruc, filename, pstruc) appends the patch data to the existing structure, pstruc.
tigerp(namesstruc, filename, pstruc, tstruc) appends the data in the file to the existing patch and text geographic data structures, pstruc and tstruc. The text structure contains labels for the patches. This form is used with two output arguments. The arguments for the existing structures can be set to empty matrices if none are available.
tigerp(namesstruc, filename, pstruc, tstruc, getcodes) returns only the data matching the scalar or vector of numeric FIPS codes.
pstruc \(=\) tigerp(...) saves the returned patch data in pstruc.
[pstruc, tstruc] = tigerp(...) saves the returned patch data in pstruc and text labels in tstruc. Both are geographic data structures.

TIGER Thinned Boundary files are lower resolution extracts from the U.S. Census Bureau's more detailed TIGER/Line database. State, county, minor civil division, census tract/block numbering area, American Indian reservation/Alaska native village statistical area, Alaska native regional corporation, urbanized areas, metropolitan areas, and congressional district boundaries are available in the ArcInfo format.

Coordinate values are based on Clarke's spheroid of 1866 and the North American Datum, 1927 (NAD27).

The data files are available over the Internet from
ftp://ftp.census.gov/pub/tiger/boundary
Documentation for the files is available from

\section*{Examples}

Read the names file with the names of all counties in the U.S. and territories. This file is in FIPS format:
```

namestruc = fipsname('co_name.dat')
namestruc =
1x3248 struct array with fields:
name
id

```

Read the file containing Alaska's thinned county boundaries into a Mapping Toolbox geographic data structure:
```

[ps,ts] = tigerp(namestruc,'co_02_p.dat')
ps =
1x26 struct array with fields:
lat
long
type
otherproperty
altitude
tag
ts =
1x26 struct array with fields:
lat
long
type
tag
otherproperty
altitude
string

```

Read only the Aleutians East and West:
```

[ps,ts] = tigerp(namestruc,'co_02_p.dat',[],[],[2013 2016])
ps =
1x2 struct array with fields:
lat
long
type
otherproperty
altitude
tag
ts =
1x2 struct array with fields:
lat
long
type
tag
otherproperty
altitude
string

```
\begin{tabular}{lll} 
See Also & dcwdata & Read selected data from the Digital Chart of the World \\
fipsname & Read TIGER thinned boundary file FIPS names \\
tgrline & Read data from TIGER/Line files
\end{tabular}

\section*{Purpose Remove white space around a map}

Syntax

Examples

Limitations

See Also
tightmap sets the MATLAB axis limits to be tight around the map in the current axes. This eliminates or reduces the white border between the map frame and the axes box. Use axis auto to undo tightmap.

Display a map of Africa. Notice the white space between the map frame and the edge of the axes box.
```

axesm('miller','maplatlim',[-40 40],'maplonlim',[-20 60])
framem; gridm; mlabel; plabel
load coast
plotm(lat, long)

```

Now use tightmap to reduce the wasted space:
tightmap
The axis limits are fixed. If a change in the projection parameters changes the size or position of the map display within the projected coordinate system, execute tightmap again.
\begin{tabular}{ll} 
panzoom & Pan and zoom on a 2-D plot \\
zoom & Zoom in and out on a 2-D plot \\
paperscale & Figure paper size for a given map scale \\
axesscale & Resize axes for equivalent scale \\
previewmap & View map at printed size
\end{tabular}

Purpose
Syntax

\section*{Description}

\section*{Examples}

Convert time to a clock string
str = time2str(timein) converts a numerical vector of times to a string matrix. The output string matrix is useful for the display of times.
str \(=\) time2str (timein, clock) uses the specified clock input to construct the string matrix. Allowable clock strings are ' 24 ' (default) for a 24 -hour clock, ' 12 ' for a 12 -hour clock, and 'nav' for a navigational hour clock.
str \(=\) time2str(timein, clock,format) uses the specified format input to construct the string matrix. Allowable for format strings are 'hms', for hours, minutes, and seconds, and 'hm' (default), for hours and minutes.
str \(=\) time2str(timein, clock, format, units) defines the units in which the input times are supplied. Any valid time units string can be entered. If omitted, 'hours ' is assumed.
str \(=\) time2str(timein, clock, format, digits) indicates the power of ten to be included for the seconds (if format \(=\) 'hms') or minutes (if format = 'hm'). The default value is 0 , so nothing is returned to the right of the decimal \(\left(10^{0}\right.\) is the ones column). For example, if digits \(=-2\), seconds are returned down to the hundredths column.

The purpose of this function is to make time-valued variables into strings suitable for map display.

13 hours, 56 minutes, 44 seconds in hms format is 1356.44 .
```

time = 1356.44;
str = time2str(time,'12','hms','hms')
str =
1:56:44 PM

```

For hm format, appropriate rounding occurs:
```

str = time2str(time,'12','hm','hms')
str =
1:57 PM

```

The 24-hour and navigational representations are
```

str = time2str(time,'24','hms','hms')
str =

```
```

13:56:44
str = time2str(time,'nav','hms','hms')
str =
1356'''

```

Navigational times are four digits; if seconds are included, they are rounded to the nearest 15 seconds, which are represented by tick marks ( \(0=\) none, \(15=\) ', \(30=", 45=\) '" \()\).

Consider the hms format time 1356.4456 for rounding purposes:
```

str = time2str(1356.4456,'12','hms','hms',-2) % hundredths
str =
1:56:44.56 PM
str = time2str(1356.4456,'12','hms','hms',-1) % tenths
str =
1:56:44.6 PM

```

\section*{See Also}
hr2hms
hr2sec \(\quad\) Other direct time conversion functions
timedim Convert times between different units

\section*{Purpose}

Syntax

\section*{Examples}

See Also

Convert times between different units
timeout \(=\) timedim(timein, from, to) returns the value of the input time timein, which is in units specified by the valid time units string from, in the desired units given by the valid time units string to. Valid time units strings are
```

'hours' or 'hr' for decimal hours
'seconds' or 'sec' for seconds
'hms' for hours-minutes-seconds
'hm' for hours-minutes

```

Convert from hours to seconds:
```

timedim(2.56,'hours','seconds')
ans =
9216

```

What is the difference between hms and hm (best displayed in bank format)?
format bank
timedim(2.56,'hours','hms')
ans \(=\)
    233.36
timedim(2.56,'hours','hm')
ans \(=\)
    234.00

The hm answer is the hms answer correctly rounded to whole minutes (that is, rounded based on 60 seconds per minute, not 100).
angledim Convert angle units
distdim Convert distance units
hr2hms Other direct time conversion functions
hr2sec
time2str Convert time to selected display string

\section*{Purpose Determine time zone based on longitude}

Syntax [zd,zltr, zone] = timezone(long) returns an integer zone description, zd, an alphabetical string zone indicator, zltr, and a string, zone, with the complete zone description and alphabetical zone indicator corresponding to the input longitude long.
[zd,zltr,zone] = timezone(long,units) specifies the angular units with a standard angle units string. The default value is 'degrees '.

Given that it is locally 1330 (1:30 p.m.) at a longitude of \(75^{\circ} \mathrm{W}\), determine GMT:
```

[zd,zltr,zone] = timezone(-75,'degrees')
zd =
5
zltr =
R
zone =
+5 R

```

Greenwich Mean Time (GMT) is 1330 plus five hours, or 1830 (6:30 p.m.).

\section*{Background}

Time is determined by the position of the Sun relative to the prime meridian, the zero longitude line running through Greenwich, England. When this meridian lies directly below the Sun, it is noon GMT. For local times elsewhere, the Earth is divided into \(15^{\circ}\) longitude bands, each centered on a central meridian. When a central meridian lies directly below the Sun, Local Mean Time (LMT) in that zone is noon. The zone description is an integer that when added to LMT gives GMT. For notational convenience, each zone is also given an alphabetical indicator. The indicator at Greenwich is \(Z\), so GMT is often called ZULU time.


Note that there are actually 25 time zones, because the zone centered on the International Date Line ( \(180^{\circ} \mathrm{E} / \mathrm{W}\) ) is split into two: "+12 Y" and "-12 M."

Limitations
National and local governments set their own time zone boundaries for political or geographic convenience. The timezone function does not account for statutory deviations from the meridian-based system.

Purpose
Project Tissot indicatrices onto map axes
Syntax

\section*{Background}

\section*{Description} map axes and returns handles for the displayed indicatrices. Tissot diagram as described above. line style of the Tissot indicatrices.
h = tissot(spec,PropertyName,PropertyValue,...) and h = diagrams for every projection on a global scale.
\(\mathrm{h}=\mathrm{tissot}\) plots the default Tissot diagram, as described above, on the current
\(\mathrm{h}=\mathrm{tissot}(\mathrm{spec})\) allows you to specify plotting parameters of the displayed
\(\mathrm{h}=\) tissot(spec, linestyle) and \(\mathrm{h}=\) tissot(linestyle) specify any linestyle string recognized by the standard MATLAB function line to set the tissot (linestyle, PropertyName, PropertyValue,...) allow the specification of any property and value recognized by the line function.

Tissot indicatrices are plotting symbols that are useful for understanding the various distortions of a given map projection. The indicatrices are circles of identical true radius on the Earth's surface. When plotted on a map projection, they indicate whether the projection has certain features. If the plotted indicatrices all enclose the same area, the projection is equal area (for example, a Sinusoidal projection would have this feature). If they all remain circular, then conformality is indicated (a Mercator projection has this property). Distortions in meridianal or parallel distance are exhibited by flattened or stretched indicatrices. Many projections will show very even, circular indicatrices in some regions, often near the center, and wildly distorted indicatrices in others, such as near the edges. The Tissot diagram is therefore very useful in analyzing the appropriateness of a projection to a given purpose or region. Chapter 11, "Projections Reference," of this guide includes Tissot

The general layout of the Tissot diagram is defined by the specification vector spec.
spec = [Radius]
spec = [Latint,Longint]
spec = [Latint, Longint, Radius]
spec = [Latint,Longint,Radius, Points]

Radius is the small circle radius of each indicatrix circle. If entered, it should be in the same units as the map axes Geoid. The default radius is \(1 / 10\) th the radius of the sphere.

Latint is the latitude interval between indicatrix circle centers. If entered it should be in the map axes AngleUnits. The default value is one circle every \(30^{\circ}\) of latitude (that is, \(0^{\circ},+/-30^{\circ}\), etc.).

Longint is the longitude interval between indicatrix circle centers. If entered it should be in the map axes AngleUnits. The default value is one circle every \(30^{\circ}\) of latitude (that is, \(0^{\circ},+/-30^{\circ}\), etc.).

Points is the number of plotting points per circle. The default is 100 points.

\section*{Examples}
```

axesm sinusoid; framem
tissot

```


The Sinusoidal projection is equal area.
```

setm(gca,'MapProjection','Mercator')

```


The Mercator projection is conformal.

\section*{See Also}
mdistort Display contours of constant distortion on a map
distortcalc
projections
Calculate distortion parameters for a map projection
See Chapter 11, "Projections Reference."

\section*{Purpose}

Read data from U.S. Census Bureau TIGER/Line files

\section*{Syntax}
[CL, PR, SR, RR, H, AL, PL] = tgrline(filename) reads the set of 1994 TIGER/Line files that share the same filename, but different extensions. The results are returned in a set of geographic data structures containing the county boundaries, primary roads, secondary roads, railroads, hydrography, area landmarks, and point landmarks, respectively. The data is tagged with the names of the features.
[CL, PR, SR, RR, H, AL, PL] = tgrline(filename, year) reads the TIGER/Line files in the format from the specified year. The files are updated periodically, and the format and filename extensions can change from year to year. Valid years are 1990, 1992, 1994, and 1995.
[CL, PR, SR, RR, H, AL, PL] = tgrline(filename, year, countyname) uses the string countyname to tag the county data.

TIGER/Line files contain vector map data used to support mapping for the U.S. Census Bureau. TIGER is an acronym for Topographically Integrated Geographic Encoding and Referencing. These files contain data for political boundaries, including states, counties, Indian reservations, and census tracts, as well as roads, railroads, hydrography, and landmarks. In addition to the geographically referenced information, the files also contain data to determine the address of an object. The data covers the United States of America and its territories or administrative units: Puerto Rico, the Virgin Islands of the United States, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, the Republic of Palau, the other Pacific entities that were part of the Trust Territory of the Pacific Islands (the Republic of the Marshall Islands and the Federated States of Micronesia), and the Midway Islands. The most common application of this data is to commercial CD-ROM road atlases.

\section*{Remarks}

This function reads only a subset of the data in the TIGER/Line files. For example, the function does not return local roads, zip codes, or census tract numbers.

TIGER/line files are available from the U.S. Census Bureau on CD-ROMs. Ordering information and an overview of other Census Bureau data products are available at
http://www.census.gov/ftp/pub/geo/www/tiger/

\section*{tgrline}

Example files are available over the Internet at ftp://ftp.census.gov/pub/tiger/line/

Examples
Read from the data for Washington, D.C.: [CL, PR, SR, RR, H, AL, PL] = tgrline('TGR11001', 1994, 'Wash, DC');

\section*{See Also}
dcwdata
tigermif Read TIGER MapInfo Interchange Format thinned boundary files
tigerp Read TIGER ArcInfo format thinned boundary files

\section*{Purpose}

Syntax

\section*{Examples}

Connect navigational waypoints with track segments
[lattrk,lontrk] = track(waypts) returns points in lattrk and lontrk along a track between the waypoints provided in navigational track format in the two-column matrix waypts. The outputs are column vectors in which successive segments are delineated with NaNs.
[lattrk,lontrk] = track(waypts,units) specifies the units of the inputs and outputs, where units is any valid angle unit string. The default is 'degrees'.
[lattrk,lontrk] = track(lat,lon) allows the user to input the waypoints in two vectors, lat and lon.
[lattrk,lontrk] = track(lat,lon,ellipsoid) specifies the elliptical definition of the Earth with a two-element ellipsoid model vector ellipsoid. The default ellipsoid is a spherical Earth, which is sufficient for most applications.
[lattrk, lontrk] = track(lat,lon, ellipsoid, units, npts) establishes how many intermediate points are to be calculated for every track segment. By default, npts is 30 .
[lattrk,lontrk] = track(method, lat,...) establishes the logic to be used to determine the intermediate points along the track between waypoints. Because this is a navigationally motivated function, the default method is ' rh ', which results in rhumb line logic. Great circle logic can be specified with 'gc'.
trkpts = track(lat,lon...) compresses the output into one two-column matrix, trkpts, in which the first column represents latitudes and the second column, longitudes.

The track function is useful for generating data in order to display tracks. Lieutenant Sextant is the navigator of the USS Neversail. He is charged with plotting a track to take Neversail from the Straits of Gibraltar to Port Said, Egypt, the northern end of the Suez Canal. He has picked appropriate waypoints and now would like to display the track for his captain's approval.

First, display a chart of the Mediterranean Sea:
load coast
```

axesm('mercator','MapLatLimit',[30 47],'MapLonLimit',[-10 37])
plotm(lat,long,'b')

```

These are the waypoints Lt. Sextant has selected:
```

waypoints = [36,-5; 36,-2; 38,5; 38,11; 35,13; 33,30; 31.5,32]
waypoints =
36.0000 -5.0000
36.0000 -2.0000
38.0000 5.0000
38.0000 11.0000
35.0000 13.0000
33.0000 30.0000
31.5000 32.0000

```

Now display the track:
```

[lttrk,lntrk] = track('rh',waypoints,'degrees');
plotm(lttrk,lntrk,'r')

```

With a display this clear, the captain gladly approves the plan.


See Also
dreckon Dead reckon points for a track
gcwaypts Find waypoints along a great circle
\begin{tabular}{ll} 
legs & Courses and distances between waypoints \\
navfix & Mercator-based navigational fixing
\end{tabular}

\section*{Purpose}

Compute great circle or rhumb line track defined by point, azimuth, and range

Background A path along the surface of the Earth connecting two points is a track. Two types of track lines are of interest geographically, great circles and rhumb
lines. Great circles represent the shortest possible path between two points. Rhumb lines are paths with constant angular headings. They are not, in general, the shortest path between two points.

Full great circles bisect the Earth; the ends of the track meet to form a complete circle. Rhumb lines with true east or west azimuths are parallels; the ends also meet to form a complete circle. All other rhumb lines terminate at the poles; their ends do not meet.

\section*{Examples}
```

axesm('mercator','MapLatLimit',[-60 60],'MapLonLimit',[-60 60])
[lattrkgc,lontrkgc] = track1(0,0,45,[-55 55]);
plotm(lattrkgc,lontrkgc,'g')
[lattrkrh,lontrkrh] = track1('rh',0,0,45,[-55 55]);
plotm(lattrkrh,lontrkrh,'r')

```


See Also
azimuth
distance
reckon New point with an azimuth and distance
scircle1 Small circle coordinates
scircle2
track Connect waypoints with track segments
\begin{tabular}{ll} 
track2 & Great circle or rhumb line defined by two points \\
trackg & Interactive tracks
\end{tabular}

\section*{Purpose}

\section*{Syntax}

\section*{Background}

\section*{Example}

Compute great circle or rhumb line track defined by two points
[lattrk,lontrk] = track2(lat1,lon1,lat2,lon2) returns, in lattrk and lontrk, points along a (great circle) track between the points specified by lat 1 with lon1 and lat2 and lon2. When the inputs are column vectors, the successive tracks are stored in separate columns of lattrk and lontrk.
[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2) allows the specification of the track logic to be employed. A string track of ' \(\mathrm{gc}^{\prime}\) ' is the default, resulting in a great circle track. A track of 'rh' results in a rhumb line track.
[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2,units) specifies the units of the inputs and outputs, where units is any valid angle unit string. The default is 'degrees '.
[lattrk,lontrk] = track2(track,lat1,lon1,lat2,lon2, ellipsoid, units) specifies the elliptical definition of the Earth with a two-element ellipsoid model vector ellipsoid. The default ellipsoid is a spherical Earth, which is sufficient for most applications.
[lattrk,lontrk] = track2(lat1,lon1,lat2,lon2,ellipsoid, units, npts) specifies the number of points, npts, per output track. npts is 100 by default.
pts = track2(lat1,lon1,lat2,lon2,...) combines the outputs into a single two-column matrix, pts.

A path along the surface of the Earth connecting two points is a track. Two types of track lines are of interest geographically, great circles and rhumb lines. Great circles represent the shortest possible path between two points. Rhumb lines are paths with constant angular headings. They are not, in general, the shortest path between two points.
```

axesm('mercator','MapLatLimit',[30 50],'MapLonLimit',[-40 40])
[lattrkgc,lontrkgc] = track2(40,-35,40,35);
[lattrkrh,lontrkrh] = track2('rh',40, -35,40,35);
plotm(lattrkgc,lontrkgc,'g')
plotm(lattrkrh,lontrkrh,'r')

```


See Also
\begin{tabular}{ll} 
azimuth & Azimuth between two points on the globe \\
distance & Distance between two points on the globe \\
reckon & New point with an azimuth and distance \\
scircle1 & Small circle coordinates \\
scircle2 & \\
track & Connect waypoints with track segments \\
track1 & Great circle or rhumb line from point and azimuth \\
trackg & Interactive tracks
\end{tabular}

\section*{Purpose}

Syntax

Display great circle or rhumb line track defined via mouse input
\(\mathrm{h}=\) trackg(ntrax) brings forward the current map axes and waits for the user to make ( \(2 \times n t r a x\) ) mouse clicks. The output \(h\) is a vector of handles for the ntrax track segments, which are then displayed.
\(h=t r a c k g(n t r a x, n p t s)\) specifies the number of plotting points to be used for each track segment. npts is 100 by default.
\(\mathrm{h}=\) trackg(ntrax, linestyle) specifies the line style for the displayed track segments, where linestyle is any line style string recognized by the standard MATLAB function line.
h = trackg(ntrax,PropertyName,PropertyValue,...) allows property name/property value pairs to be set, where PropertyName and PropertyValue are recognized by the line function.
[lat,lon] = trackg(ntrax, npts,...) returns the coordinates of the plotted points rather than the handles of the track segments. Successive segments are stored in separate columns of lat and lon.
\(\mathrm{h}=\) trackg (track, ntrax, ...) specifies the logic with which tracks are calculated. If the string track is ' gc' (the default), a great circle path is used. If track is ' \(r\) ' ', rhumb line logic is used.

This function is used to define great circles or rhumb lines for display using mouse clicks. For each track, two clicks are required, one for each endpoint of the desired track segment. You can modify the track after creation by shift-clicking it. The track is then in edit mode, during which you can change the length and position by dragging control points, or by entering values into a control panel. Shift-clicking again exits edit mode.
\begin{tabular}{lll} 
See Also & track1 & Great circle or rhumb line from point, azimuth, and range \\
track2 & Great circle or rhumb line from two points \\
& scircleg & Interactive small circles
\end{tabular}
track1
track2
scircleg

\section*{trimcart}

\section*{Purpose Trim graphic objects to the map frame}

Syntax
trimcart ( h ) clips the graphic objects to the map frame. h can be a handle or a vector of handles to graphics objects. h can also be any object name recognized by handlem. trimcart clips lines, surfaces, and text objects.

\section*{Examples}

Limitations
trimcart does not trim patch objects.

\section*{See Also}
handlem Graphics handle for identified objects
makemapped Make an object mapped

Purpose
Syntax \(\begin{aligned} & \text { [ymat, xmat, trimpts] = trimdata(ymat, ylim, xmat, xlim, 'object') } \\ & \text { identifies points in map data that exceed projection limits. The projection } \\ & \text { limits are defined by the lower and upper inputs. The particular object to be } \\ & \text { trimmed is identified by the 'object' input. } \\ & \text { Allowable object strings are } \\ & \text { - surface for trimming graticules } \\ & \text { - light for trimming lights, ' line ' for trimming lines } \\ & \text { - patch for trimming patches } \\ & \text { - text for trimming text object location points } \\ & \text { - none to skip all trimming operations }\end{aligned}\)
See Also clipdata, undotrim, undoclip

\section*{unitsratio}

\section*{Purpose Unit conversion factors}

Syntax ratio = unitsratio(to, from) returns the number of to units per one from unit. For example, unitsratio (' cm ' , 'm') returns 100 because there are 100 centimeters per meter. unitsratio makes it easy to convert from one system of units to another. Specifically, if \(x\) is in units from and
\[
y=\text { unitsratio(to, from) * x }
\]
then Y is in units to.
to and from can be any strings from the second column of one of the following tables (both must come from the same table). to and from are case insensitive and can be either singular or plural.

Units of Length
unitsratio recognizes the following identifiers for converting units of length:
\begin{tabular}{l|l}
\hline Unit Name & String(s) \\
\hline Meter & 'm', 'meter(s)', 'metre(s)' \\
\hline Centimeter & 'cm', 'centimeter(s)', 'centimetre(s)' \\
\hline Millimeter & 'mm', 'millimeter(s)', 'millimetre(s)' \\
\hline Micron & 'micron(s)' \\
\hline Kilometer & 'km', 'kilometer(s)', 'kilometre(s)' \\
\hline Nautical mile & 'nm', 'nautical mile(s)' \\
\hline International foot & \begin{tabular}{l} 
'ft', 'international ft', 'foot', \\
'international foot', 'feet', 'international \\
feet'
\end{tabular} \\
\hline Inch & 'in', 'inch', 'inches' \\
\hline Yard & 'yd', 'yard(s)' \\
\hline international mile & 'mi', 'mile(s)', 'international mile(s)' \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Unit Name & String(s) \\
\hline U.S. survey foot & \begin{tabular}{l} 
'sf', 'survey ft', 'U.S. survey ft', 'survey \\
foot', 'U.S. survey foot', 'survey feet', \\
'U.S. survey feet'
\end{tabular} \\
\hline \begin{tabular}{l} 
U.S. survey mile \\
(statute mile)
\end{tabular} & \begin{tabular}{l} 
'sm', 'survey mile(s)', 'statute mile(s)', \\
'U.S. survey mile(s)'
\end{tabular} \\
\hline
\end{tabular}

\section*{Units of Angle}
unitsratio recognizes the following identifiers for converting units of angle:
\begin{tabular}{l|l}
\hline Unit Name & String(s) \\
\hline radian & 'rad', 'radian(s)' \\
\hline degree & 'deg', 'degree(s)' \\
\hline
\end{tabular}

\section*{Examples}
```

% Approximate mean earth radius in meters
radiusInMeters = 6371000
% Conversion factor
feetPerMeter = unitsratio('feet', 'meter')
% Radius in (international) feet:
radiusInFeet = feetPerMeter * radiusInMeters
% The following prints a true statement for valid TO, FROM pairs:
to = 'feet';
from = 'mile';
sprintf('There are %g %s per %s.', unitsratio(to,from), to, from)
% The following prints a true statement for valid TO, FROM pairs:
to = 'degrees';
from = 'radian';
sprintf('One %s is %g %s.', from, unitsratio(to,from), to)

```

\section*{unitstr}

\section*{Purpose Test for valid unit strings or abbreviations}

Syntax unitstr lists all valid unit strings and all abbreviations that are not simply truncations of the original strings (e.g., 'km' for 'kilometers').
str \(=\) unitstr(stro, measstr) returns the valid standard string str corresponding to the recognized abbreviation stro. The type of string sought is specified by measstr, which can be 'distances', 'angles', or 'time'.

\section*{Examples}

This function recognizes and standardizes certain abbreviations:
```

str = unitstr('sm','distances')
str =
statutemiles

```

And any unique truncation:
```

str = unitstr('hou','time')
str =
hours

```

\section*{See Also}
\begin{tabular}{ll} 
angledim & Angle unit conversion \\
distdim & Distance unit conversion \\
timedim & Time unit conversion
\end{tabular}

10-582

\section*{Purpose}

Syntax
Update a version 1 geographic data structure to a version 2 geographic data structure
\(\mathrm{g} 2=\) updategeostruct ( g ) accepts a geographic data structure g . If g is a geostruct1 for which the 'type' field has value 'line' or 'patch', updategeostruct restructures its elements to create a geostruct2, g2. If g is a geostruct2, it is copied unaltered to g2. updategeostruct should not be used for geostruct1 arrays of type 'text', 'light', 'regular', or 'surface'.
\(\mathrm{s}=\) updategeostruct ( \(\mathrm{g}, \mathrm{str}\) ) selects only elements whose tag field begins with the string \(\operatorname{str}\) (and whose type field is either 'line' or 'patch'). The selection is case insensitive.
[s,symbolspec] = updategeostruct( \(\mathrm{g}, . .\). ) restructures a geographic data structure and determines a symbolspec based on the graphic properties specified in the otherproperty field for each element of \(g\) and, if necessary, the jet colormap.
[s,symbolspec] = updategeostruct(g, ..., cmap) specifies a colormap, cmap, to define the colors used in symbolspec.

The Mapping Toolbox supports two ways of encoding vector features in MATLAB structure arrays. In both cases there is one feature per array element, and in both cases the array elements are called "geographic data structures." Mapping Toolbox Version 1.3.1 and earlier supported the "version 1 " geographic data structure (called geostruct1), in which
- A tag field names an individual feature or object.
- A type field specifies a MATLAB graphics object type (' line ', 'patch', 'surface', 'text', or 'light') or has the value 'regular', specifying a regular data grid.
- All coordinates are in latitude-longitude, stored in fields lat and long.
- An altitude coordinate array extends coordinates to 3-D.
- A string property contains text to be displayed if type is 'text'.
- MATLAB graphics properties are specified explicitly, on a per-feature basis, in an otherproperty field.

The choice of options for the type field reveals that geostruct1 can contain

\section*{updategeostruct}
- Vector geodata (type is 'line' or 'patch')
- Raster geodata (type is 'surface' or 'regular')
- Graphic objects (type is 'text' or 'light')

Beginning with Mapping Toolbox 2.0, geographic data structures can take a more general form (geostruct2) - but only for vector geodata:
- Coordinates can be in either latitude-longitude (stored in fields Lat and Lon) or map \(x-y\) (stored in fields X and Y ).
- An optional field, Height or Z, extends coordinates to 3-D.
- A Geometry text field designates the geometric nature of the feature: 'Point', 'Multipoint', 'Line', or 'Polygon' rather than a graphics object type.
- Additional attribute fields, the names and number of which are
data-set-specific, describe the nongeometric properties (name, ownership, age, code or identifier, ...).

This is the form of geostruct used for the output of shaperead. The version 2 geographic data structures allow for a greater amount of information to be carried about each vector feature. They also separate the graphics display properties from the fundamental properties of the geographic features themselves.

Instead of being assigned in advance, graphics properties are determined at display time by matching up attribute values against rules provided in a symbol spec. For example, a road class attribute can be used to display major highways with a distinctive color and greater line width than secondary roads. The same geographic data structure can be displayed in many different ways, without altering any of its contents, and shapefile data imported from external sources need not be altered to control its graphic display.

Some version 2 toolbox functions (for example, mapshow, geoshow, and mapview) accept either type of geographic data structure. Other functions (for example, displaym and extractm) accept only version 1 geographic data structures. The purpose of updategeostruct, which supports the implementation of mapshow and geoshow, is to restructure version 1 geographic data structures containing vector geodata, converting them to the newer form.

You might need to update gstructs in order to use existing Mapping Toolbox data with newer display functions. You must, for example, use updategeostruct when displaying objects by name with geoshow and mapshow. The following commands (displaym and geoshow) yield similar results (fill color might differ):
```

load usalo; axesm miller
displaym(state,'california');
figure; axesm miller
geoshow(updategeostruct(state,'california'));

```

If you do not reference objects by name, geoshow and mapshow can use existing mstructs. For example,
```

geoshow(state)

```
draws all state patches, and
        geoshow(state(5))
draws just California.

\section*{Example}

See Also
```

% Draw the United States with colors from the autumn colormap
patches = usahi('statepatch');
cmap = autumn(numel(patches));
[states, spec] = updategeostruct(patches, cmap);
mapshow(states,'SymbolSpec',spec)

```
extractm, shaperead, makesymbolspec, mapview, mapshow, geoshow

Purpose Remove object clips introduced by clipdata
\begin{tabular}{|c|c|}
\hline Syntax & [lat,long] = undoclip(lat,long, clippts,'object') removes the object clips introduced by clipdata. This function is necessary to properly invert projected data from the Cartesian space to the original latitude and longitude data points. \\
\hline
\end{tabular}

Description

See Also

Allowable object strings are
- surface for trimming graticules
- light for trimming lights, ' line' for trimming lines
- patch for trimming patches
- text for trimming text object location points
- none to skip all trimming operations
clipdata, trimdata, undotrim

Purpose
Remove object trims introduced by trimdata
[ymat, xmat] = undotrim(ymat, xmat, trimpts,'object') removes the object trims introduced by trimdata. This function is necessary to properly invert projected data from the Cartesian space to the original latitude and longitude data points.

The input variable, trimpts, must be constructed by the function trimdata.

\section*{Description}

See Also

Allowable object strings are
- surface for trimming graticules
- light for trimming lights, ' line ' for trimming lines
- patch for trimming patches
- text for trimming text object location points
- none to skip all trimming operations
clipdata, trimdata, undoclip

Purpose Return data from the usahi atlas data file

Syntax

Examples
usahi types a list of the atlas data variables in the usahi MAT-file to the screen.
\(\mathrm{s}=\) usahi(request) returns the requested variable. Valid requests are 'stateline', 'statepatch', and 'statetext'. This function can be used as an argument to other commands such as geoshow(usahi('statepatch')).
```

axesm('bonne','origin',-100)
geoshow(usahi('stateline'))

```


\section*{See Also}
\begin{tabular}{ll} 
worldlo & World atlas data \\
usalo & Low-resolution atlas data for the United States \\
usahi.mat & MAT-file containing high-resolution atlas data for the \\
& United States
\end{tabular}

\section*{Purpose}

Syntax

Examples

Return data from the usalo atlas data file
usalo types a list of requests for the usalo MAT-file to the screen.
\(s=u s a l o(r e q u e s t)\) returns the requested data. Valid requests for two-column vectors are 'conusvec', 'statebvec', and 'gtlakevec'. Valid requests for geographic data structures are 'conus', 'state', 'stateborder', and 'greatlakes'. This function can be used as an argument to other commands such as geoshow(usalo('conus')).
```

axesm('bonne','origin',-100)
usvec = usalo('conus')
usvec =
lat: [4339x1 double]
long: [4339x1 double]
type: 'patch'
tag: 'ContinentalUnitedStates'
otherproperty: []
altitude: []
stvec = usalo('stateborder')
stvec =
lat: [2345x1 double]
long: [2345x1 double]
type: 'line'
tag: 'StateBorder'
otherproperty: {'k:'}
altitude: []
glvec = usalo('gtlakevec');
geoshow(usvec.lat,usvec.long,'color','red')
geoshow(stvec.lat,stvec.long,'color','black')
geoshow(glvec(:,1),glvec(:,2),'color','blue')

```


\section*{See Also}
worldlo World atlas data
usahi High-resolution atlas data for the United States
usalo.mat MAT-file containing low-resolution atlas data for the United States

\section*{Purpose}

Create a map of the United States of America
Syntax
usamap creates a map of all or some of the United States of America. The state or states are selected interactively from a list. A map axes and map are created in the current axes. The axis limits are set tight around the map frame.
h = usamap('all') or usamap all creates a standard map of the U.S. The conterminous states, Alaska, and Hawaii are each displayed as insets in different axes using projection parameters suggested by the U. S. Geological Survey. The handles for the three map axes are returned in \(\mathrm{h} . \mathrm{h}(1)\) contains the conterminous states, h(2) Alaska, and h(3) Hawaii.
usamap allequal creates the map with Alaska and Hawaii at the same scale as the conterminous states.
usamap conus maps only the conterminous states.
usamap state maps the requested state. For example, usamap vermont. state can also be a padded string matrix or a cell array of strings containing multiple state names.
usamap stateonly maps only that state. Example: usamap vermontonly. If any of the state names in a state string matrix or cell array of strings end with ' only ', only the requested states are displayed.
usamap (state, type) controls the atlas data displayed. Type 'line' or ' patch ' creates a map with atlas data of those types and text annotation of the state names. Type 'lineonly' or 'patchonly' suppresses text annotation. Type 'none' suppresses all atlas data. If omitted, type 'patch' is assumed. usamap(latlim, lonlim) creates a map of the states covering the provided latitude and longitude limits. The limits are two-element vectors in units of degrees.
usamap(latlim, lonlim,type) is also a valid calling form.
usamap (lmap, refvec) and usamap(lmap, refvec, 'type') use the supplied regular data grid to define the geographic limits. The data grid is displayed using MESHM unless type is 'none', 'lineonly', 'patch', or 'patchonly'. Use type 'meshonly' to display only the data grid.
\(\mathrm{h}=\mathrm{usamap}(. .\).\() returns the handle or handles of the axes containing the map.\)

\section*{Examples}
usamap allequal

usamap('minnesotaonly','line')


\section*{Remarks}
usamap uses tightmap to set the axis limits tight around the map. If you change the projection, or just want more white space around the map frame, use axis auto.
axes \((h(n))\), where \(n=1\), 2, or 3, makes the desired axes current.
set (h,'Visible','on') makes the axes visible.
set(h, 'ButtonDownFcn', 'selectmoveresize') allows interactive repositioning of the axes. set ( h , 'ButtonDownFcn', ' uimaptbx') restores the Mapping Toolbox interfaces.
axesscale(h(1)) resizes the axes containing Alaska and Hawaii to the same scale as the conterminous states.

\author{
See Also \\ worldmap \\ usalo \\ selectmoveresize \\ axesscale \\ paperscale
}

Map a country or region using worldlo atlas data Return data from the usalo atlas data file Interactively select, move, resize, or copy objects Resize axes for equivalent scale Figure paper size for a given map scale

\section*{Purpose}

\section*{Syntax}

\section*{Background}

Read USGS 7.5 minute 1:24,000 ( 30 m ) digital elevation model files
[latgrat,longrat, mat] = usgs24kdem reads a USGS 1:24,000 digital elevation map (DEM) file in standard format. The file is selected interactively. The entire file is read and subsampled by a factor of 5 , and returned as a general data grid.
[latgrat,longrat,mat] = usgs24kdem(filename) specifies the name of the DEM file.
[latgrat,longrat,mat] = usgs24kdem(filename,scalefactor) subsamples the file by the scalefactor. If omitted, the default is 5 , which returns every 5 th point.
[latgrat,longrat,mat] = usgs24kdem(filename, scalefactor, latlim, lonlim) returns data for the requested geographic area. The area is specified as two-element vectors in units of degrees. The data extends somewhat outside the requested area. If omitted, the entire area covered by the DEM file is returned.
[latgrat,longrat,mat] = usgs24kdem(filename, scalefactor, latlim,lonlim, gsize) also controls the graticule size. gsize is a two-element vector specifying the number of rows and columns in the latitude and longitude matrices. If omitted, a graticule the same size as the map is returned.
[latgrat, longrat, mat, \(A, B]=\) usgs24kdem(...) also returns the contents of the A and B records of the DEM file. The A record is a header to the file containing descriptions of the data. The \(B\) record is the raw profile data from which the data grid is constructed.

The U.S. Geological Survey has created a series of digital elevation models based on their paper 1:24,000 scale maps. The grid spacing for these elevations models is 30 meters on a Universal Transverse Mercator grid. Each file covers a 7.5 minute quadrangle. The map and data series are available for much of the contiguous United States, Hawaii, and Puerto Rico. The data has been released in a number of formats. This function reads the data in the "standard" file format.

\section*{Examples}

Get the \(1: 24,000\) DEM for south San Francisco, available from the Bay Area Regional Database at
```

[http://bard.wr.usgs.gov/htmldir/dem_html/dem-sf.html](http://bard.wr.usgs.gov/htmldir/dem_html/dem-sf.html)

```

\section*{The URL for the San Francisco South DEM is}
<http://bard.wr.usgs.gov/bard/dem/dems24k/sanfrancisco/sanfranci scos.dem>

Be sure you save to a file rather than opening in a window.
Read the entire file, taking every second point.


Read the DEM at full resolution, limiting the area to the San Bruno mountains. These limits can be defined using inputm on a display of the above data. Also return the header record.
```

axesm mercator
surfm(latgrat,longrat,mat,,mat-max(mat(:)))
[latlim,lonlim] = inputm(2);
[latgrat,longrat,mat,A] = usgs24kdem('sanfranciscos.dem',1,···
latlim,lonlim);
whos
Name Size Bytes Class

| A | $1 \times 1$ | 4740 | struct array |
| :--- | :---: | ---: | :--- |
| latgrat | $162 \times 202$ | 261792 | double array |
| latlim | $1 \times 2$ | 16 | double array |
| longrat | $162 \times 202$ | 261792 | double array |
| lonlim | $1 \times 2$ | 16 | double array |
| mat | $162 \times 202$ | 261792 | double array |

A
A =

```
```

    Quadranglename: 'SAN FRANCISCO SOUTH, CA BIG
    BASIN DEM'
    TextualInfo: 'WMC CTOG'
            Filler:
        ProcessCode:
        Filler2:
        SectionalIndicator:
        MCoriginCode:
        DEMlevelCode: 2
        ElevationPatternCode: 'regular'
        PlanimetricReferenceSystemCode: 'UTM'
        Zone: 10
        ProjectionParameters: [15x1 double]
            HorizontalUnits: 'meters'
            ElevationUnits: 'feet'
    NsidesToBoundingBox: 4
BoundingBox: [ 8x1 double]
MinMaxElevations: [ 2x1 double]
RotationAngle: 0
AccuracyCode: 'accuracy information in record C'
XYZresolutions: [ 3x1 double]
NrowsCcols: [ 2x1 double]
MaxPcontourInt:
SourceMaxCintUnits:
SmallestPrimary:
SourceMinCintUnits:
DataSourceDate:
DataInspRevDate:
InspRevFlag:
DataValidationFlag:
SuspectVoidFlag:
VerticalDatum:
HorizontalDatum:
DataEdition:
PercentVoid:

```

\section*{Remarks}

This function reads USGS DEM files stored in the UTM projection. Use usgsdem for data stored in geographic grids.

The number of points in a file varies with the geographic location. Unlike the USGS DEM products, which use an equal-angle grid, the UTM projection grid DEMs cannot simply be concatenated to cover larger areas. There can be data gaps between DEMs.

You can obtain the data files by contacting the U.S. Geological Survey. Other agencies have made some of the data available online. Sources for data for the San Francisco Bay area are
<http://bard.wr.usgs.gov/>
and
<ftp://bard.wr.usgs.gov/bard/dem/dems24k/>
Extensive documentation on the data format and standards is available from
<http://mapping.usgs.gov/www/ti/DEM/standards_dem.html>
and
<ftp://mapping.usgs.gov/pub/ti/DEM/demguide/>
The DEM files are ASCII files, and can be transferred as text. Line-ending conversion is not necessarily required.
\begin{tabular}{lll} 
See Also & \begin{tabular}{l} 
usgsdem \\
dted
\end{tabular} & USGS 1-Degree (3-arc-sec resolution) digital elevation data \\
& U. S. Department of Defense Digital Terrain Elevation Data \\
(DTED) data
\end{tabular}

\section*{Purpose}

Read USGS 1-Degree (3-arc-sec resolution) DEM data

\section*{Syntax}

\section*{Background}

\section*{Remarks}
[datagrid,refvec] = usgsdem(filename,scalefactor) reads the specified file and returns the data in a regular data grid. The data can be read at full resolution (scalefactor \(=1\) ), or can be downsampled by the scalefactor. A scalefactor of 3 returns every third point, giving \(1 / 3\) of the full resolution.
[datagrid,refvec] = usgsdem(filename,scalefactor,latlim,lonlim) reads data within the latitude and longitude limits. These limits are two-element vectors with the minimum and maximum values specified in units of degrees.

The U.S. Geological Survey has made available a set of digital elevation maps of 1-degree quadrangles covering the contiguous United States, Hawaii, and limited portions of Alaska. The data is on a regular grid with a spacing of 30 arc-seconds (or about 100-meter resolution). 1-degree DEMs are also referred to as 3 -arc-second or 1:250,000 scale DEM data.

The data is derived from the U.S. Defense Mapping Agency's DTED-1 digital elevation model, which itself was derived from cartographic and photographic sources. The cartographic sources were maps from the 7.5 -minute through 1 -degree series (1:24,000 scale through 1:250,000 scale).

The grid for the digital elevation maps is based on the 1984 World Geodetic System (WGS84). Older DEMs were based on WGS72. Elevations are in meters relative to National Geodetic Vertical Datum of 1929 (NGVD 29) in the continental U.S. and local mean sea level in Hawaii.

The absolute horizontal accuracy of the DEMs is 130 meters, while the absolute vertical accuracy is \(\pm 30\) meters. The relative horizontal and vertical accuracy is not specified, but is probably much better than the absolute accuracy.

These DEMs have a grid spacing of 3 arc-seconds in both the latitude and longitude directions. The exception is DEM data in Alaska, where latitudes between 50 and 70 degrees North have grid spacings of 6 arc-seconds, and latitudes greater than 70 degrees North have grid spacings of 9 arc-seconds.
Statistical data in the files is not returned.
The DEMs are available over the Internet from

\section*{usgsdem}
ftp://edcftp.cr.usgs.gov/pub/data/DEM/250/
The files are available sorted by state or can be selected from an index map at http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/2MIL/2milmap.html

Some documentation for the data sets is available at http://edcwww.cr.usgs.gov/glis/hyper/guide/1_dgr_dem

\section*{Examples}

See Also

References
usgs24kdem Read elevation data from 1:24,000 USGS DEM files
gtopo30 Read elevation data from GTOPO30
etopo5 Read data from the ETOPO5 data set
tbase Read data from the TerrainBase data set
usgsdems Read USGS digital elevation map filenames

See reference [7] in the Bibliography located at the end of this chapter.

\section*{Purpose}

USGS 1-Degree (3-arc-sec resolution) DEM filenames
Syntax
[fname, qname] = usgsdems (latlim, lonlim) returns cell arrays of the DEM
filenames and quadrangle names covering the geographic region. The region is
specified by scalar latitude and longitude points or two-element vectors of
latitude and longitude limits in units of degrees.

See Also
References
usgsdem Read USGS digital elevation maps

See reference [7] in the Bibliography located at the end of this chapter.

\section*{Purpose Define Universal Transverse Mercator projection zone}

Syntax zone = utmzone selects a Universal Transverse Mercator (UTM) zone with a graphical user interface. The zone designation is returned as a string.
zone \(=\) utmzone(lat,long) returns the UTM zone containing the geographic coordinates. If lat and long are vectors, the zone containing the geographic mean of the data set is returned. The geographic coordinates must be in units of degrees.
zone = utmzone(mat), where mat is of the form [lat long].
[latlim, lonlim] = utmzone(zone), where zone is a valid UTM zone designation, returns the geographic limits of the zone. Valid UTM zones designations are numbers, or numbers followed by a single letter. For example, ' 31 ' or ' 31 N '. The returned limits are in units of degrees.
lim = utmzone(zone) returns the limits in a single vector output.
[zone,msg] = utmzone(...) and [latlim,lonlim,msg] = utmzone(...) return a message if there is an error. msg is empty when there are no errors.

\section*{Background}

\section*{Examples}

Limitations

The UTM zone system is based on a regular division of the globe, with the exception of a few zones in northern Europe. utmzone does not account for these deviations.
The Universal Transverse Mercator (UTM) system of projections tiles the world into quadrangles called zones. This function can be used to identify which zone is used for a geographic area and, conversely, what geographic limits apply to a UTM zone.
```

[latlim,lonlim] = utmzone('12F')
latlim =
-56 -48
lonlim =
-114 -108
utmzone(latlim,lonlim)
ans =
12F

```
these deviations.

\section*{See Also}
utmgeoid
Universal Transverse Mercator suggested ellipsoids
```

Purpose Recommend ellipsoids for Universal Transverse Mercator projection zone
Syntax ellipsoid = utmgeoid, without any arguments, opens the utmzoneui interface
for selecting a UTM zone. This zone is then used to return the recommended
ellipsoid definitions for that particular zone.
ellipsoid = utmgeoid(zone) uses the input zone to return the recommended
ellipsoid definitions.
[ellipsoid,ellipsoidstr] = utmgeoid(...) returns the ellipsoid string
used by the almanac function.

Background $\quad$| The Universal Transverse Mercator (UTM) system of projections tiles the |
| :--- |
| world into quadrangles called zones. Each zone has different projection |
| parameters and commonly used ellipsoidal models of the Earth. This function |
| returns a list of ellipsoid models commonly used in a zone. |

```

\section*{Examples}
```

zone = utmzone(0,100) % degrees

```
zone = utmzone(0,100) % degrees
zone =
zone =
47N
47N
[ellipsoid,names] = utmgeoid(zone)
[ellipsoid,names] = utmgeoid(zone)
ellipsoid =
ellipsoid =
    6377.3 0.081473
    6377.3 0.081473
    6377.4 0.081697
    6377.4 0.081697
names =
names =
everest
everest
bessel
bessel
See Also utmzone Universal Transverse Mercator projection zones
```

10-604

Purpose
Syntax

## Examples

Regular data grid from vector data
[map,refvec] = vec2mtx(lat,lon, scale) creates a regular data grid from vector data. The returned map has values of one corresponding to the vector data, and zeros otherwise. lat and lon are vectors of equal length containing geographic locations in units of degrees. The scale factor represents the number of grid entries per single unit of latitude and longitude (e.g., 10 entries per degree, 100 entries per degree). The scale input must be scalar.
[map,refvec] = vec2mtx(lat,lon,scale,latlim,lonlim) uses the two-element vector latitude and longitude limits to define the extent of the map. If omitted, the limits are computed automatically.
[map,refvec] = vec2mtx(lat,lon,map1,refvec1) uses the provided map and refvec to define the extent of the map. If omitted, the limits are computed automatically.
[...] = vec2mtx(...,'filled') also fills the area outside the border. The interior then has values of 0 , the border 1 , and the exterior 2 . lat and lon should contain data that closes on itself.

```
[lat,long] = extractm(worldlo('POpatch'),'Russia');
[map,refvec] = vec2mtx(lat,long,2,'filled');
[latlim,lonlim] = limitm(map,refvec);
worldmap(latlim,lonlim,'none'); framem off
meshm(map,refvec)
colormap(flag(3))
```



## vec $2 m t x$

\(\left.$$
\begin{array}{ll}\text { Limitations } & \begin{array}{l}\text { The vec2mtx function does not fill properly if the vector data extends beyond a } \\
\text { pole. }\end{array} \\
\text { See Also } & \text { country2mtx }\end{array}
$$ \begin{array}{l}ltln2val <br>
Construct a data grid for a country in the worldlo <br>

databe\end{array}\right]\)| Return map code value associated with positions |
| :--- |

## Purpose

Syntax

Background

Examples

Transform vector azimuths to a projection space angle
th = vfwdtran(lat,lon,az) transforms the azimuth angle at specified latitude and longitude points on the sphere into the projection space. The map projection currently displayed is used to define the projection space. The input angles must be in the same units as specified by the current map projection. The inputs can be scalars or matrices of the equal size. The angle in the projection space is defined as positive counterclockwise from the $x$-axis.
th = vfwdtran(mstruct, lat,lon, az) uses the map projection defined by the input mstruct to compute the map projection.
[th,len] = vfwdtran(...) also returns the vector length in the projected coordinate system. A value of 1 indicates no scale distortion.

The direction of north is easy to define on the three-dimensional sphere, but more difficult on a two-dimensional map. For cylindrical projections in the normal aspect, north is always in the positive $y$-direction. For conic projections, north can be to the left or right of the $y$-axis. This function transforms any azimuth angle on the sphere to the corresponding angle in the projected paper coordinates.

Sample calculations:

```
axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
quiverm([0 0 0],[-45 0 45],[0 0 0],[10 10 10],0)
quiverm([0 0 0],[-45 0 45],[10 10 10],[0 0 0],0)
```


## vfwdtran



```
vfwdtran([0 0 0],[-45 0 45],[0 0 0])
ans =
    59.614 90 120.39
vfwdtran([0 0 0],[-45 0 45],[90 90 90])
ans =
    -30.385
    0.0001931
30.386
```


## Limitations

## Remarks

This transformation is limited to the region specified by the frame limits in the current map definition.

The geographic azimuth angle is measured clockwise from north. The projection space angle is measured counterclockwise from the $x$-axis.

This function uses a finite difference technique. The geographic coordinates are perturbed slightly in different directions and projected. A small amount of error is introduced by numerical computation of derivatives and the variation of map distortion parameters.

See Also<br>vinvtran<br>mfwdtran<br>minvtran<br>defaultm

Transform azimuths from a projection space angle
Process the map forward transformations
Process the map inverse transformations Initialize the default map data structure

Purpose
Compute areas visible from a point on a digital elevation map
Syntax
[vismap,visrefvec] = viewshed(map,refvec,lat1,lon1) computes areas
visible from a point on a digital elevation map. The elevations are provided as a regular data grid containing elevations in units of meters. The observer location is provided as scalar latitude and longitude in units of degrees. The resulting vismap contains ones at the surface locations visible from the observer location, and zeros where the line of sight is obscured by terrain.
viewshed(map, refvec, lat1, lon1, oalt) places the observer at the specified altitude in meters above the surface. This is equivalent to putting the observer on a tower. If omitted, the observer is assumed to be on the surface.
viewshed(map, refvec, lat1, lon1, oalt, talt) checks for visibility of target points a specified distance above the terrain. This is equivalent to putting the target points on towers that do not obstruct the view. if omitted, the target points are assumed to be on the surface.
viewshed(map, refvec, lat1,lon1, oalt, talt, oaltopt) controls whether the observer is at a relative or absolute altitude. If the observer altitude option is 'AGL', the observer altitude oalt is in meters above ground level. If oaltopt is 'MSL', oalt is interpreted as altitude above zero, or mean sea level. If omitted, 'AGL' is assumed.
viewshed(map, refvec, lat1, lon1, oalt, talt, oaltopt, taltopt) controls whether the target points are at a relative or absolute altitude. If the target altitude option is 'AGL', the target altitude talt is in meters above ground level. If taltopt is 'MSL', talt is interpreted as altitude above zero, or mean sea level. If omitted, 'AGL' is assumed.
viewshed(map, refvec, lat1,lon1, oalt, talt, oaltopt, taltopt, actualradi us) does the visibility calculation on a sphere with the specified radius. If omitted, the radius of the earth in meters is assumed. The altitudes, the elevations, and the radius should be in the same units. This calling form is most useful for computations on bodies other than the Earth.
viewshed(map,refvec, lat1,lon1, oalt, talt, oaltopt,taltopt, actualradi us, effectiveradius) assumes a larger radius for propagation of the line of sight. This can account for the curvature of the signal path due to refraction in the atmosphere. For example, radio propagation in the atmosphere is commonly treated as straight line propagation on a sphere with $4 / 3$ rds the
radius of the Earth. In that case the last two arguments would be R and $4 / 3 * R \_e$, where R is the radius of the earth. Use Inf for flat Earth viewshed calculations. The altitudes, the elevations, and the radii should be in the same units.

Compute visibility for a point on the peaks map. Add the detailed information for the line of sight calculation between two points from los2.

```
map = 500*peaks(100);
refvec = [ 1000 0 0];
[lat1,lon1,lat2,lon2]=deal(-0.027,0.05,-0.093,0.042);
[vismap,vismapleg] = viewshed(map,refvec,lat1,lon1,100);
[vis,visprofile,dist,z,lattrk,lontrk] =
los2(map,refvec,lat1,lon1,lat2,lon2,100);
axesm('globe','geoid',almanac('earth','sphere','meters'))
meshm(vismap,vismapleg,size(map),map); axis tight
camposm(-10,-10,1e6); camupm(0,0)
colormap(flipud(summer(2))); brighten(0.75);
shading interp; camlight
h = lcolorbar({'obscured','visible'});
set(h,'Position',[.875 .45 . 02 .1])
plot3m(lattrk([1;end]),lontrk([1; end]),z([1; end])+[100;
0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile),z(~visprofile),'r.
','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile),z(visprofile),'g.','
markersize',10)
```


## viewshed



Compute the surface areas visible by radar from an aircraft 3000 meters above the Yellow Sea. Assume that radio wave propagation in the atmosphere can be modeled as straight lines on a $4 / 3$ rds radius Earth. Display the visible areas as blue and the obscured areas as red. Drape the visibility colors on an elevation map, and use lighting to bring out the surface topography. The aircraft's radar can see out a certain radius on the surface of the ocean, but some ocean areas are shadowed by the island of Jeju-Do. Also some mountain valleys closer than the ocean horizon are obscured, while some mountain tops further away are visible.

```
load korea
map(map<0) = -1;
figure
worldmap(map,refvec,'ldem3d')
lat = 34.0931; lon = 125.6578; altobs = 3000; alttarg = 0;
plotm(lat,lon,'wo')
Re = almanac('earth','radius','m');
[vmap,vmapl] =
viewshed(map,refvec,lat,lon,altobs,alttarg,'MSL','AGL',Re,4/3*Re
);
clmo surface
meshm(vmap,vmapl,size(map),map)
caxis auto; colormap([1 0 0; 0 0 1])
```

```
lighting phong; material metal
hidem(gca)
```



Over what area can the radar plane flying at an altitude of 3000 meters have line-of-sight to other aircraft flying at 5000 meters? Now the area is much larger. Some edges of the area are reduced by shadowing from Jeju-Do and the mountains on the Korean peninsula.

```
[vmap,vmapl] =
viewshed(map,refvec,lat,lon,3000,5000,'MSL','MSL',Re,4/3*Re);
clmo surface
meshm(vmap,vmapl,size(map),map)
material metal
lighting phong
```


## viewshed



See Also
los2
Line of sight visibility between two points in terrain

## Purpose

Syntax

## Background

## Examples

Transform azimuths from a projection space angle
az $=$ vinvtran $(x, y, t h)$ transforms an angle in the projection space at the point specified by $x$ and $y$ into an azimuth angle in Greenwich coordinates. The map projection currently displayed is used to define the projection space. The input angles must be in the same units as specified by the current map projection. The inputs can be scalars or matrices of equal size. The angle in the projection space angle th is defined as positive counterclockwise from the $x$-axis.
$a z=$ vinvtran(mstruct, $x, y, t h)$ uses the map projection defined by the input struct to compute the map projection.
[az,len] = vfwdtran(...) also returns the vector length in the Greenwich coordinate system. A value of 1 indicates no scale distortion for that angle.

While vectors along the $y$-axis always point to north in a cylindrical projection in the normal aspect, they can point east or west of north on conics, azimuthals, and other projections. This function computes the geographic azimuth for angles in the projected space.

Sample calculations:

```
axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
[x,y] = mfwdtran([0 0 0],[-45 0 45]);
quiver(x,y,[ .2 .2 .2],[0 0 0],0)
quiver(x,y,[0 0 0],[ .2 .2 .2],0)
```



## Limitations

## Remarks

This transformation is limited to the region specified by the frame limits in the current map definition.

The geographic azimuth angle is measured clockwise from north. The projection space angle is measured counterclockwise from the $x$-axis.

This function uses a finite difference technique. The geographic coordinates are perturbed slightly in different directions and projected. A small amount of error is introduced by numerical computation of derivatives and the variation of map distortion parameters.

See Also<br>vfwdtran<br>mfwdtran<br>minvtran<br>defaultm

Transform vector azimuths to a projection space angle Process the map forward transformations Process the map inverse transformations
Initialize the default map data structure

## Purpose Read selected data from the Vector Map Level 0

Syntax struct = vmapOdata(library, latlim, lonlim, theme,topolevel) reads the data for the specified theme and topology level directly from the VMAP0 CD-ROM. There are four CDs, one for each of the libraries: 'NOAMER ' (North America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR ' (South America and Africa). The desired theme is specified by a two-letter code string. A list of valid codes is displayed when an invalid code, such as '?', is entered. topolevel defines the type of data returned. It is a string containing 'patch', 'line', 'point', or 'text'. The region of interest can be given as a point latitude and longitude or as a region with two-element vectors of latitude and longitude limits. The units of latitude and longitude are degrees. The data covering the requested region is returned, but will include data extending to the edges of the tiles. The result is returned as a Mapping Toolbox geographic data structure.
struct = vmapOdata(devicename,library,...) specifies the logical device name of the CD-ROM for computers that do not automatically name the mounted disk.
[struct1, struct2,...] = vmap0data(...,\{topolevel1,topolevel2,...\}) reads several topology levels. The levels must be specified as a cell array with the entries 'patch', 'line', 'point', or 'text'. Entering \{'all'\} for the topology level argument is equivalent to \{'patch', 'line', 'point', 'text'\}. Upon output, the data structures are returned in the output arguments by topology level in the same order as they were requested.

## Background

The Vector Map (VMAP) Level 0 database represents the third edition of the Digital Chart of the World. The second edition was a limited release item published in 1995. The product is dual named to show its lineage to the original DCW, published in 1992, while positioning the revised product within a broader emerging family of VMAP products. VMAP Level 0 is a comprehensive $1: 1,000,000$ scale vector base map of the world. It consists of cartographic, attribute, and textual data stored on compact disc read-only memory (CD-ROM). The primary source for the database is the National Imagery and Mapping Agency's (NIMA) Operational Navigation Chart (ONC) series. This is the largest scale unclassified map series in existence that provides consistent, continuous global coverage of essential base map features. The database contains more than $1,900 \mathrm{MB}$ of vector data and is organized into 10 thematic

## Remarks

## Examples

layers. The data includes major road and rail networks, major hydrologic drainage systems, major utility networks (cross-country pipelines and communication lines), all major airports, elevation contours (1000 foot (ft), with 500 ft and 250 ft supplemental contours), coastlines, international boundaries, and populated places. The database can be accessed directly from the four optical CD-ROMs that store the database or can be transferred to magnetic media. (From the NIMA Metadata referenced below.)

Latitudes and longitudes use WGS84 as a horizontal datum. Elevations and depths are in meters above mean sea level.

Some VMAP0 themes do not contain all topology levels. In those cases, empty matrices are returned.

Patches are broken at the tile boundaries. Setting the EdgeColor to ' none ' and plotting the lines gives the map a normal appearance.

The major differences between VMAP0 and the DCW are the elimination of the gazette layer, addition of bathymetric data, and updated political boundaries.

The VMAP0 is available from the following sources:
USGS Open-File Section
Box 25286
Denver, CO 80225
USA
Tel: (303) 236-7476
Information on the VMAP0 data can be found at
[http://mapping.usgs.gov/esic/cdrom/cdlist.html](http://mapping.usgs.gov/esic/cdrom/cdlist.html)
The devicename is platform dependent. On an MS-DOS based operating system it would be something like ' $d$ : ', depending on the logical device code assigned to the CD-ROM drive. On a UNIX operating system, the CD-ROM might be mounted as '\cdrom', '\CDROM', '\cdrom1', or something similar. Check your computer's documentation for the right devicename.

```
s = vmapOdata(devicename,'NOAMER',41,-69,'?','patch');
??? Error using ==> vmapOdata
Theme not present in library NOAMER
```

```
Valid theme identifiers are:
libref : Library Reference
tileref: Tile Reference
bnd : Boundaries
dq : Data Quality
elev : Elevation
hydro : Hydrography
ind : Industry
phys : Physiography
pop : Population
trans : Transportation
util : Utilities
veg : Vegetation
BNDpatch = vmapOdata(devicename,'NOAMER',...
    [41 44],[-72 -69],'bnd','patch')
BNDpatch =
1x169 struct array with fields:
    type
    otherproperty
    altitude
    lat
    long
    tag
```

Here are other examples:

```
[TRtext,TRline] = vmapOdata(devicename,'SASAUS',...
    [-48 -34],[164 180],'trans',{'text','line'});
[BNDpatch,BNDline,BNDpoint,BNDtext] = vmapOdata(devicename,...
    'EURNASIA', -48 , 164,'bnd',{'all'});
```

See Also

| vmapOread | Read a VMAP0 file |
| :--- | :--- |
| vmapOrhead | Read a VMAP0 file header |
| displaym | Project data contained in a map structure |
| geoshow | Project data contained in a map structure |


| extractm | Extract vector data from a map structure |
| :--- | :--- |
| mlayers | GUI for manipulating map layers |

Purpose
Syntax

Read a Vector Map Level 0 file
vmap0read reads a VMAP0 file. The user selects the file interactively. vmapOread(filepath, filename) reads the specified file. The combination [filepath filename] must form a valid complete filename.
vmapOread(filepath,filename, recordIDs) reads selected records or fields from the file. If recordIDs is a scalar or a vector of integers, the function returns the selected records. If recordIDs is a cell array of integers, all records of the associated fields are returned.
vmapOread(filepath,filename,recordIDs,field,varlen) uses previously read field and variable-length record information to skip parsing the file header (see below).
struc $=$ vmapOread(...) returns the file contents in a structure.
[struc,field] = vmapOread(...) returns the file contents and a structure describing the format of the file.
[struc,field,varlen] = vmapOread(...) also returns a vector describing which fields have variable-length records.
[struc,field, varlen, description] = vmapOread(...) also returns a string describing the contents of the file.
[struc,field,varlen,description, narrativefield] = vmapOread(...) also returns the name of the narrative file for the current file.

Background The Vector Map Level 0 (VMAP0) uses binary files in a variety of formats. This function determines the format of the file and returns the contents in a structure. The field names of this structure are the same as the field names in the VMAP0 file.

This function reads all VMAP0 files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI'), and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

Examples

The following examples use the UNIX directory system and file separators for the pathname:

```
s = vmapOread('VMAP/VMAPLVO/NOAMER/','GRT')
S =
                    id: 1
            data_type: 'GEO'
            units: 'M'
        ellipsoid_name: 'WGS 84'
    ellipsoid_detail: 'A=6378137 B=6356752 Meters'
        vert_datum_name: 'MEAN SEA LEVEL'
        vert_datum_code: '015'
        sound_datum_name: 'N/A'
        sound_datum_code: 'N/A'
            geo_datum_name: 'WGS 84'
            geo_datum_code: 'WGE'
            projection_name: 'Dec. Deg. (unproj.)'
s = vmapOread('VMAP/VMAPLVO/NOAMER/TRANS/','INT.VDT')
S =
34x1 struct array with fields:
    id
    table
    attribute
    value
    description
s(1)
ans =
            id: 1
            table: 'aerofacp.pft'
        attribute: 'use'
            value: 8
    description: 'Military'
s = vmapOread('VMAP/VMAPLVO/NOAMER/TRANS/','AEROFACP.PFT',1)
S =
            id: 1
        f_code: 'GB005'
            iko: 'BGTL'
```

```
            nam: 'THULE AIR BASE'
                    na3: 'GL52085'
            use: 8
            zv3: 77
        tile_id: 10
        end_id: 1
    s = vmapOread('VMAP/VMAPLVO/NOAMER/TRANS/' ,'AEROFACP.PFT',{1,2})
S =
1x4424 struct array with fields:
    id
    f_code
```

| See Also | vmap0data | Read selected data from the VMAP0 |
| :--- | :--- | :--- |
| vmaporhead | Read a VMAP0 file header |  |

## Purpose

Syntax

## Background

## Remarks

## Examples

Read Vector Map Level 0 file headers
vmapOrhead allows the user to select the header file interactively.
vmapOrhead(filepath,filename) reads from the specified file. The combination [filepath filename] must form a valid complete filename.
vmapOrhead(filepath,filename,fid) reads from the already open file associated with fid.
vmapOrhead (...), with no output arguments, displays the formatted header information on the screen.
str $=$ vmapOrhead (...) returns a string containing the VMAP0 header.
The Vector Map Level 0 (VMAP0) uses header strings in most files to document the contents and format of that file. This function reads the header string and displays a formatted version in the Command Window, or returns it as a string.

This function reads all VMAP0 files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI') and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

The following example uses UNIX file separators and pathname:

```
s = vmapOrhead('VMAP/VMAPLVO/NOAMER/', 'GRT')
S =
L;Geographic Reference Table;-;id=I,1,P,Row
Identifier,-,-,-,:data_type=T,3,N,Data
Type,-,-,-,:units=T,3,N,Units of Measure Code for
Library,-,-,-,:ellipsoid_name=T,15,N,Ellipsoid,-,-, -, :ellipsoid_
detail=T,50,N,Ellipsoid
Details,-,-,-,:vert_datum_name=T,15,N,Datum Vertical
Reference,-,-,-,:vert_datum_code=T,3,N,Vertical Datum
Code, -, -, - , : sound_datum_name=T,15,N,Sounding
Datum,-,-,-,: sound_datum_code=T,3,N,Sounding Datum
Code,-,-,-,:geo_datum_name=T,15,N,Datum Geodetic
```

```
Name, -, -, -, :geo_datum_code=T, 3,N,Datum Geodetic
Code,-,-,-,:projection_name=T,20,N,Projection Name,-,-,-,:;
vmapOrhead('VMAP/VMAPLVO/NOAMER/TRANS/' , 'AEROFACP.PFT')
L
Airport Point Feature Table
aerofacp.doc
id=I,1,P,Row Identifier,-,-,-,
f_code=T,5,N,FACC Feature Code,char.vdt,-,-,
iko=T,4,N,ICAO Designator,char.vdt,-,-,
nam=T, *, N,Name, char.vdt, - , -,
na3=T,*,N,Name,char.vdt,-,-,
use=S,1,N,Usage,int.vdt,-,-,
zv3=S,1,N,Airfield/Aerodrome Elevation (meters),int.vdt,-,-,
tile_id=S,1,N,Tile Reference ID,-,tile1_id.pti,-,
end_id=I,1,N,Entity Node Primitive ID,-,end1_id.pti,-,
```


## See Also

vmap0data Read selected data from the VMAP0
vmapOread Read a VMAP0 file

## Purpose

Activation vmapOui is a graphical user interface to read Vector Map Level 0 CD-ROMs. The VMAP0 is the most detailed global database of vector map data available to the public. vmapOui attempts to automatically detect which drive contains a VMAP0 CD-ROM. If vmapOui can't find the CD, use the following calling form.
vmapOui(devicename) or vmapOui devicename uses the specified logical device name for the CD-ROM drive containing the VMAP0 CD-ROM. Under the Macintosh operating system, it would be 'VMAP'. Under the Windows OS, it could be ' f :' or ' g : ' or some other letter. Under UNIX, it could be ' $\backslash c d r o m \$ '. Check your computer's documentation for the correct device name.

VMAP0 CD-ROMs are available from
USGS Information Services (Map and Book Sales)
Box 25286
Denver Federal Center
Denver, CO 80225
Telephone: (303) 202-4700
Fax: (303) 202-4693
The price as of early 1998 was $\$ 82.50$ per four-disk set.
Information on the VMAP0 data can be found at
[http://164.214.2.54/mel/metadata/vmapo.meta.html](http://164.214.2.54/mel/metadata/vmapo.meta.html)

## Controls



The vmapOui screen lets you read data from the Vector Map Level 0 (VMAP0). The VMAP0 is the most detailed map database available to the public.

You use the list to select the type of data and the map to select the region of interest. When you click the Get button, data is extracted and displayed on the map. Use the Save button to save the data in a MAT-file or to the base workspace for later display. The Close button closes the window.

## The Map

The Map controls the geographic extent of the data to be extracted. vmapOui extracts data for areas currently visible on the map. Use the mouse to zoom in or out to the area of interest. Type help zoom for more on zooming.

The VMAP0 divides the world into tiles of about 5 by 5 degrees. When extracting, data is returned for all visible tiles, including those parts of the tile that are outside the current view. The map shows the VMAP0 tiles in light yellow with light gray edges. The data density is high, so extracting data for a large number of tiles can take much time and memory. A count of the number of visible tiles is above the map.

## The List

The List controls the type of data to be extracted. The tree structure of the list reflects the structure of the VMAP0 database. Upon starting vmap0ui, the list shows the major categories of VMAP data, called themes. Themes are subdivided into features, which consist of data of common graphic types (patch, line, point, or text) or cultural types (airport, roads, railroads). Double-click a theme to see the associated features. Features can have properties and values, for example, a railroad tracks property, with values single or multiple. Double-click a feature to see the associated properties and values. Double-clicking an open theme or feature closes it. When a theme is selected, vmapOui gets all the associated features. When a feature is selected, vmap0ui gets all of that feature's data. When properties and values are selected, vmapOui gets the data for any of the properties and values that match (that is, the union operation).

## The Get Button

The Get button reads the currently selected VMAP0 data and displays it on the map. Use the Cancel button on the progress bar to interrupt the process. For a quicker response, press the standard interrupt key combination for your platform.

## The Clear Button

The Clear button removes any previously read data from the map.

## The Save Button

The Save button saves the currently displayed VMAP0 data to a MAT-file or the base workspace. If you choose to save to a file, you are prompted for a filename and location. If you choose to save to the base workspace, you are notified of the variable names that will be overwritten. The results are stored as geographic data structures with variable names based on theme and feature names. Use load and displaym to redisplay the data from a file on a map axes. You can also use the mlayers GUI to read and display the data from a file. To display the data in the base workspace, use displaym. To display all the geographic data structures, use rootlayr; displaym(ans). To display all of the geographic data structures using the mlayers GUI, type rootlayr; mlayers(ans).

## The Close Button

The Close button closes the vmapOui panel.
See Also
vmap0datam, mlayers, displaym, extractm

Purpose
Syntax

Examples

Wrap longitudes to values west of a meridian
ang = westof(angin,meridian) transforms input angles into equivalent angles west of the specified meridian.
ang = westof(angin,meridian, units) uses the units defined by the input string units. If omitted, default units of 'degrees ' are assumed.

```
westof(20,0)
ans =
-340
westof(20,-360)
ans =
-700
```


## See Also

eastof
zero22pi
npi2pi
smoothlong
angledim

Wrap longitudes to values east of a meridian
Truncate angles into the 0 deg to 360 deg range Truncate angles into the -180 deg to 180 deg range Remove discontinuities in longitude data Convert angles from one unit system to another

## worldfileread

## Purpose Read a worldfile and return a referencing matrix


#### Abstract

Syntax $\quad$ R = worldfileread(worldfilename) reads the worldfile data from worldfilename and constructs the referencing matrix $R$.


$R$ is a 3-by-2 affine transformation matrix that is used in pix2map and map2pix to transform pixel row and column coordinates to/from map/model coordinates according to [x y] = [row col 1] * R.

## Example

```
R = worldfileread('concord_ortho_w.tfw');
```

See Also getworldfilename, makerefmat, pix2map, map2pix, worldfilewrite

Purpose

Construct a worldfile from a referencing matrix

```
R = worldfileread('concord_ortho_w.tfw');
worldfilewrite(R,'concord_ortho_w_test.tfw');
```


## Purpose

Return data from the $1: 1,000,000$ worldhi atlas data file

## Example Make a base map of the Korean peninsula using lines and display the two

 Koreas from the worldhi database.[^3]worldhi types a list of the atlas data variables in the worldhi MAT-file to the screen.
$\mathrm{s}=$ worldhi(request) returns the requested variable. Valid requests are 'POpatch', 'POtext', 'PPpoint', 'PPtext', and any country name in the worldhi database. You can request multiple countries by using a string matrix or cell array of strings. The result is returned as a geographic data structure. This function can be used as an argument to other commands such as displaym(worldhi('POtext')) or displaym(worldhi('france')). The worldhi database contains country outlines and text originally compiled at a scale of $1: 1,000,000$.
s = worldhi(countryname, minarea) removes small islands from the output. Only polygon faces with an area greater than minarea (in units of square kilometers) are returned.
s = worldhi(countryname, searchmethod) controls the method used to match the country name input. Search method 'strmatch' searches for matches at the beginning of the name, like the MATLAB strmatch function. Search method 'findstr' searches within the name, like the MATLAB findstr function. Search method 'exact ' requires an exact match. If omitted, search method 'strmatch' is assumed. The search is not case sensitive.
s = worldhi(countryname, searchmethod, minarea) controls both the minimum area and the string matching method.
s = worldhi(latlim,lonlim) returns all countries within a quadrangle. latlim and lonlim are two-element vectors in units of degrees positive or negative from the prime meridian. Islands or noncontiguous parts of the countries whose bounding boxes fall completely outside the requested region are omitted from the output.
s = worldhi(latlim,lonlim,minarea) also removes small islands from the output. Only polygon faces with an area greater than minarea (in units of square kilometers) are returned.

```
s = worldhi('korea');
h = displaym(s);
polcmap
zdatam('allpatch',-1)
```



Delete the Korean patches, and display data from the worldhi database that falls within some geographic limits. Mainland China is displayed because its bounding box encompasses the requested quadrangle.

```
delete(h)
latlim = [31.1 33.9]';
lonlim = [125.9 130.3]';
lat = [latlim; flipud(latlim); latlim(1)];
lon = [lonlim(1); lonlim; flipud(lonlim)];
plotm(lat,lon,'r')
```

```
s = worldhi(latlim,lonlim,100);
h = displaym(s);
```



See Also
worldlo usahi usalo
worldhi.mat displaym

Return data from the worldlo atlas data file
Return data from the usahi atlas data file
Return data from the usalo atlas data file worldhi atlas data MAT-file Project data in a geographic data structure

## Purpose

Syntax

## Examples

Display the world line data without loading it into the workspace.

```
axesm eckert4
framem
geoshow(worldlo('POline'))
```



## See Also

usahi
usalo
geoshow
worldlo.mat
oceanlo.mat

Return data from the usahi atlas data file
Return data from the usalo atlas data file
Project data contained in a map structure
MAT-file containing low-resolution atlas data for the world
MAT-file containing an ocean mask for the worldlo atlas data

## Purpose

Map a country or region using the worldlo atlas data
Syntax
worldmap maps a region or country using the worldlo atlas data. The region is selected interactively from a list. The map is created in the current axes.
worldmap region or worldmap(region) makes a map of the specified region. Recognized region strings are 'Africa', 'Antarctica', 'Asia', 'Europe', 'North America', 'North Pole','Pacific', 'South America', 'South Pole', 'World ', and the names of the countries in the worldlo atlas data. region can also be a padded string matrix or a cell array of strings containing multiple country names.
worldmap regiononly adds only the specified country to the map. For example, worldmap italyonly. If any of the country names in region string matrix or cell array of strings end with 'only ', only the requested countries are displayed.
worldmap (regiononly, type) controls the atlas data displayed. Type 'line' or 'patch' creates a map with atlas data of those types. If the size of the map permits, point and text annotation of countries and cities is included. Type 'lineonly' or 'patchonly' suppresses the point and text annotation. Type ' none ' suppresses all atlas data. If omitted, type 'line' is assumed.
worldmap(latlim,lonlim) and worldmap(latlim,lonlim,type) use the supplied geographic limits to define the map. The geographic limits are two-element vectors of the form [start end], in angular units of degrees.
worldmap(map,refvec) and worldmap(map,refvec,type) use the supplied regular data grid to define the geographic limits. The data grid is displayed using meshm unless type is 'none', 'lineonly', 'patch', or 'patchonly'. Use type 'meshonly' to display only the data grid. Types 'mesh' and 'meshonly' display the data grid as a colored surface in the $\mathrm{z}=0$ plane with the default colormap. Types 'dem' and 'demonly ' apply the digital elevation colormap. Types 'dem3d' and 'dem3donly ' display a three-dimensional surface. Types 'lmesh3d', 'lmesh3donly', 'ldem3d', and 'ldem3donly ' apply lighting effects to the surfaces.
worldmap('hi',...) or worldmap('lo',...) enforces the use of high- or low-resolution data in the map. If omitted, worldmap selects the appropriate data set based on graphic scale. For small-scale maps (1:30,000,000 and under), the worldlo database is used. Above 1:30,000,000 (at larger scales), the
worldhi database is used. When using the high-resolution data, worldmap does not include islands smaller than an appropriate threshold size. Use worldmap('allhi' , ...) to ensure that all islands are included, regardless of size.
$\mathrm{h}=$ worldmap (...) returns the handle of the map axes.

## Example

```
worldmap 'south america'
```


figure; worldmap france

figure;
worldmap('lo','franceonly', 'patch')
geoshow(worldlo('POline'))
hidem(gca)

figure; worldmap([2 16],[-9 7],'patch');

figure; load korea; worldmap(map,refvec,'dem'); brighten(.5)


## Remarks

See Also
worldmap uses tightmap to set the axis limits tight around the map. If you change the projection, or just want more white space around the map frame, use tightmap again or axis auto.

Use hidem (gca) to remove the axes box and hidem or clmo to remove other unwanted graphic objects. set (gca, 'Color', 'w') makes the figure background white.

| usamap | Create a map of the United States of America |
| :--- | :--- |
| gridm | Toggle and control the display of the map grid |
| mlabel | Meridian labels projected onto a map axes |
| plabel | Parallel labels projected onto a map axes |
| framem | Toggle and control the display of the map frame |
| worldlo | Return data from the worldlo atlas data file |
| worldhi | Return data from the worldhi atlas data file |
| geoshow | Display vector data in geographic data structure |

Purpose
Syntax

Description

Adjust the $z$-plane of specified graphics objects
zdatam(hndl) sets the $z$-level of all objects specified by the vector of handles to 0 .
zdatam(object) sets the $z$-level of all objects identified by the string object to 0 . The string can be any string recognized by the handlem function.
zdatam (hndl, zdata) sets the $z$-level of all specified objects to the value of a scalar zdata, or sets each object at its own level if zdata is a vector the same size as hndl. When hndl is a scalar, zdata can also be a matrix with the same size as the object designated by hndl.
zdatam (object, zdata) sets the $z$-level of the designated object to a scalar zdata, or to match a zdata matrix the same size as the object.

This function adjusts the $z$-plane position of selected graphics objects. It accomplishes this by setting the objects' ZData properties to the appropriate values.

| See Also | handlem | Handles of graphics objects |
| :--- | :--- | :--- |
| setm | Set map properties |  |

## Purpose <br> Convert normalized angles to lie between 0 and $2 \pi$


#### Abstract

Syntax anglout = zero22pi(anglin) wraps the input angle anglin to lie on the range 0 to $2 \pi$ (e.g., $450^{\circ}$ is renamed $90^{\circ}$ ). anglout = zero22pi(anglin, units) specifies the angle units with any valid angle units string units. The default is 'degrees'. anglout = zero22pi(anglin, units,approach) specifies the approach logic for this wrapping. The approach string 'exact' calculates a mathematically precise wrap. 'inward ' and 'outward' calculate more quickly by shifting the values by an epsilon either toward or away from the origin and performing a trigonometric wrap. The trigonometric wrap is inexact, to allow for the fact that different computer math processors might give different (although trigonometrically identical) results ( $180^{\circ}$ or $-180^{\circ}$, for example). The offset prevents this.


## Examples

```
zero22pi(567.5)
ans =
```

207.5
zero22pi(-567.5)
ans =
152.5

See Also npi2pi Normalize angles to lie between $-\pi$ and $\pi$

Purpose

## Syntax

Examples

Create a matrix map of zeros
map = zerom(latlim,lonlim,scale) returns a full regular data grid consisting entirely of zeros. The two-element vectors latlim and lonlim define the latitude and longitude limits of the geographic region. They should be of the form [south north] and [west east], respectively. The number of rows and columns per angle unit is set by the scalar scale.
[map,refvec] = zerom(latlim,lonlim,scale) returns the three-element referencing vector for the returned map.

```
[map,refvec] = zerom([46,51],[-79,-75],1)
map =
```

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |


| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |

$0 \quad 0 \quad 0 \quad 0$
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$
refvec =
$1 \quad 51 \quad-79$

See Also
limitm
nanm
onem
sizem
spzerom

Rows and columns needed for map
Matrix map limits
Create a data grid of NaNs
Create a data grid of ones

Create a sparse data grid of zeros

## Projections Reference

## Map Projections - Alphabetical List

The Projections Reference pages are organized in alphabetical order by the name of the map projection. The entries in this chapter contain the following:

Classification Classifies the projection by the geometric or mathematical means of construction.

Syntax Provides the name of the projection M-file used to specify a particular map projection.

Graticule Describes the appearance of meridians, parallels, poles, and map symmetry.
Features Describes the properties of the projection and identifies map distortion.

Parallels Describes the standard parallels of projection.
Remarks Describes the history of the projection and relationships to other projections.

Limitations Describes any restrictions on using the projection.

## Aitoff Projection

Albers Equal-Area Conic Projection
Apianus II Projection
Balthasart Cylindrical Projection
Behrmann Cylindrical Projection
Bolshoi Sovietskii Atlas Mira Projection
Bonne Projection
Braun Perspective Cylindrical Projection
Breusing Harmonic Mean Projection
Briesemeister Projection

Cassini Cylindrical Projection<br>Central Cylindrical Projection<br>Collignon Projection<br>Craster Parabolic Projection<br>Eckert I Projection<br>Eckert 11 Projection<br>Eckert 111 Projection<br>Eckert IV Projection<br>Eckert V Projection<br>Eckert VI Projection<br>Equal-Area Cylindrical Projection<br>Equidistant Azimuthal Projection<br>Equidistant Conic Projection<br>Equidistant Cylindrical Projection<br>Fournier Projection<br>Gall Isographic Projection<br>Gall Orthographic Projection<br>Gall Stereographic Projection<br>Globe<br>Gnomonic Projection<br>Goode Homolosine Projection<br>Hammer Projection

Hatano Asymmetrical Equal-Area Projection<br>Kavraisky V Projection<br>Kavraisky VI Projection<br>Lambert Azimuthal Equal-Area Projection<br>Lambert Conformal Conic Projection<br>Lambert Equal-Area Cylindrical Projection<br>Loximuthal Projection<br>McBryde-Thomas Flat-Polar Parabolic Projection<br>McBryde-Thomas Flat-Polar Quartic Projection<br>McBryde-Thomas Flat-Polar Sinusoidal Projection<br>Mercator Projection<br>Miller Cylindrical Projection<br>Mollweide Projection<br>Murdoch I Conic Projection<br>Murdoch III Minimum Error Conic Projection<br>Orthographic Projection<br>Plate Carrée Projection<br>Polyconic Projection<br>Putnins P5 Projection<br>Quartic Authalic Projection<br>Robinson Projection<br>Sinusoidal Projection

Stereographic Projection<br>Tissot Modified Sinusoidal Projection<br>Transverse Mercator Projection<br>Trystan Edwards Cylindrical Projection<br>Universal Polar Stereographic Projection<br>Universal Transverse Mercator Projection<br>Van der Grinten I Projection<br>Vertical Perspective Azimuthal Projection<br>Wagner IV Projection<br>Werner Projection<br>Wetch Cylindrical Projection<br>Wiechel Projection<br>Winkel I Projection

## Aitoff Projection

## Classification

Modified Azimuthal

## Syntax aitoff

Graticule Meridians: Central meridian is a straight line half the length of the Equator. Other meridians are complex curves, equally spaced along the Equator, and concave towards the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally spaced along the central meridian, and concave towards the nearest pole.

Poles: Points.
Symmetry: About the Equator and central meridian.

| Features | This projection is neither conformal nor equal area. The only point free of <br> distortion is the center point. Distortion of shape and area are moderate <br> throughout. This projection has less angular distortion on the outer meridians <br> near the poles than pseudoazimuthal projections |
| :--- | :--- |
| Parallels | There is no standard parallel for this projection. |
| Remarks | This projection was created by David Aitoff in 1889. It is a modification of the <br> Equidistant Azimuthal projection. The Aitoff projection inspired the similar <br> Hammer projection, which is equal area. |

## Aitoff Projection



## Albers Equal-Area Conic Projection

## Classification

## Syntax eqaconic

Graticule

## Features

## Parallels

Remarks
Limitations

This projection was presented by Heinrich Christian Albers in 1805.

Longitude data greater than $135^{\circ}$ east or west of the central meridian is
trimmed.

Conic

Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of convergence. Spacing of parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.
This is an equal-area projection. Scale is true along the one or two selected standard parallels. Scale is constant along any parallel; the scale factor of a meridian at any given point is the reciprocal of that along the parallel to preserve equal-area. This projection is free of distortion along the standard parallels. Distortion is constant along any other parallel. This projection is neither conformal nor equidistant.

The cone of projection has interesting limiting forms. If a pole is selected as a single standard parallel, the cone is a plane and a Lambert Azimuthal Equal-Area projection results. If two parallels are chosen, not symmetric about the Equator, then a Lambert Equal-Area Conic projection results. If a pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the projected pole is an arc. If the Equator is chosen as a single parallel, the cone becomes a cylinder and a Lambert Equal-Area Cylindrical projection is the result. Finally, if two parallels equidistant from the Equator are chosen as the standard parallels, a Behrmann or other equal-area cylindrical projection is the result. Suggested parallels for maps of the conterminous U.S. are [29.5 45.5]. The default parallels are [15 75].

## Albers Equal-Area Conic Projection



## Apianus II Projection

Classification Pseudocylindrical
Syntax ..... apianus
Graticule Meridians: Equally spaced elliptical curves converging at the poles.
Parallels: Equally spaced straight lines.Poles: Points.Symmetry: About the Equator and central meridian.
Parallels
RemarksLimitations
Features

Scale is constant along any parallel or pair of parallels equidistant from theThere is no standard parallel for this projection. Equator, as well as along the central meridian. The Equator is free of angular distortion. This projection is not equal-area, equidistant, or conformal.

There is no standard parallel for this projection.
This projection was first described in 1524 by Peter Apian (or Bienewitz).
This projection is available for the spherical geoid only.


## Balthasart Cylindrical Projection

## Classification

## Syntax balthsrt

Graticule Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
$\begin{array}{ll}\text { Features } & \begin{array}{l}\text { This is an orthographic projection onto a cylinder secant at the } 50^{\circ} \text { parallels. It } \\ \text { is equal-area, but distortion of shape increases with distance from the standard } \\ \text { parallels. Scale is true along the standard parallels and constant between two } \\ \text { parallels equidistant from the Equator. This projection is not equidistant. }\end{array} \\ \text { Parallels } & \begin{array}{l}\text { For cylindrical projections, only one standard parallel is specified. The other } \\ \text { standard parallel is the same latitude with the opposite sign. For this } \\ \text { projection, the standard parallel is by definition fixed at } 50^{\circ} .\end{array} \\ \text { Remarks } & \begin{array}{l}\text { The Balthasart Cylindrical projection was presented in } 1935 \text { and is a special } \\ \text { form of the Equal-Area Cylindrical projection secant at } 50^{\circ} \mathrm{N} \text { and } \mathrm{S} .\end{array}\end{array}$
$\begin{array}{ll}\text { Features } & \begin{array}{l}\text { This is an orthographic projection onto a cylinder secant at the } 50^{\circ} \text { parallels. It } \\ \text { is equal-area, but distortion of shape increases with distance from the standard } \\ \text { parallels. Scale is true along the standard parallels and constant between two } \\ \text { parallels equidistant from the Equator. This projection is not equidistant. }\end{array} \\ \text { Parallels } & \begin{array}{l}\text { For cylindrical projections, only one standard parallel is specified. The other } \\ \text { standard parallel is the same latitude with the opposite sign. For this } \\ \text { projection, the standard parallel is by definition fixed at } 50^{\circ} .\end{array} \\ \text { Remarks } & \begin{array}{l}\text { The Balthasart Cylindrical projection was presented in } 1935 \text { and is a special } \\ \text { form of the Equal-Area Cylindrical projection secant at } 50^{\circ} \mathrm{N} \text { and } \mathrm{S} .\end{array}\end{array}$
$\begin{array}{ll}\text { Features } & \begin{array}{l}\text { This is an orthographic projection onto a cylinder secant at the } 50^{\circ} \text { parallels. It } \\ \text { is equal-area, but distortion of shape increases with distance from the standard } \\ \text { parallels. Scale is true along the standard parallels and constant between two } \\ \text { parallels equidistant from the Equator. This projection is not equidistant. }\end{array} \\ \text { Parallels } & \begin{array}{l}\text { For cylindrical projections, only one standard parallel is specified. The other } \\ \text { standard parallel is the same latitude with the opposite sign. For this } \\ \text { projection, the standard parallel is by definition fixed at } 50^{\circ} .\end{array} \\ \text { Remarks } & \begin{array}{l}\text { The Balthasart Cylindrical projection was presented in } 1935 \text { and is a special } \\ \text { form of the Equal-Area Cylindrical projection secant at } 50^{\circ} \mathrm{N} \text { and } \mathrm{S} .\end{array}\end{array}$
$\begin{array}{ll}\text { Features } & \begin{array}{l}\text { This is an orthographic projection onto a cylinder secant at the } 50^{\circ} \text { parallels. It } \\ \text { is equal-area, but distortion of shape increases with distance from the standard } \\ \text { parallels. Scale is true along the standard parallels and constant between two } \\ \text { parallels equidistant from the Equator. This projection is not equidistant. }\end{array} \\ \text { Parallels } & \begin{array}{l}\text { For cylindrical projections, only one standard parallel is specified. The other } \\ \text { standard parallel is the same latitude with the opposite sign. For this } \\ \text { projection, the standard parallel is by definition fixed at } 50^{\circ} .\end{array} \\ \text { Remarks } & \begin{array}{l}\text { The Balthasart Cylindrical projection was presented in } 1935 \text { and is a special } \\ \text { form of the Equal-Area Cylindrical projection secant at } 50^{\circ} \mathrm{N} \text { and } \mathrm{S} .\end{array}\end{array}$
$\begin{array}{ll}\text { Features } & \begin{array}{l}\text { This is an orthographic projection onto a cylinder secant at the } 50^{\circ} \text { parallels. It } \\ \text { is equal-area, but distortion of shape increases with distance from the standard } \\ \text { parallels. Scale is true along the standard parallels and constant between two } \\ \text { parallels equidistant from the Equator. This projection is not equidistant. }\end{array} \\ \text { Parallels } & \begin{array}{l}\text { For cylindrical projections, only one standard parallel is specified. The other } \\ \text { standard parallel is the same latitude with the opposite sign. For this } \\ \text { projection, the standard parallel is by definition fixed at } 50^{\circ} .\end{array} \\ \text { Remarks } & \begin{array}{l}\text { The Balthasart Cylindrical projection was presented in } 1935 \text { and is a special } \\ \text { form of the Equal-Area Cylindrical projection secant at } 50^{\circ} \mathrm{N} \text { and } \mathrm{S} .\end{array}\end{array}$
Cylindrical


## Behrmann Cylindrical Projection

## Classification

## Syntax <br> behrmann

Graticule

Features

Parallels

Remarks
Cylindrical

Meridians: Equally spaced straight parallel lines 0.42 as long as the Equator.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is an orthographic projection onto a cylinder secant at the $30^{\circ}$ parallels. It is equal-area, but distortion of shape increases with distance from the standard parallels. Scale is true along the standard parallels and constant between two parallels equidistant from the Equator. This projection is not equidistant.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $30^{\circ}$.

This projection is named for Walter Behrmann, who presented it in 1910 and is a special form of the Equal-Area Cylindrical projection secant at $30^{\circ} \mathrm{N}$ and S .

## Behrmann Cylindrical Projection



## Bolshoi Sovietskii Atlas Mira Projection

## Classification

## Syntax bsam

Graticule Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases toward the poles.
Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder secant at the $30^{\circ}$ parallels. It is not equal-area, equidistant, or conformal. Scale is true along the standard parallels and constant between two parallels equidistant from the Equator. There is no distortion along the standard parallels, but it increases moderately away from these parallels, becoming severe at the poles.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $30^{\circ}$.

This projection was first described in 1937, when it was used for maps in the Bolshoi Sovietskii Atlas Mira (Great Soviet World Atlas). It is commonly abbreviated as the BSAM projection. It is a special form of the Braun Perspective Cylindrical projection secant at $30^{\circ} \mathrm{N}$ and S .

This projection is available for the spherical geoid only.

## Bolshoi Sovietskii Atlas Mira Projection



## Bonne Projection

## Classification <br> Pseudoconic

## Syntax bonne

Graticule Central Meridian: A straight line.
Meridians: Complex curves connecting points equally spaced along each parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central meridian.

Poles: Points.
Symmetry: About the central meridian.
Features This is an equal-area projection. The curvature of the standard parallel is identical to that on a cone tangent at that latitude. The central meridian and the central parallel are free of distortion. This projection is not conformal.

Parallels

## Remarks

This projection dates in a rudimentary form back to Claudius Ptolemy (about A.D. 100). It was further developed by Bernardus Sylvanus in 1511. It derives its name from its considerable use by Rigobert Bonne, especially in 1752.


## Braun Perspective Cylindrical Projection

## Classification

## Syntax braun

Graticule Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is an perspective projection from a point on the Equator opposite a given meridian onto a cylinder secant at standard parallels. It is not equal-area, equidistant, or conformal. Scale is true along the standard parallels and constant between two parallels equidistant from the Equator. There is no distortion along the standard parallels, but it increases moderately away from these parallels, becoming severe at the poles.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, any latitude may be chosen; the default is arbitrarily set to $0^{\circ}$.

This projection was first described by Braun in 1867. It is less well known than the specific forms of it called the Gall Stereographic and the Bolshoi Sovietskii Atlas Mira projections.

This projection is available for the spherical geoid only.

## Braun Perspective Cylindrical Projection



## Breusing Harmonic Mean Projection

## Classification

Azimuthal

## Syntax breusing

Graticule The graticule described is for the polar aspect.
Meridians: Equally spaced straight lines intersecting at the central pole.
Parallels: Unequally spaced circles centered on the central pole. The opposite hemisphere cannot be shown. Spacing increases (slightly) away from the central pole.

Poles: The central pole is a point, while the opposite pole cannot be shown.
Symmetry: About any meridian.

Features | This is a harmonic mean between a Stereographic and Lambert Equal-Area |
| :--- |
| Azimuthal projection. It is not equal-area, equidistant, or conformal. There is |
| no point at which scale is accurate in all directions. The primary feature of this |
| projection is that it is minimum error - distortion is moderate throughout. |

## Parallels

There are no standard parallels for azimuthal projections.

## Remarks

Limitations
F. A. Arthur Breusing developed a geometric mean version of this projection in 1892. A. E. Young modified this to the harmonic mean version presented here in 1920. This projection is virtually indistinguishable from the Airy Minimum Error Azimuthal projection, presented by George Airy in 1861.

This projection is available for the spherical geoid only.

## Breusing Harmonic Mean Projection



## Briesemeister Projection

Classification Modified Azimuthal
Syntax bries
Graticule Meridians: Central meridian is straight. Other meridians are complex curves.
Parallels: Complex curves.Poles: Points.Symmetry: About the central meridian.Features This equal-area projection groups the continents about the center of theprojection. The only point free of distortion is the center point. Distortion ofshape and area are moderate throughout.
Parallels There is no standard parallel for this projection.
RemarksThis projection was presented by William Briesemeister in 1953. It is anoblique Hammer projection with an axis ratio of 1.75 to 1 , instead of 2 to 1 .

## Briesemeister Projection



## Cassini Cylindrical Projection

## Classification

## Syntax <br> cassini

Graticule

## Features

## Parallels

## Remarks

Cylindrical at $0^{\circ}$.

Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous line).

Other Meridians: Straight lines if $90^{\circ}$ from central meridian, complex curves concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.
Poles: Points along the central meridian.
Symmetry: About any straight meridian or the Equator.
This is a projection onto a cylinder tangent at the central meridian. Distortion of both shape and area are functions of distance from the central meridian. Scale is true along the central meridian and along any straight line perpendicular to the central meridian (i.e., it is equidistant).

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel of the base projection is by definition fixed

This projection is the transverse aspect of the Plate Carrée projection, developed by César François Cassini de Thury (1714-84). It is still used for the topographic mapping of a few countries.


## Central Cylindrical Projection

## Classification

## Syntax <br> ccylin

Graticule Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases toward the poles, more rapidly than that of the Mercator projection.

Poles: Cannot be shown.
Symmetry: About any meridian or the Equator.
This is a perspective projection from the center of the Earth onto a cylinder tangent at the Equator. It is not equal-area, equidistant, or conformal. Scale is true along the Equator and constant between two parallels equidistant from the Equator. Scale becomes infinite at the poles. There is no distortion along the Equator, but it increases rapidly away from the Equator.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $0^{\circ}$.

The origin of this projection is unknown; it has little use beyond the educational aspects of its method of projection and as a comparison to the Mercator projection, which is not perspective. The transverse aspect of the Central Cylindrical is called the Wetch projection.

This projection is available for the spherical geoid only. Data at latitudes greater than $75^{\circ}$ is trimmed to prevent large values from dominating the display.


## Collignon Projection

Classification Pseudocylindrical
Syntax ..... collig
GraticuleFeaturesParallelsThis projection has one standard parallel, which is by definition fixed at $15^{\circ} 51$.
Remarks
This projection was presented by Édouard Collignon in 1865.

## Collignon Projection



## Craster Parabolic Projection

## Classification

## Syntax

Graticule

Features

Parallels

## Remarks

Pseudocylindrical
craster

Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced parabolas intersecting at the poles and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing changes very gradually and is greatest near the Equator.

Poles: Points.
Symmetry: About the central meridian or the Equator.
This is an equal-area projection. Scale is true along the $36^{\circ} 46^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the outer meridians at high latitudes, but less so than the Sinusoidal projection. This projection is free of distortion only at the two points where the central meridian intersects the $36^{\circ} 46^{\prime}$ parallels. This projection is not conformal or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $36^{\circ} 46^{\prime}$.

This projection was developed by John Evelyn Edmund Craster in 1929; it was further developed by Charles H. Deetz and O.S. Adams in 1934. It was presented independently in 1934 by Putnins as his $\mathrm{P}_{4}$ projection.


## Classification

Pseudocylindrical
Syntax ..... eckert1
Features
Graticule

Central Meridian: Straight line half as long as the Equator.Parallels For this projection, only one standard parallel is specified. The other standardparallel is the same latitude with the opposite sign. The standard parallel is bydefinition fixed at $47^{\circ} 10^{\prime}$.
This projection was presented by Max Eckert in 1906. Remarks
Limitations

This projection is available for the spherical geoid only.

Other Meridians: Equally spaced straight converging lines broken at the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.
Symmetry: About the central meridian or the Equator.
Scale is true along the $47^{\circ} 10^{\prime}$ parallels and is constant along any parallel, between any pair of parallels equidistant from the Equator, and along any given meridian. It is not free of distortion at any point, and the break at the Equator introduces excessive distortion there; regardless of the appearance here, the Tissot indicatrices are of indeterminate shape along the Equator. This novelty projection is not equal-area or conformal.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $47^{\circ} 10^{\prime}$.

## Eckert I Projection



## Eckert II Projection

## Classification

## Syntax

Graticule

## Features

## Parallels

Remarks This projection was presented by Max Eckert in 1906.


## Eckert III Projection

Classification Pseudocylindrical
Syntax ..... eckert3
Graticule

Central Meridian: Straight line half as long as the Equator.
FeaturesParallels
RemarksLimitations

Other Meridians: Equally spaced semiellipses concave toward the central meridian. The outer meridians, $180^{\circ}$ east and west of the central meridian, are semicircles.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.
Symmetry: About the central meridian or the Equator.
Scale is true along the $35^{\circ} 58^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. No point is free of all scale distortion, but the Equator is free of angular distortion. This projection is not equal-area, conformal, or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $35^{\circ} 58^{\prime}$.

This projection was presented by Max Eckert in 1906.
This projection is available for the spherical geoid only.

## Eckert III Projection



## Classification

Pseudocylindrical

## Syntax eckert4

Graticule Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced semiellipses concave toward the central meridian. The outer meridians, $180^{\circ}$ east and west of the central meridian, are semicircles.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.
Symmetry: About the central meridian or the Equator.
Features This is an equal-area projection. Scale is true along the $40^{\circ} 30^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at the two points where the $40^{\circ} 30^{\prime}$ parallels intersect the central meridian. This projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $40^{\circ} 30^{\prime}$.

This projection was presented by Max Eckert in 1906.


## Classification

## Syntax <br> eckert5

Graticule

## Features

## Remarks

Limitations

Parallels This projection has one standard parallel, which is by definition fixed at $0^{\circ}$.
Pseudocylindrical

Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.
Symmetry: About the central meridian or the Equator.
This projection is an arithmetic average of the $x$ and $y$ coordinates of the Sinusoidal and Plate Carrée projections. Scale is true along latitudes $37^{\circ} 55^{\prime} \mathrm{N}$ and S , and is constant along any parallel and between any pair of parallels equidistant from the Equator. There is no point free of all distortion, but the Equator is free of angular distortion. This projection is not equal-area, conformal, or equidistant.

This projection was presented by Max Eckert in 1906.
This projection is available for the spherical geoid only.


## Classification

Pseudocylindrical

## Syntax eckert6

Graticule Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.
Symmetry: About the central meridian or the Equator.
This is an equal-area projection. Scale is true along the $49^{\circ} 16^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at the two points where the $49^{\circ} 16^{\prime}$ parallels intersect the central meridian. This projection is not conformal or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $49^{\circ} 16^{\prime}$.

This projection was presented by Max Eckert in 1906.


## Equal-Area Cylindrical Projection

## Classification

## Syntax eqacylin

Graticule Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is an orthographic projection onto a cylinder secant at the standard parallels. It is equal-area, but distortion of shape increases with distance from the standard parallels. Scale is true along the standard parallels and constant between two parallels equidistant from the Equator. This projection is not equidistant.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, any latitude may be chosen; the default is arbitrarily set to $0^{\circ}$ (the Lambert variation).

This projection was proposed by Johann Heinrich Lambert (1772), a prolific cartographer who proposed seven different important projections. The form of this projection tangent at the Equator is often called the Lambert Equal-Area Cylindrical projection. That and other special forms of this projection are included separately in this guide, including the Gall Orthographic, the Behrmann Cylindrical, the Balthasart Cylindrical, and the Trystan Edwards Cylindrical projections.

## Equal-Area Cylindrical Projection



## Equidistant Azimuthal Projection

Classification Azimuthal
Syntax eqdazim
GraticuleFeaturesParallelsRemarks
LimitationsThis is an equidistant projection. It is neither equal-area nor conformal. In thepolar aspect, scale is true along any meridian. The projection is distortion freeonly at the center point. Distortion is moderate for the inner hemisphere, butit becomes extreme in the outer hemisphere.There are no standard parallels for azimuthal projections.This projection may have been first used by the ancient Egyptians for starcharts. Several cartographers used it during the sixteenth century, includingGuillaume Postel, who used it in 1581. Other names for this projection includePostel and Zenithal Equidistant.This projection is available for the spherical geoid only.


## Equidistant Conic Projection

## Classification <br> Conic

## Syntax eqdconic

Graticule

Features

Parallels

Remarks

Limitations

Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The angles between the meridians are less than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of meridanal convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.
Scale is true along each meridian and the one or two selected standard parallels. Scale is constant along any parallel. This projection is free of distortion along the two standard parallels. Distortion is constant along any other parallel. This projection provides a compromise in distortion between conformal and equal-area conic projections, of which it is neither.

The cone of projection has interesting limiting forms. If a pole is selected as a single standard parallel, the cone is a plane, and an Equidistant Azimuthal projection results. If two parallels are chosen, not symmetric about the Equator, then an Equidistant Conic projection results. If a pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the projected pole is an arc. If the Equator is so chosen, the cone becomes a cylinder and a Plate Carrée projection results. If two parallels equidistant from the Equator are chosen as the standard parallels, an Equidistant Cylindrical projection results. The default parallels are [15 75].

In a rudimentary form, this projection dates back to Claudius Ptolemy, about A.D. 100. Improvements were developed by Johannes Ruysch in 1508, Gerardus Mercator in the late 16th century, and Nicolas de l'Isle in 1745. It is also known as the Simple Conic or Conic projection.

Longitude data greater than $135^{\circ}$ east or west of the central meridian is trimmed.


## Equidistant Cylindrical Projection

## Classification

Syntax
Graticule

Features

Parallels

Remarks

Cylindrical
eqdcylin
Meridians: Equally spaced straight parallel lines more than half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is a projection onto a cylinder secant at the standard parallels. Distortion of both shape and area increase with distance from the standard parallels. Scale is true along all meridians (i.e., it is equidistant) and the standard parallels and is constant along any parallel and along the parallel of opposite sign.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, any latitude can be chosen; the default is arbitrarily set to $30^{\circ}$.

This projection was first used by Marinus of Tyre about A.D. 100. Special forms of this projection are the Plate Carrée, with a standard parallel at $0^{\circ}$, and the Gall Isographic, with standard parallels at $45^{\circ} \mathrm{N}$ and S . Other names for this projection include Equirectangular, Rectangular, Projection of Marinus, La Carte Parallélogrammatique, and Die Rechteckige Plattkarte.

## Equidistant Cylindrical Projection


Classification Pseudocylindrical
Syntax fournier
Graticule Meridians: Equally spaced elliptical curves converging at the poles.
Parallels: Straight lines.Poles: Points.Symmetry: About the Equator and central meridian.Features This projection is equal-area. Scale is constant along any parallel or pair ofparallels equidistant from the Equator. This projection is neither equidistantnor conformal.
Parallels There is no standard parallel for this projection.
RemarksThis projection was first described in 1643 by Georges Fournier. This isactually his second projection, the Fournier II.


## Gall Isographic Projection

## Classification

Syntax
giso
Graticule Meridians: Equally spaced straight parallel lines more than half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
Features This is a projection onto a cylinder secant at the $45^{\circ}$ parallels. Distortion of both shape and area increase with distance from the standard parallels. Scale is true along all meridians (i.e., it is equidistant) and the two standard parallels, and is constant along any parallel and along the parallel of opposite sign.

Parallels

## Remarks

Cylindrical

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $45^{\circ}$.

This projection is a specific case of the Equidistant Cylindrical projection, with standard parallels at $45^{\circ} \mathrm{N}$ and S .


## Gall Orthographic Projection

## Classification

## Syntax <br> gortho

Graticule Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest near the poles.
Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
Features $\begin{aligned} & \text { This is an orthographic projection onto a cylinder secant at the } 45^{\circ} \text { parallels. It } \\ & \text { is equal-area, but distortion of shape increases with distance from the standard } \\ & \text { parallels. Scale is true along the standard parallels and constant between two }\end{aligned}$
Features $\begin{aligned} & \text { This is an orthographic projection onto a cylinder secant at the } 45^{\circ} \text { parallels. It } \\ & \text { is equal-area, but distortion of shape increases with distance from the standard } \\ & \text { parallels. Scale is true along the standard parallels and constant between two }\end{aligned}$
Features $\begin{aligned} & \text { This is an orthographic projection onto a cylinder secant at the } 45^{\circ} \text { parallels. It } \\ & \text { is equal-area, but distortion of shape increases with distance from the standard } \\ & \text { parallels. Scale is true along the standard parallels and constant between two }\end{aligned}$ parallels equidistant from the Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $45^{\circ}$.

## Remarks

Cylindrical
(
This projection is named for James Gall, who originated it in 1855 and is a special form of the Equal-Area Cylindrical projection secant at $45^{\circ} \mathrm{N}$ and S . This projection is also known as the Peters projection.

## Gall Orthographic Projection



## Gall Stereographic Projection

## Classification

Cylindrical

Syntax
Graticule

Features

Parallels

Remarks

Limitations
gstereo

Meridians: Equally spaced straight parallel lines 0.77 as long as the Equator.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder secant at the $45^{\circ}$ parallels. It is not equal-area, equidistant, or conformal. Scale is true along the standard parallels and constant between two parallels equidistant from the Equator. There is no distortion along the standard parallels, but it increases moderately away from these parallels, becoming severe at the poles.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $45^{\circ}$.

This projection was presented by James Gall in 1855. It is also known simply as the Gall projection. It is a special form of the Braun Perspective Cylindrical projection secant at $45^{\circ} \mathrm{N}$ and S .

This projection is available for the spherical geoid only.


## Classification

Spherical

## Syntax <br> globe

Graticule | This projection is constructed by calculating a three-dimensional frame and |
| :--- |
| displaying the map objects on the surface of this frame. |

Parallels
Remarks

The globe requires no standard parallels.
This is the only three-dimensional representation provided for display. Unless some other display purpose requires three dimensions, the Orthographic projection's display is equivalent.

Globe


## Gnomonic Projection

Classification Azimuthal
Syntax gnomonic
GraticuleFeatures
Parallels
Remarks
LimitationsThis is a perspective projection from the center of the globe on a plane tangentat the center point, which is a pole in the common polar aspect, but can be anypoint. Less than one hemisphere can be shown with this projection, regardlessof its center point. The significant property of this projection is that all greatcircles are straight lines. This is useful in navigation, as a great circle is theshortest path between two points on the globe. Only the center point enjoystrue scale and zero distortion. This projection is neither conformal norequal-area.
There are no standard parallels for azimuthal projections.
This projection may have been first developed by Thales around 580 B.C. Its name is derived from the gnomon, the face of a sundial, since the meridians radiate like hour markings. This projection is also known as a Gnomic or Central projection.
This projection is available for the spherical geoid only. Data greater than $65^{\circ}$ distant from the center point is trimmed.


## Goode Homolosine Projection

## Classification

## Syntax <br> goode

Graticule

Features

Parallels
Remarks

Limitations

Pseudocylindrical

Central Meridian: Straight line 0.44 as long as the Equator.
Other Meridians: Equally spaced sinusoidal curves between the $40^{\circ} 44^{\prime} 11.8^{\prime \prime}$ parallels and elliptical arcs elsewhere, all concave toward the central meridian. The result is a slight, visible bend in the meridians at $40^{\circ} 44^{\prime} 11.8^{\prime \prime} \mathrm{N}$ and S .

Parallels: Straight parallel lines, perpendicular to the central meridian. Equally spaced between the $40^{\circ} 44^{\prime} 11.8^{\prime \prime}$ parallels, with gradually decreasing spacing outside these parallels.

Poles: Points.
Symmetry: About the central meridian or the Equator.
This is an equal-area projection. Scale is true along all parallels and the central meridian between $40^{\circ} 44^{\prime} 11.8^{\prime \prime} \mathrm{N}$ and S , and is constant along any parallel and between any pair of parallels equidistant from the Equator for all latitudes. Its distortion is identical to that of the Sinusoidal projection between $40^{\circ} 44^{\prime} 11.8^{\prime \prime}$ N and S , and to that of the Mollweide projection elsewhere. This projection is not conformal or equidistant.

This projection has one standard parallel, which is by definition fixed at $0^{\circ}$.
This projection was developed by J. Paul Goode in 1916. It is sometimes called simply the Homolosine projection, and it is usually used in an interrupted form. It is a merging of the Sinusoidal and Mollweide projections.

This projection is available in an uninterrupted form only.


## Hammer Projection

## Classification

Modified Azimuthal

## Syntax hammer

## Graticule

## Features

## Parallels

There is no standard parallel for this projection.

Remarks | This projection was presented by H. H. Ernst von Hammer in 1892. It is a |
| :--- |
| modification of the Lambert Azimuthal Equal Area projection. Inspired by |
| Aitoff projection, it is also known as the Hammer-Aitoff. It in turn inspired the |
| Briesemeister, a modified oblique Hammer projection. John Bartholomew's |
| Nordic projection is an oblique Hammer centered on 45 degrees north and the |
| Greenwich meridian. The Hammer projection is used in whole-world maps and |
| astronomical maps in galactic coordinates. |



## Hatano Asymmetrical Equal-Area Projection

## Classification

Pseudocylindrical

## Syntax hatano

Graticule Central Meridian: Straight line 0.48 as long as the Equator.
Other Meridians: Equally spaced elliptical arcs concave toward the central meridian. The eccentricity of each ellipse changes at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is not symmetrical about the Equator.

Poles: The North Pole is a line two-thirds the length of the Equator; the South Pole is a line three-fourths the length of the Equator.

Symmetry: About the central meridian but not the Equator.
Features This is an equal-area projection. Scale is true along $40^{\circ} 42^{\prime} \mathrm{N}$ and $38^{\circ} 27$ 'S, and is constant along any parallel but generally not between pairs of parallels equidistant from the Equator. It is free of distortion only along the central meridian at $40^{\circ} 42^{\prime} \mathrm{N}$ and $38^{\circ} 27^{\prime} \mathrm{S}$. This projection is not conformal or equidistant.

Parallels Because of the asymmetrical nature of this projection, two standard parallels must be specified. The standard parallels are by definition fixed at $40^{\circ} 42^{\prime} \mathrm{N}$ and $38^{\circ} 27$ 'S.

Remarks This projection was presented by Masataka Hatano in 1972.

Classification Pseudocylindrical
Syntax kavrsky5
GraticuleFeaturesParallelsThe fixed standard parallels are at $35^{\circ}$.
Remarks This projection was described by V. V. Kavraisky in 1933.

Classification Pseudocylindrical
Syntax kavrsky6
Graticule Central Meridian: Straight line half the length of the Equator.Meridians: Sine curves ( $60^{\circ}$ segments).
Parallels: Unequally spaced straight lines.
Poles: Straight lines half the length of the Equator.Symmetry: About the Equator and the central meridian.
Features This is an equal-area projection. Scale is constant along any parallel or pair ofequidistant parallels. This projection is neither conformal nor equidistant.
Parallels There are no standard parallels for this projection.
RemarksThis projection was described by V. V. Kavraisky in 1936. It is also called theWagner I, for Karlheinz Wagner, who described it in 1932.


# Lambert Azimuthal Equal-Area Projection 

Classification Azimuthal
Syntax eqaazim
GraticuleFeaturesParallels There are no standard parallels for azimuthal projections.
RemarksLimitationsThis projection was presented by Johann Heinrich Lambert in 1772. It is alsoknown as the Zenithal Equal-Area and the Zenithal Equivalent projection, andthe Lorgna projection in its polar aspect.Data greater than $160^{\circ}$ distant from the center point is trimmed.

## Lambert Azimuthal Equal-Area Projection



## Lambert Conformal Conic Projection

| Classification | Conic |
| :--- | :--- |
| Syntax | lambert |
| Graticule | Meridians: Equally spaced straight lines converging at one of the poles. The <br> angles between the meridians are less than the true angles. <br> Parallels: Unequally spaced concentric circular arcs centered on the pole of <br> convergence. Spacing of parallels increases away from the central latitudes. |
| Features | Poles: The pole nearest a standard parallel is a point, the other cannot be <br> shown. |
| Symmetry: About any meridian. |  | | Scale is true along the one or two selected standard parallels. Scale is constant |
| :--- |
| along any parallel and is the same in every direction at any point. This |
| projection is free of distortion along the standard parallels. Distortion is |
| constant along any other parallel. This projection is conformal everywhere but |
| the poles; it is neither equal-area nor equidistant. |



## Lambert Equal-Area Cylindrical Projection

Classification Cylindrical
Syntax lambcyln
GraticuleFeaturesParallels
RemarksThis projection is named for Johann Heinrich Lambert and is a special form ofthe Equal-Area Cylindrical projection tangent at the Equator.

## Lambert Equal-Area Cylindrical Projection



## Classification

## Syntax loximuth

Graticule

Features

Parallels

## Remarks

Limitations meridian.

Poles: Points.

Pseudocylindrical

Central Meridian: Straight line at least half as long as the Equator. Actual length depends on the choice of central latitude. Length is 0.5 when the central latitude is the Equator, for example, and 0.65 for central latitudes of $40^{\circ}$.

Other Meridians: Complex curves intersecting at the poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central

Symmetry: About the central meridian. Symmetry about the Equator only when it is the central latitude.

This projection has the special property that from the central point (the intersection of the central latitude with the central meridian), rhumb lines (loxodromes) are shown as straight, true to scale, and correct in azimuth from the center. This differs from the Mercator projection, in that rhumb lines are here shown in true scale and that unlike the Mercator, this projection does not maintain true azimuth for all points along the rhumb lines. Scale is true along the central meridian and is constant along any parallel, but not, generally, between parallels. It is free of distortion only at the central point and can be severely distorted in places. However, this projection is designed for its specific special property, in which distortion is not a concern.

For this projection, only one standard parallel is specified: the central latitude described above. Specification of this central latitude defines the center of the Loximuthal projection. The default value is $0^{\circ}$.

This projection was presented by Karl Siemon in 1935 and independently by Waldo R. Tobler in 1966. The Bordone Oval projection of 1520 was very similar to the Equator-centered Loximuthal.

This projection is available for the spherical geoid only.

## Loximuthal Projection



# McBryde-Thomas Flat-Polar Parabolic Projection 

## Classification

Pseudocylindrical
Syntax ..... flatplrp
Graticule
FeaturesParallels For this projection, only one standard parallel is specified. The other standardparallel is the same latitude with the opposite sign. The standard parallel is bydefinition fixed at $45^{\circ} 30^{\prime}$.This projection was presented by F. Webster McBryde and Paul D. Thomas in1949.

## McBryde-Thomas Flat-Polar Parabolic Projection



## McBryde-Thomas Flat-Polar Quartic Projection

## Classification

Pseudocylindrical

## Syntax flatplrq

Graticule Central Meridian: Straight line 0.45 as long as the Equator.
Other Meridians: Equally spaced quartic (fourth-order equation) curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is greatest near the Equator.

Poles: Lines one-third as long as the Equator.
Symmetry: About the central meridian or the Equator.
Features This is an equal-area projection. Scale is true along the $33^{\circ} 45^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the outer meridians at high latitudes, but less so than on the pointed-polar projections. It is free of distortion only at the two points where the central meridian intersects the $33^{\circ} 45^{\prime}$ parallels. This projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $33^{\circ} 45^{\prime}$.

This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949, and is also known simply as the Flat-Polar Quartic projection.

## McBryde-Thomas Flat-Polar Quartic Projection



# McBryde-Thomas Flat-Polar Sinusoidal Projection 

## Classification

Syntax
Graticule

## Features

Parallels

## Remarks

Pseudocylindrical
flatplrs
Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced sinusoidal curves intersecting at the poles and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is widest near the Equator.

Poles: Lines one-third as long as the Equator.
Symmetry: About the central meridian or the Equator.
This projection is equal-area. Scale is true along the $55^{\circ} 51^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at the two points where the central meridian intersects the $55^{\circ} 51^{\prime}$ parallels. This projection is not conformal or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $55^{\circ} 51^{\prime}$.

This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949.

## McBryde-Thomas Flat-Polar Sinusoidal Projection



## Mercator Projection

Classification

Cylindrical

## Syntax mercator

Parallels
Remarks
Limitations
Graticule

Meridians: Equally spaced straight parallel lines.
Features

This is a projection with parallel spacing calculated to maintain conformality.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases toward the poles.

Poles: Cannot be shown.
Symmetry: About any meridian or the Equator. It is not equal-area, equidistant, or perspective. Scale is true along the standard parallels and constant between two parallels equidistant from the Equator. It is also constant in all directions near any given point. Scale becomes infinite at the poles. The appearance of the Mercator projection is unaffected by the selection of standard parallels; they serve only to define the latitude of true scale.

The Mercator, which may be the most famous of all projections, has the special feature that all rhumb lines, or loxodromes (lines that make equal angles with all meridians, i.e., lines of constant heading), are straight lines. This makes it an excellent projection for navigational purposes. However, the extreme area distortion makes it unsuitable for general maps of large areas.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, any latitude less than $86^{\circ}$ may be chosen; the default is arbitrarily set to $0^{\circ}$.

The Mercator projection is named for Gerardus Mercator, who presented it for navigation in 1569. It is now known to have been used for the Tunhuang star chart as early as 940 by Ch'ien Lo-Chih. It was first used in Europe by Erhard Etzlaub in 1511. It is also, but rarely, called the Wright projection, after Edward Wright, who developed the mathematics behind the projection in 1599.

Data at latitudes greater than $86^{\circ}$ is trimmed to prevent large $y$-values from dominating the display.


## Miller Cylindrical Projection

## Classification

## Syntax miller

Graticule Meridians: Equally spaced straight parallel lines 0.73 as long as the Equator.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases toward the poles, less rapidly than that of the Mercator projection.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is a projection with parallel spacing calculated to maintain a look similar to the Mercator projection while reducing the distortion near the poles and allowing the poles to be displayed. It is not equal-area, equidistant, conformal, or perspective. Scale is true along the Equator and constant between two parallels equidistant from the Equator. There is no distortion near the Equator, and it increases moderately away from the Equator, but it becomes severe at the poles.

The Miller Cylindrical projection is derived from the Mercator projection; parallels are spaced from the Equator by calculating the distance on the Mercator for a parallel at $80 \%$ of the true latitude and dividing the result by 0.8 . The result is that the two projections are almost identical near the Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $0^{\circ}$.

This projection was presented by Osborn Maitland Miller of the American Geographical Society in 1942. It is often used in place of the Mercator projection for atlas maps of the world, for which it is somewhat more appropriate.

This projection is available for the spherical geoid only.


## Classification

## Syntax mollweid

## Graticule

Features This is an equal-area projection. Scale is true along the $40^{\circ} 44^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at the two points where the $40^{\circ} 44^{\prime}$ parallels intersect the central meridian. This projection is not conformal or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $40^{\circ} 44^{\prime}$.

This projection was presented by Carl B. Mollweide in 1805. Its other names include the Homolographic, the Homalographic, the Babinet, and the Elliptical projections. It is occasionally used for thematic world maps, and it is combined with the Sinusoidal to produce the Goode Homolosine projection.

## Mollweide Projection



## Murdoch I Conic Projection

## Classification <br> Conic

| Syntax | murdoch1 |
| :--- | :--- |
| Graticule | Meridians: Equally spaced straight lines converging at one of the poles. <br> Parallels: Equally spaced concentric circular arcs. <br> Poles: Arcs, one of which might become a point in the limit. <br> Symmetry: About any meridian. |
| Features | This is an equidistant projection that is nearly minimum-error. Scale is true <br> along any meridian and is constant along any parallel. Scale is also true along <br> two standard parallels. These must be calculated, however (see below). The <br> total area of the mapped area is correct, but it is not equal-area everywhere. |
| Parallels | The parallels for this projection are not standard parallels, but rather limiting <br> parallels. The special feature of this map, correct total area, holds between <br> these parallels. The default parallels are [15 75]. |
| Remarks | Described by Patrick Murdoch in 1758. |
| Limitations | This projection is available for the spherical geoid only. Longitude data greater <br> than $135^{\circ}$ east or west of the central meridian is trimmed. |



# Murdoch III Minimum Error Conic Projection 

## Classification

Conic

## Syntax <br> murdoch3

Graticule

Features

Parallels

Remarks

Limitations

Meridians: Equally spaced straight lines converging at one of the poles.
Parallels: Equally spaced concentric circular arcs.
Poles: Arcs, one of which might become a point in the limit.
Symmetry: About any meridian.
This is an equidistant projection that is minimum-error. Scale is true along any meridian and is constant along any parallel. Scale is also true along two standard parallels. These must be calculated, however (see below). The total area of the mapped area is correct, but it is not equal-area everywhere.

The parallels for this projection are not standard parallels, but rather limiting parallels. The special feature of this map, correct total area, holds between these parallels. The default parallels are [15 75].

Described by Patrick Murdoch in 1758, with errors corrected by Everett in 1904.

This projection is available for the spherical geoid only. Longitude data greater than $135^{\circ}$ east or west of the central meridian is trimmed.

## Murdoch III Minimum Error Conic Projection



## Orthographic Projection

## Classification

## Syntax ortho

## Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing decreases away from this pole. The opposite hemisphere cannot be shown.

Pole: The central pole is a point; the other pole is not shown.
Symmetry: About any meridian.
This is a perspective projection on a plane tangent at the center point from an infinite distance (that is, orthogonally). The center point is a pole in the common polar aspect, but can be any point. This projection has two significant properties. It looks like a globe, providing views of the Earth resembling those seen from outer space. Additionally, all great and small circles are either straight lines or elliptical arcs on this projection. Scale is true only at the center point and is constant in the circumferential direction along any circle having the center point as its center. Distortion increases rapidly away from the center point, the only place that is distortion-free. This projection is neither conformal nor equal-area.

There are no standard parallels for azimuthal projections.
This projection appears to have been developed by the Egyptians and Greeks by the second century B.C.

This projection is available for the spherical geoid only. Data greater than $89^{\circ}$ distant from the center point is trimmed.

## Orthographic Projection



## Plate Carrée Projection

## Classification

## Syntax <br> pcarree

Graticule

## Features

## Parallels

Remarks
Cylindrical

Meridians: Equally spaced straight parallel lines half as long as the Equator.
Parallels: Equally spaced straight parallel lines, perpendicular to and having the same spacing as the meridians.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.
This is a projection onto a cylinder tangent at the Equator. Distortion of both shape and area increases with distance from the Equator. Scale is true along all meridians (i.e., it is equidistant) and the Equator and is constant along any parallel and along the parallel of opposite sign.

For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $0^{\circ}$.

This projection, like the more general Equidistant Cylindrical, is credited to Marinus of Tyre, thought to have invented it about A.D. 100. It may, in fact, have been originated by Erastosthenes, who lived approximately 275-195 B.C. The Plate Carrée has the most simply constructed graticule of any projection. It was used frequently in the 15th and 16th centuries and is quite common today in very simple computer mapping programs. It is the simplest and limiting form of the Equidistant Cylindrical projection. Another name for this projection is the Simple Cylindrical. Its transverse aspect is the Cassini projection.


## Polyconic Projection

Classification Polyconic
Syntax polycon
Graticule
Features
Parallels
Remarks
Limitations

Meridians: Complex curves spaced equally along the Equator and each parallel, and concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric circular arcs spaced at true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About the Equator or the central meridian.
For this projection, each parallel has a curvature identical to its curvature on a cone tangent at that latitude. Since each parallel has its own cone, this is a "polyconic" projection. Scale is true along the central meridian and along each parallel. This projection is free of distortion only along the central meridian; distortion can be severe at extreme longitudes. This projection is neither conformal nor equal-area.

By definition, this projection has no standard parallels, since every parallel is a standard parallel.

This projection was apparently originated about 1820 by Ferdinand Rudolph Hassler. It is also known as the American Polyconic and the Ordinary Polyconic projection.

Longitude data greater than $75^{\circ}$ east or west of the central meridian is trimmed.

## Polyconic Projection



## Putnins P5 Projection

Classification Pseudocylindrical
Syntax ..... putnins5
Features
Parallels
RemarksLimitations
Graticule

Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of hyperbolas intersecting at the poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.
Symmetry: About the central meridian or the Equator.
Scale is true along the $21^{\circ} 14^{\prime}$ parallels and is constant along any parallel, between any pair of parallels equidistant from the Equator, and along the central meridian. It is not free of distortion at any point. This projection is not equal-area, conformal, or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $21^{\circ} 14^{\prime}$.

This projection was presented by Reinholds V. Putnins in 1934.
This projection is available for the spherical geoid only.

## Putnins P5 Projection



## Quartic Authalic Projection

## Classification

Pseudocylindrical

## Syntax <br> quartic

Graticule Central Meridian: Straight line 0.45 as long as the Equator.
Other Meridians: Equally spaced quartic (fourth-order equation) curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing changes gradually and is greatest near the Equator.

Poles: Points.
Symmetry: About the central meridian or the Equator.

| Features | This is an equal-area projection. Scale is true along the Equator and is constant <br> along any parallel and between any pair of parallels equidistant from the <br> Equator. Distortion is severe near the outer meridians at high latitudes, but <br> less so than on the Sinusoidal projection. It is free of distortion along the <br> Equator. This projection is not conformal or equidistant. |
| :--- | :--- |
| Parallels | This projection has one standard parallel, which is by definition fixed at $0^{\circ}$. |
| Remarks | This projection was presented by Karl Siemon in 1937 and independently by <br> Oscar Sherman Adams in 1945. |



## Robinson Projection

## Classification

## Syntax robinson

Graticule

## Features

## Parallels

## Remarks

Limitations

Pseudocylindrical

Central Meridian: Straight line 0.51 as long as the Equator.
Other Meridians: Equally spaced, resemble elliptical arcs and are concave toward the central meridian.

Parallels: Straight parallel lines, perpendicular to the central meridian. Spacing is equal between the $38^{\circ}$ parallels, decreasing outside these limits.

Poles: Lines 0.53 as long as the Equator.
Symmetry: About the central meridian or the Equator.
Scale is true along the $38^{\circ}$ parallels and is constant along any parallel or between any pair of parallels equidistant from the Equator. It is not free of distortion at any point, but distortion is very low within about $45^{\circ}$ of the center and along the Equator. This projection is not equal-area, conformal, or equidistant; however, it is considered to look right for world maps, and hence is widely used by Rand McNally, the National Geographic Society, and others. This feature is achieved through the use of tabular coordinates rather than mathematical formulae for the graticules.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $38^{\circ}$.

This projection was presented by Arthur H. Robinson in 1963, and is also called the Orthophanic projection, which means right appearing.

This projection is available for the spherical geoid only.


## Classification

Pseudocylindrical

## Syntax sinusoid

## Graticule

## Features

Parallels
Remarks meridian.

Poles: Points.

Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced sinusoidal curves intersecting at the poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central

Symmetry: About the central meridian or the Equator.
This projection is equal-area. Scale is true along every parallel and along the central meridian. There is no distortion along the Equator or along the central meridian, but it becomes severe near the outer meridians at high latitudes.

This projection has one standard parallel, which is by definition fixed at $0^{\circ}$.
This projection was developed in the 16th century. It was used by Jean Cossin in 1570 and by Jodocus Hondius in Mercator atlases of the early 17th century. It is the oldest pseudocylindrical projection currently in use, and is sometimes called the Sanson-Flamsteed or the Mercator Equal-Area projection.

## Sinusoidal Projection



## Stereographic Projection

Classification Azimuthal
Syntax stereo
Graticule
Features
ParallelsThere are no standard parallels for azimuthal projections.
Remarks The polar aspect of this projection appears to have been developed by the Egyptians and Greeks by the second century B.C.
LimitationsData greater than $90^{\circ}$ distant from the center point is trimmed.

## Stereographic Projection



## Tissot Modified Sinusoidal Projection

Classification Pseudocylindrical
Syntax ..... modsine
Graticule Meridians: Sine curves converging at the Poles.
Parallels: Equally spaced straight lines.
Poles: Points.Symmetry: About the Equator and the central meridianFeatures This is an equal-area projection. Scale is constant along any parallel or any pairof equidistant parallels, and along the central meridian. It is not equidistant orconformal.
Parallels There are no standard parallels for this projection
Remarks This projection was first described by N. A. Tissot in 1881
Limitations

## Tissot Modified Sinusoidal Projection



## Transverse Mercator Projection

## Classification

Syntax
Features

Remarks

Cylindrical
tranmerc
This conformal projection is the transverse form of the Mercator projection and is also known as the Gauss-Krueger pojection. It is not equal area, equidistant, or perspective.

The scale is constant along the central meridian, and increases to the east and west. The scale at the entral meridian can be set true to scale, or reduced slightly to render the mean scale of the overall map more nearly correct.

The uniformity of scale along its centeral meridian makes Transverse Mercator an excellent choice for mapping areas that are elongated north-to-south. Its best known application is the definition of Universal Transverse Mercator (UTM) coordinates. Each UTM zone spans only 6 degrees of longitude, but the northern half extends from the equator all the way to 84 degrees north and the southern half extends from 80 degrees south to the equator. Other map grids based on Transverse Mercator include many of the state plane zones in the U.S., and the U.K. National Grid.

## Trystan Edwards Cylindrical Projection

## Classification

## Syntax <br> trystan

Graticule

## Remarks

Features $\begin{aligned} & \text { This is an orthographic projection onto a cylinder secant at the } 37^{\circ} 24^{\prime} \text { parallels. } \\ & \text { It is equal-area, but distortion of shape increases with distance from the } \\ & \text { standard parallels. Scale is true along the standard parallels and constant } \\ & \text { between two parallels equidistant from the Equator. This projection is not } \\ & \text { equidistant. }\end{aligned}$
Parallels For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at $37^{\circ} 24^{\prime}$.
Cylindrical

Meridians: Equally spaced straight parallel lines.
Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.
Symmetry: About any meridian or the Equator.

This projection is named for Trystan Edwards, who presented it in 1953. It is a special form of the Equal-Area Cylindrical projection secant at $37^{\circ} 24^{\prime} \mathrm{N}$ and S .

## Trystan Edwards Cylindrical Projection



## Universal Polar Stereographic Projection

## Classification

## Syntax

Graticule

## Features

## Parallels

Remarks

Azimuthal
ups
The graticule described is for the southern zone.
Meridians: Equally spaced straight lines centered on the South Pole. The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the South Pole. Spacing increases gradually away from the circle of true scale along latitude 87 degrees, 7 minutes N . The opposite pole cannot be shown.

Poles: The South Pole is a point. The North Pole is not shown.
Symmetry: About any meridian.
This is a perspective projection on a plane tangent to either the North or South Pole. It is conformal, being free from angular distortion. Additionally, all great and small circles are either straight lines or circular arcs on this projection. Scale is true along latitudes 87 degrees, 7 minutes N or S , and is constant along any other parallel. This projection is not equal area.

The parallels 87 degrees, 7 minutes N and S are lines of true scale by virtue of the scale factor. There are no standard parallels for azimuthal projections.

This projection is a special case of the stereographic projection in the polar aspect. It is used as part of the Universal Transverse Mercator (UTM) system to extend coverage to the poles. This projection has two zones: 'North' for latitudes $84^{\circ} \mathrm{N}$ to $90^{\circ} \mathrm{N}$, and 'South' for latitudes $80^{\circ} \mathrm{S}$ to $90^{\circ} \mathrm{S}$. The defaults for this projection are: scale factor is 0.994 , false easting and northing are $2,000,000$ meters. The international ellipsoid in units of meters is used as the geoid model.

## Universal Polar Stereographic Projection



## Universal Transverse Mercator Projection

## Classification

## Syntax <br> utm

## Parallels

## Remarks

Cylindrical

Meridians: Complex curves concave towards the central meridian.
Parallels: Complex curves concave towards the nearest pole.
Poles: Not shown.
Symmetry: About the central meridian or the Equator.
This is a conformal projection with parameters chosen to minimize distortion over a defined set of small areas. It is not equal area, equidistant, or perspective. Scale is true along two straight lines on the map approximately 180 kilometers east and west of the central meridian, and is constant along other straight lines equidistant from the central meridian. Scale is less than true between, and greater than true outside the lines of true scale.

There are no standard parallels for this projection. There are two lines of zero distortion by virtue of the scale factor.

The UTM system divides the world between $80^{\circ} \mathrm{S}$ and $84^{\circ}$ degrees N into a set of quadrangles called zones. Zones generally cover 6 degrees of longitude and 8 degrees of latitude. Each zone has a set of defined projection parameters, including central meridian, false eastings and northings and the reference ellipsoid. The projection equations are the Gauss-Krüger versions of the Transverse Mercator. The projected coordinates form a grid system, in which a location is specified by the zone, easting and northing.

The UTM system was introduced in the 1940's by the U.S. Army. It is widely used in topographic and military mapping.

## Universal Transverse Mercator Projection




## Van der Grinten I Projection

## Classification <br> Polyconic

## Syntax <br> vgrint1

## Graticule

Features

Parallels
Remarks

Limitations

Central Meridian: A straight line.
Meridians: Circular curves spaced equally along the equator and concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are circular arcs concave toward the nearest pole.

Poles: Points.
Symmetry: About the Equator or the central meridian.
In this projection, the world is enclosed in a circle. Scale is true along the Equator and increases rapidly away from the Equator. Area distortion is extreme near the poles. This projection is neither conformal nor equal-area.

There are no standard parallels for this projection.
This projection was presented by Alphons J. Van der Grinten in 1898. He obtained a U.S. patent for it in 1904. It is also known simply as the Van der Grinten projection (without the "I").

This projection is available for the spherical geoid only.


## Vertical Perspective Azimuthal Projection

## Classification

## Syntax

Graticule

## Parallels

## Remarks

Limitations

Features $\begin{aligned} & \text { This is a perspective projection on a plane tangent at the center point from a } \\ & \text { finite distance. Scale is true only at the center point, and is constant in the } \\ & \text { circumferential direction along any circle having the center point as its center. } \\ & \text { Distortion increases rapidly away from the center point, the only point which } \\ & \text { is distortion free. This projection is neither conformal nor equal area. }\end{aligned}$
Azimuthal
vperspec
The graticule described is for a polar aspect.
Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing decreases away from this pole. The opposite hemisphere cannot be shown, nor can distant parts of the closer hemisphere. The limit of visibility depends on the observation altitude.

Poles: The central pole is a point. The other pole is not shown.
Symmetry: About any meridian.

The standard parallel contains the observation altitude above the surface in the same units as the geoid semi-major axis.

This projection provides views of the globe resembling those seen from a spacecraft in orbit. The Orthographic projection is a limiting form with the observer at an infinite distance.

This projection is available for the spherical geoid only. Data more distant than the limit of visibility is trimmed.


## Wagner IV Projection

## Classification

## Syntax

Graticule

Features

Parallels

## Remarks

Pseudocylindrical
wagner4
Central Meridian: Straight line half as long as the Equator.
Other Meridians: Equally spaced portions of ellipses concave toward the central meridian. The meridians $103^{\circ} 55^{\prime}$ east and west of the central meridian are circular arcs.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.
Symmetry: About the central meridian or the Equator.
This is an equal-area projection. Scale is true along the $42^{\circ} 59^{\prime}$ parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. Distortion is not as extreme near the outer meridians at high latitudes as for pointed-polar pseudocylindrical projections, but there is considerable distortion throughout the polar regions. It is free of distortion only at the two points where the $42^{\circ} 59$ ' parallels intersect the central meridian. This projection is not conformal or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. The standard parallel is by definition fixed at $42^{\circ} 59^{\prime}$.

This projection was presented by Karlheinz Wagner in 1932.


## Werner Projection

## Classification

## Syntax <br> werner

Central Meridian: A straight line.
Meridians: Complex curves connecting points equally spaced along each parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central meridian, centered on one of the poles.

Poles: Points.
Symmetry: About the central meridian.
This is an equal-area projection. It is a Bonne projection with one of the poles as its standard parallel. The central meridian is free of distortion. This projection is not conformal. Its heart shape gives it the additional descriptor cordiform.

## Parallels

Remarks

The standard parallel for this projection is set to $90^{\circ} \mathrm{N}$.
This projection was developed by Johannes Stabius (Stab) about 1500 and was promoted by Johannes Werner in 1514. It is also called the Stab-Werner projection.


## Wetch Cylindrical Projection

## Classification

## Syntax wetch

## Graticule

## Features

Parallels For cylindrical projections, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. For this projection, which is the transverse aspect of the Central Cylindrical, the standard parallel of the base projection is by definition fixed at $0^{\circ}$.

## Remarks This is the transverse aspect of the Central Cylindrical projection discussed

 by $J$. Wetch in the early 19th century.This projection is available for the spherical geoid only. To prevent large $y$-values from dominating the display, data at $y$-values that would correspond to latitudes of greater than $75^{\circ}$ in the normal aspect of the Central Cylindrical projection is trimmed.


## Wiechel Projection

## Classification Pseudoazimuthal

## Syntax wiechel

Graticule The graticule described is for a polar aspect.
Meridians: Equally spaced semicircles from pole to pole, concave toward the west.

Parallels: Concentric circles.
Pole: The central pole is a point; the other pole is a bounding circle.
Symmetry: Radially about the center point.
Features This equal-area projection is a novelty map, usually centered at a pole, showing semicircular meridians in a pinwheel arrangement. Scale is correct along the meridians. This projection is not conformal.

Parallels There are no standard parallels for azimuthal projections.
Remarks This projection was presented by H. Wiechel in 1879.
Limitations Data greater than $65^{\circ}$ distant from the center point is trimmed.


## Winkel I Projection

## Classification

## Syntax

Graticule

## Features

Parallels

Remarks

Limitations

Pseudocylindrical
winkel

Central Meridian: Straight line at least half as long as the Equator.
Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines at least half as long as the Equator.
Symmetry: About the central meridian or the Equator.
This projection is an arimethical average of the $x$ and $y$ coordinates of the Sinusoidal and Equidistant Cylindrical projections. Scale is true along the standard parallels and is constant along any parallel and between any pair of parallels equidistant from the Equator. There is no point free of distortion. This projection is not equal-area, conformal, or equidistant.

For this projection, only one standard parallel is specified. The other standard parallel is the same latitude with the opposite sign. Any latitude may be chosen; the default is set to $50^{\circ} 28^{\prime}$.

This projection was developed by Oswald Winkel in 1914. Its limiting form is the Eckert V when a standard parallel of $0^{\circ}$ is chosen.

This projection is available for the spherical geoid only.

## Winkel I Projection



## Winkel I Projection

## GUI Reference

# Graphical User Interface Functions - Categorical List Map Definition Tools 

| axesm, <br> axesmui | Define map axes and display property setting. |
| :--- | :--- |
| originui | Allow interactive modification of map origin. |
| parallelui | Tool for interactively modifying map parallels |

## Mapping Tools

| maptool | Create figure window with menu-activated mapping tools. |
| :--- | :--- |
| mapviewer | Interactive map viewer for projected geodata |
| mlayers | Manipulate layers of a map. |
| mobjects | Manipulate mapped object sets. |
| qrydata | Allow interactive queries of map data. |

## Object Projection Tools

| linem, <br> plotm, <br> plot3m | Project line objects onto map axes. |
| :--- | :--- |
| fillm, <br> fill3m, <br> patchm, <br> patchesm | Project patch objects onto map axes. |
| patchesm | Project patches as individual objects onto map axes. |
| meshm | Warp regular matrix map onto projected graticule mesh. |
| pcolorm, <br> surfacem, <br> surfm | Warp general matrix map onto projected graticule mesh. |
| lightm | Project light objects onto map axes. |
| surflm | Project 3-D shaded surface with lighting onto map axes. |
| meshlsrm <br> surflsrm | Project 3-D lighted shaded surface onto map axes. |
| textm | Project text objects onto map axes. |

## Display Manipulation Tools

| clrmenu | Add colormap menu to figure. |
| :--- | :--- |
| panzoom | Pan and zoom on 2-D map display. |

## Thematic Map Tools

| cometm, <br> comet3m | Project comet plot onto map axes. |
| :--- | :--- |
| contourm, <br> contour3m | Project contour plot onto map axes. |
| quiverm | Project 2-D quiver plot onto map axes. |
| quiver3m | Project 3-D quiver plot onto map axes. |
| stem3m | Project stem plot onto map axes. |
| scatterm | Project proportional symbol map onto map axes. |

## Object Property Tools

| clmo | Clear specified map objects from map axes. |
| :--- | :--- |
| cmapui | Create custom colormap. |
| colorui | Set custom RGB color triples. |
| handlem | Return handles of specified map objects. |
| hidem | Hide specified map objects. |
| showm | Show specified map objects. |
| tagm | Edit tag of specified map objects. |
| zdatam | Edit z-plane of specified map objects. |
| property <br> editors | Edit properties of specified map objects. |

## Track Tools

| scircleg | Manipulate small circles on map axes. |
| :--- | :--- |
| scirclui | Display small circles on map axes. |
| sectorg | Manipulate sectors of small circles on map axes. |
| surfdist | Calculate distance, azimuth, and reckoning. |
| trackg | Manipulate great circle and rhumb line tracks on map axes. |
| trackui | Display great circle and rhumb line tracks on map axes. |

## Map Data Construction Tools

| colorm | Create colormaps for regular matrix map. |
| :--- | :--- |
| limitm | Compute latitude and longitude limits of regular matrix <br> map. |
| maptrim | Allow interactive trimming of map data. |
| seedm | Encode regular matrix map. |

## Graphical User Interface Functions - Alphabetical List

The following GUI Reference pages are organized alphabetically by the name of the function or tool. Most of the GUI tools in the Mapping Toolbox are activated by command-line functions without any input arguments. Users should consult the corresponding pages in Chapter 10, "Reference" as well. The entries in this chapter contain the following:

Purpose Provides a short, concise description of the tool.
Activation Provides methods of activation from the MATLAB command window, by mouse interaction with the map display, and/or from within maptool.

Description Describes what the tool does, how each activation method works, and any rules or restrictions that apply.
Controls Describes how to use the interface associated with the tool, including dialog boxes, menu bars, etc.

Examples Provides examples of how the tool can be used.
See Also Refers users to other related command, functions, or tools.

Purpose
Define map axes and modify map projection and display properties

## Activation

## Description

| Command Line | Maptool | Map Display |
| :--- | :--- | :--- |
| axesm <br> axesm(h) <br> axesmui <br> axesmui (h) <br> $c=\operatorname{axesmui}(\ldots)$ | Display $\Rightarrow$ Projection | extend-click on map <br> display |

axesm activates a Projection Control dialog box, which allows map projection definition and property modification. If no map is currently defined, axesm creates a map axes with the Robinson projection as the default.
axesm (h) activates the Projection Control box for the axes specified by the handle h .
axesmui activates the Projection Control box for the current map axes.
axesmui (h) activates the Projection Control box for the map axes specified by the handle h .
c is an optional output argument that indicates whether the Projection Control dialog box was closed by the cancel button. $c=1$ if the cancel button is pushed. Otherwise, $c=0$.

Extend-clicking on a map display brings up the Projection Control dialog box for that map axes.

## Controls



The Map Projection pull-down menu is used to select a map projection. The projections are listed by type, and each is preceded by a four-letter type indicator:

```
Cyln = Cylindrical
Pcyl = Pseudocylindrical
Coni = Conic
Poly = Polyconic
Pcon = Pseudoconic
Azim = Azimuthal
Mazi = Modified Azimuthal
Pazi = Pseudoazimuthal
```

The Zone button and edit box are used to specify the UTM or UPS zone. For non-UTM and UPS projections, the two are disabled.

The Geoid edit boxes and pull-down menu are used to specify the geoid. Units must be in meters for the UTM and UPS projections, since this is the standard unit for the two projections. For non-UTM and UPS projections, the geoid unit can be anything, bearing in mind that the resulting projected data will be in the same units as the geoid.

The Angle Units pull-down menu is used to specify the angle units used on the map projection. All angle entries corresponding to the current map projection must be entered in these units. Current angle entries are automatically updated when new angle units are selected.

The Map Limits edit boxes are used to specify the extent of the map data in geographic coordinates. The Latitude edit boxes contain the southern and northern limits of the map. The Longitude edit boxes contain the western and eastern limits of the map. The map limits establish the extent of the meridian and parallel grid lines, regardless of the display settings (see grid settings). Map limits are always in Greenwich coordinates, regardless of the map origin and orientation setting. In the normal aspect, the map display is trimmed to the minimum of the map and frame limits.

The Frame Limits edit boxes are used to specify the location of the map frame, measured from the center of the map projection in the base coordinate system. The Latitude edit boxes contain the southern and northern frame edge locations. The Longitude edit boxes contain the western and eastern frame edge locations. Displayed map data are trimmed at the frame limits. For azimuthal map projections, the latitude limits should be set to -inf and the desired trim distance from the map origin. In the normal aspect, the map display is trimmed to the minimum of the map and frame limits.

The Map Origin edit boxes are used to specify the origin and aspect angle of the map projection. The Lat and Long boxes specify the map origin in Greenwich coordinates. This is the point that is placed in the center of the projection. If either box is left blank, 0 degrees is used. The Orientation box specifies the azimuth angle of the North Pole relative to the map origin. Azimuth is measured clockwise from the top of the projection. If the Orientation box is disabled, then the selected map projection requires a fixed orientation. See the Mapping Toolbox User's Guide for a complete description of the map origin.

The Cartesian Origin edit boxes are used to specify the x-y offset, along with a desired scale factor of the map projection. The False E and $\mathbf{N}$ boxes specify the false easting and northing in Cartesian coordinates. These must be in the same units as the geoid. The Scalefactor box specifies the scale factor used in the map projection calculations.

The Parallels edit boxes specify the standard parallels of the selected map projection. A particular map projection may have one or two standard parallels. If the edit boxes are disabled, then the selected projection has no standard parallels or the standard parallels are fixed.
The Aspect pull-down menu is used to select a normal or transverse display aspect. When the aspect is normal, north (on the base projection) is up, and the map is displayed in a portrait setting. In a transverse aspect, north (in the base projection) is to the right, and the map is displayed in a landscape setting. This property does not control the map projection aspect. The projection aspect is determined by the map Origin property).

The Frame button brings up the Map Frame Properties dialog box, which allows the map frame settings to be modified.

The Grid button brings up the Map Grid Properties dialog box, which allows the map grid settings to be modified.

The Labels button brings up the Map Label Properties dialog box, which allows the parallel and meridian label settings to be modified.

The Fill in button is used to compute projection and display settings based on any currently specified map parameters. Only settings that are left blank are affected when this button is pushed.

The Reset button is used to reset the default projection properties and display settings of the current map. Default display settings include frame, grid, and label properties set to 'off'.

The Apply button is used to apply the projection and display settings to the current map, which results in the map being reprojected.

The Help button is used to bring up online help text for each control on the Projection Control dialog box.

The Cancel button disregards any modified projection or display settings and closes the Projection Control dialog box.

## Map Frame Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the Frame button on the Projection Control dialog box.


The Frame selection buttons determine whether the map frame is visible.
The Face Color pull-down menu is used to select the background color of the map frame. Selecting none results in a transparent frame background, i.e., the same as the axes color. Selecting custom allows a custom RGB triple to be defined for the background color.

The Edge Color pull-down menu is used to select the color of the frame edge. Selecting none hides the frame edge. Selecting custom allows a custom RGB triple to be defined for the edge color.

The Edge Width edit box is used to enter the line width of the frame edge, in points.

The Points per Edge edit box is used to enter the number of points used to display each edge of the map frame.
The Accept button accepts any modifications made to the map frame properties and returns to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map frame properties and returns to the Projection Control dialog box.

## Map Grid Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the Grid button on the Projection Control dialog box.


The Grid selection buttons determine whether the map grid is visible.
The Color pull-down menu is used to select the color of the map grid lines. Selecting custom allows a custom RGB triple to be defined for the grid line color.

The Style pull-down menu is used to select the line style of the map grid lines.
The Line Width edit box is used to enter the width of the map grid lines, in points.

The Grid Altitude edit box is used to enter $z$-axis location of the map grid. This property can be used to place some mapped objects above or below the map grid. The default map grid altitude is inf, which places the grid above all other mapped objects.

The Meridian and Parallel Settings button brings up the Meridian and Parallel Properties dialog box, which allows the properties of the meridian and parallel grid lines to be modified.

The Accept button accepts any modifications made to the map grid properties and returns to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map grid properties and returns to the Projection Control dialog box.

## Meridian and Parallel Properties Dialog Box

This dialog box is used to modify the settings for meridian and parallel grid lines. It is accessed via the Meridian and Parallel Settings button on the Map Grid Properties dialog box.


The Meridians selection buttons determine whether the meridian grid lines are visible when the map grid is turned on.

The Longitude Location(s) edit box is used to specify which meridians are to bedisplayed if the meridian lines are turned on. If a scalar interval value is entered, meridian lines are displayed at that interval, starting from the Prime Meridian and proceeding in east and west directions. If a vector of values is entered, meridian lines are displayed at locations given by each element of the vector.

The Latitude Limits edit box is used to specify the latitude limits beyond which meridian lines do not extend. If this property is left empty, all meridian lines extend to the map latitude limits (specified by the Latitude Map Limits entry on the Projection Control dialog box). This entry must be a two-element vector enclosed in brackets.

The Longitude Exceptions edit box is used to enter specific meridians of the displayed grid that are to extend beyond the latitude limits, to the map limits. This entry is a vector of longitude values.

The Parallels selection buttons determine whether the parallel grid lines are visible when the map grid is turned on.

The Latitude Location(s) edit box is used to specify which parallels are to be displayed if the parallel lines are turned on. If a scalar interval value is entered, parallel lines are displayed at that interval, starting from the Equator and proceeding in north and south directions. If a vector of values is entered, parallel lines are displayed at locations given by each element of the vector.

The Longitude Limits edit box is used to specify the longitude limits beyond which parallel lines do not extend. If this property is left empty, all parallel lines extend to the map longitude limits (specified by the Longitude Map Limits entry on the Projection Control dialog box). This entry must be a two-element vector enclosed in brackets.

The Latitude Exceptions edit box is used to enter specific parallels of the displayed grid that are to extend beyond the longitude limits, to the map limits. This entry is a vector of latitude values.

The Points per Line edit boxes are used to enter the number of points used to plot each meridian and each parallel grid line. The default value is 100 points.
The Accept button accepts any modifications that have been made to the meridian and parallel grid line properties and return to the Map Grid Properties dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.
The Cancel button disregards any modifications to the meridian and parallel grid lines and returns to the Map Grid Properties dialog box.

## Map Label Properties Dialog Box

This dialog box is used to modify the settings of the meridian and parallel labels. It is accessed via the Label button on the Projection Control dialog box.


The Meridian and Parallel selection buttons determine whether the meridian and parallel labels are visible.

The Format pull-down menu is used to specify the format of the grid labels. If compass is selected, meridian labels are appended with E for east and $W$ for west, and parallel labels are appended with $N$ for north and $S$ for south. If signed is chosen, meridian labels are prefixed with + for east and - for west, and parallel labels are prefixed with + for north and - for south. If none is selected, western meridian labels and southern parallel labels are prefixed by -, but no symbol precedes eastern meridian labels and northern parallel labels.

The label Units pull-down menu is used to specify the angle units used to display the parallel and meridian labels. These units, used for display purposes only, need not be the same as the angle units of the map projection.

The Font edit box is used to specify the character font used to display the parallel and meridian labels. If the font specified does not exist on the computer, the default of Helvetica is used. Pressing the Font button previews the selected font.

The font Size edit box is used to enter an integer value that specifies the font size of the parallel and meridian labels. This value must be in the units specified by the font Units pull-down menu.

The font Color pull-down menu is used to select the color of the parallel and meridian labels. Selecting custom allows a custom RGB triple to be defined for the labels.

The font Weight pull-down menu is used to specify the character weight of the parallel and meridian labels.

The font Units pull-down menu is used to specify the units used to interpret the font size entry. When set to normalized, the value entered in the Size edit box is interpreted as a fraction of the height of the axes. For example, a normalized font size of 0.1 sets the label text to a height of one tenth of the axes height.

The font Angle pull-down menu is used to select the character slant of the parallel and meridian labels. normal specifies non-italic font. italic and oblique specify italic font.
The Meridian and Parallel Settings button brings up the Meridian and Parallel Label Properties dialog box, which allows modification of properties specific to the meridian and parallel grid labels.

The Accept button accepts any modifications that have been made to the map label properties and returns to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map labels and returns to the Projection Control dialog box.

## Meridian and Parallel Label Properties Dialog Box

This dialog box is used to modify properties specific to the meridian and parallel grid labels. It is accessed via the Meridian and Parallel Settings button on the Map Label Properties dialog box.


The Longitude Location(s) edit box is used to specify which meridians are to be labeled. Meridian labels need not coincide with displayed meridian grid lines. If a scalar interval value is entered, labels are displayed at that interval, starting from the Prime Meridian and proceeding in east and west directions. If a vector of values is entered, labels are displayed at longitude locations given by each element of the vector.

The Display Parallel pull-down menu and edit box are used to specify the latitude location of the meridian labels. If a scalar latitude value is provided in the edit box, the meridian labels are placed at that parallel. Alternatively, the pull-down menu can be used to select a latitude location. If north is chosen, meridian labels are placed at the maximum map latitude limit. If south is chosen, meridian labels are placed at the minimum map latitude limit.

The Latitude Location(s) edit box is used to specify which parallels are to be labeled. Parallel labels need not coincide with displayed parallel grid lines. If a scalar interval value is entered, labels are displayed at that interval, starting from the Equator and proceeding in north and south directions. If a vector of values is entered, labels are displayed at latitude locations given by each element of the vector.

The Display Meridian pull-down menu and edit box are used to specify the longitude location of the parallel labels. If a scalar longitude value is provided in the edit box, the parallel labels are placed at that meridian. Alternatively, the pull-down menu can be used to specify a longitude location. If east is
chosen, parallel labels are placed at the maximum map longitude limit. If west is chosen, parallel labels are placed at the minimum map longitude limit.

The Decimal Round edit boxes are used to specify the power of ten to which the meridian and parallel labels are rounded. For example, a value of -1 results in labels displayed to the tenths decimal place.

The Accept button accepts any modifications that have been made to the meridian and parallel label properties and return to the Map Label Properties dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel labels and returns to the Map Label Properties dialog box.

The Map Geoid edit box is used to specify the geoid definition for the current map axes. The geoid is defined by a two-element vector of the form [semimajor-axis eccentricity]. Eccentricity must be a value between 0 and 1 , but not equal to 1 . A nonzero eccentricity represents an ellipsoid. The default geoid is a sphere with radius 1 , represented as [10]. If a scalar entry is provided, it is assumed to be the radius of a sphere.

The Accept button accepts any modifications that have been made to the map geoid and return to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map geoid and returns to the Projection Control dialog box.

See Also
axesm

## Purpose

Clear mapped objects

## Activation

## Description

## Controls

Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the Ok button deletes the selected objects from the map. Pushing the Cancel button aborts the operation.
See Also ..... clmo

Purpose
Add a colormap menu to a figure

## Activation

Description clrmenu adds a colormap menu to the current figure.
clrmenu( h ) adds a colormap menu to the figure specified by the handle $h$.

## Controls

## See Also

colorm

## Purpose

Create colormaps for an indexed regular data grid

## Activation

## Command Line

colorm(datagrid, refve
c)

## Description

colorm (datagrid, refvec) displays the data grid in a new figure window and allows a colormap to be edited and saved to a new variable. datagrid and refvec are the data grid and the referencing vector vector of the surface. map must have positive index values into the colormap.

## Controls



The colorm tool displays the surface map data in a new figure window with the current colormap. Zoom and Colormaps menus are activated for that figure.

The Zoom On/Off menu toggles the panzoom box on and off. The box can be moved by clicking on the new location or by dragging the box to the new location. The box size can be increased or decreased by dragging a corner of the box. Pressing the Return key or double-clicking in the center of the box zooms in.

The Colormaps menu provided a variety of colormap options that can be applied to the map. See clrmenu in this guide for a description of the Colormaps menu options.

The Load button activates a dialog box, used to specify a colormap variable to be applied to the displayed surface map. This colormap can then be edited and saved.

The Select button activates the mouse cursor and allows a point on the map to be selected. The value of that point then appears in the Codes pull-down menu. The color of the selected point appears in the Color pull-down menu and can then be edited.

The Codes pull-down menu is used to select a particular value in the data grid. The color associated with that value then appears in the Color pull-down menu and can be edited.

The Color pull-down menu is used to select a particular color to assign to the value currently displayed in the Codes pull-down menu. A custom color can be defined by selecting the custom option. This brings up a custom color interface with which an RGB triple can be selected.

The Save button is used to save the modified colormap to the workspace. A dialog box appears in which the colormap variable name is entered.

See Also encodem getseeds maptrim panzoom seedm

## cometm, comet3m

## Purpose <br> Project animated 2-D and 3-D comet plots on the current map axes

## Activation

## Description

cometm and comet3m activate a Comet Map Input dialog box for projecting comet plots onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Comet Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data for the comet plot.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data for the comet plot.

The Altitude variable edit box is used to specify the workspace variable containing the altitude data for the comet plot.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, and altitude variables can be selected.

The Scalar Tail Length edit box is used to enter a scalar value between 0 and 1 for the length of the comet tail. The default value is 0.1 .

Pressing the Apply button accepts the input data and projects the comet plot onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Comet Map Input dialog box.

See Also cometm, comet3m

## contourm, contour3m

Purpose
Activation

Description

Project 2-D and 3-D contour plots onto the current map axes

| Command Line | Maptool |
| :--- | :--- |
| contourm <br> contour 3 m | Map $\Rightarrow$ Contours |

contourm and contour 3 m activate a Contour Map Input dialog box to project contour lines onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Contour Map Input dialog box appears.

## Controls

The Mode selection buttons are used to indicate a two- or three-dimensional contour plot.

The MLimit button brings up a Map Limit Input dialog box that computes the limits of a regular data grid and stores them as variables that can be used as the latitude and longitude inputs for the contour plot. This enables the creation
of contour plots for regular data grids. See limitm in this guide for more information about the Map Limit Input dialog box.

The Latitude variable edit box is used to specify the workspace variable containing the latitude vector or matrix for the contour plot. If a vector, it should be monotonically increasing and describe the latitude of each row of the data grid. If a matrix, it should be the size of the map matrix and give the latitude associated with each map matrix element.

The Longitude variable edit box is used to specify the workspace variable containing the longitude vector or matrix for the contour plot. If a vector, it should be monotonically increasing and describe the longitude of each column of the data grid. If a matrix, it should be the size of the map matrix and give the longitude associated with each map matrix element.

The Map variable edit box is used to specify the workspace variable containing the data grid.

The Level variable edit box is used to specify the workspace variable containing the values of the contours to be plotted. A vector of contour level values, enclosed in brackets, can be entered instead of a variable name. If omitted, the contour values are chosen automatically.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, map, and level variables can be selected.

The Legend pull-down menu is used to select the type of contour labeling or legend to be added to the plot. If the Plot Legend option is selected, any existing legend is deleted.

The Other Properties edit box is used to specify additional properties of the contour lines, such as 'Color' , 'b'. String entries must be enclosed in quotes. Linespec strings, such as 'c-', are also valid entries.

Pressing the Apply button accepts the input data and projects the contour plot onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Contour Map Input dialog box.

See Also contourm, contour3m

Purpose Create and assign a colormap to a digital elevation data grid

## Activation

Description
demcmap activates the DEM Color Map Input dialog box, which accepts inputs used to create a colormap for a digital elevation data grid, and then applies the colormap to the current figure. The number of land and sea colors in the colormap is appropriate for the maximum elevations and depths of the data grid.

## Controls



The Mode selection buttons are used to specify whether the length of the colormap is specified or whether the altitude range increment assigned to each color is specified.

The Map variable edit box is used to specify the data grid containing the elevation data.

The Color Map Size edit box is used in Size mode. This entry defines the length of the colormap. If omitted, a default length of 64 is used. This entry must be a scalar value.

The Altitude Range edit box is used in Range mode. This entry defines the altitude range increment assigned to each color. If omitted, a default increment of 100 is used. This entry must be a scalar value.

The RGB Sea edit box is used to define colors for data with negative values. The actual sea colors of the generated colormap are interpolated from this matrix. This entry can be a matrix of any length ( $n$ by 3 ). The colormap matrix of the current figure can be used by entering the string 'window' in this box. The demcmap function provides default sea colors, which are used if this entry is left blank.

The RGB Land edit box is used to define colors for data with positive values. The actual land colors of the generated colormap are interpolated from this matrix. This entry can be a matrix of any length (n by 3 ). The colormap matrix of the current figure can be used by entering the string 'window' in this box. The demcmap function provides default sea colors, which are used if this entry is left blank.

Pressing the Apply button accepts the input data, creates the colormap, and assigns it to the current figure.

Pressing the Cancel button disregards any input data and closes the DEM Color Map Input dialog box.

See Also demcmap

## fillm, fill3m, patchm, patchesm

## Purpose Project patch objects on the current map axes

## Activation

| Command Line | Maptool |
| :--- | :--- |
| fillm <br> fill3m <br> patchm <br> patchesm | Map $\Rightarrow$ Patch |

## Description

fillm, fill3m, patchm, and patchesm all activate a Patch Map Input dialog box that accepts input data to project a patch object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Patch Map Input dialog box appears.

## Controls



## fillm, fill3m, patchm, patchesm

The Latitude variable edit box is used to specify the workspace variable containing the latitude data of the patch object to be projected.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data of the patch object to be projected.

The Scalar Altitude edit box is used to specify a scalar value or scalar workspace variable that determines the plane in which the mapped patch object is to be displayed.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, and altitude variables can be selected.

The Face Color edit box is used to specify the color of the patch face. A valid color string, enclosed in quotes, or an RGB triple enclosed in brackets, can be entered. A workspace variable can also be entered, provided it is a color string or an RGB triple.

The Other Properties edit box is used to specify additional properties of the patch object to be projected, such as 'EdgeColor ', 'none'. String entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and projects the patch object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Patch Map Input dialog box.

[^4]
## handlem

## Purpose Return handles of mapped objects

## Activation

## Description

## Controls Select Object Dialog Box



The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the Ok button returns the object handles in the variable h. Pushing the Cancel button aborts the operation.

Specify Object Dialog Box


The Object Controls are used to select an object type or tag. The Name pull-down menu is used to select from a list of predefined object strings. The Other Tag edit box is used to specify an object tag not listed in the Name pull-down menu. Pushing the Select button brings up the Select Object dialog box, which shows only the currently displayed objects for selection.

The Match Controls are used when a Handle Graphics object type (image, line, surface, patch, or text) is specified. The Untagged Objects selection button is used to return the handles of only those objects with empty tag properties. The All Objects selection button is used to return all object handles of the specified type, regardless of whether they are tagged.

Pushing the Apply button returns the handles of the specified objects. Pushing the Cancel button aborts the operation.

[^5]
## Purpose Hide mapped objects

## Activation

Description

## Controls

See Also

## Purpose

Project light objects on the current map axes

## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| lightm | Map $\Rightarrow$ Light |

lightm activates a Light Map Input dialog box for projecting a light object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Light Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data of the light object to be projected.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data of the light object to be projected.

## lightm

The Altitude variable edit box is used to specify the workspace variable containing the altitude data of the light object to be projected. A scalar value can be entered to indicate at which height above the map the light object is to be displayed. This entry has no effect if an infinite light source is specified by the Light at Infinity check box.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, and altitude variables can be selected.

The Light At Infinity check box is used to specify a parallel or divergent light source. If the box is checked, the light source is at infinity, in which case the light rays are parallel. If the box is not checked, the altitude of the light source is specified by the altitude variable, and the light rays diverge in all directions. If this box is checked, the altitude variable has no effect.

The Color pull-down menu is used to specify the color of the light coming from the light object. Selecting custom allows a custom RGB triple to be defined.

The Other Properties edit box is used to specify additional properties of the light object to be projected, such as 'Tag ', 'Blue Light'. String entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and projects the lighted object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Light Map Input dialog box.

See Also lightm

Purpose
Compute latitude and longitude limits for a regular data grid

## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| limitm | Map $\Rightarrow$ Contours |

limitm activates the Map Limit Input dialog box, which allows the limits of a regular data grid to be computed. These limits are then stored in the workspace as variables.

## Controls



The Map variable edit box is used to specify the workspace variable containing the regular data grid.

The Maplegend variable is used to specify the workspace variable containing the referencing vector. A three-element referencing vector, enclosed in brackets, can be entered instead of a variable name.

## limitm

The Output Latitude limit edit box is used to specify the name of the variable that stores the computed latitude limits of the data grid. If this variable name already exists in the workspace, it is overwritten.

The Output Longitude limit edit box is used to specify the name of the variable that stores the computed longitude limits of the data grid. If this variable already exists in the workspace, it is overwritten.
Pressing the List button produces a list of all current workspace variables, from which the map, referencing vector, output latitude, and output longitude variables can be selected.

Pressing the Apply button calculates the limits of the data grid and stores the results in the specified output variables.

Pressing the Cancel button disregards any input data and closes the Map Limit Input dialog box.

## See Also limitm

## linem, plotm, plot3m

## Purpose

Project 2-D and 3-D line objects on the current map axes

## Activation

| Command Line | Maptool |
| :--- | :--- |
| linem <br> plotm <br> plot 3 m | Map $\Rightarrow$ Lines |

## Description

linem, plotm and plot3m activate a Line Map Input dialog box that accepts input data to project a line object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Line Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data of the line object to be projected.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data of the line object to be projected.

## linem, plotm, plot3m

The Altitude variable edit box is used to specify the workspace variable containing the altitude data of the line object to be projected. A scalar value can be entered to indicate the plane in which to display the object.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the line object to be projected, such as 'LineWidth' , 2. String entries must be enclosed in quotes. Linespec strings, such as 'b:', are also valid.

Pressing the Apply button accepts the input data and projects the line object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Line Map Input dialog box.

```
See Also
linem plotm plot3m
```


## Purpose

 Create a figure window with a map axes and associated mapping tools
## Activation

## Command Line

maptool(PropertyName, PropertyValue)
maptool(ProjectionFile,...)
h = maptool(...)

## Description

maptool creates a figure window with a map axes and activates the Projection Control dialog box for defining map projection and display properties. The figure window features a special menu bar that provides access to most of the Mapping Toolbox GUIs.
maptool(PropertyName, PropertyValue, ...) creates a figure window with a map axes defined by the supplied map properties. The MapProjection property must be the first input pair. maptool supports the same map properties as axesm.
maptool(ProjectionFile,PropertyName, PropertyValue, ...) allows for the omission of the MapProjection property name. ProjectionFile must be the identifying string of an available map projection.
$\mathrm{h}=$ maptool(...) returns a two-element vector containing the handle of the maptool figure window and the handle of the map axes.

## Controls



## Session Menu

The Load option is used to load workspace data. Select from the workspace names provided, or use the Specify Workspace option to enter a different workspace.

The Layers option is used to load a map layers workspace and activate the mlayers tool. Select from the workspace names provided, or use the Other option to enter a different workspace. Choosing Workspace loads all structure variables in the current workspace.

The Renderer option is used to set the renderer for the maptool figure window. The Figure Renderer dialog box is activated when this option is selected.

The Variables option is used to view the current workspace variables.
The Command option brings up the Workspace Commands dialog box for entering commands to operate on the current workspace.

The Clear option is used to clear variables and functions from memory.

## Map Menu

The Lines option activates the Line Map Input dialog box for projecting twoand three-dimensional line objects onto the map axes.

The Patches option activates the Patch Map Input dialog box for projecting patch objects onto the map axes.

The Regular Surfaces option activates the Mesh Map Input dialog box for projecting a regular data grid onto a graticule projected onto the map axes.

The General Surfaces option activates the Surface Map Input dialog box for projecting a geolocated data grid onto the map axes.

The Comet option activates the Comet Map Input dialog box for a projecting two- or three-dimensional comet plot onto the map axes.

The Contours option activates the Contour Map Input dialog box for projecting a two- or three-dimensional contour plot onto the map axes.

The Quiver 2D option activates the Quiver Map Input dialog box for projecting a two-dimensional quiver plot onto the map axes.
The Quiver 3D option activates the Quiver3 Map Input dialog box for projecting a three-dimensional quiver plot onto the map axes.

The Stem option activates the Stem Map Input dialog box for projecting a stem plot onto the map axes.

The Scatter option activates the Scatter Map Input dialog box for projecting a scatter plot onto the map axes.

The Text option activates the Text Map Input dialog box for projecting text objects onto the map axes.

The Light option activates the Light Map Input dialog box for projecting light objects onto the map axes.

## Display Menu

The Projection option activates the Projection Control dialog box for editing map projection properties and map display settings.

The Graticule option is used to view and edit the graticule size for surface maps.

The Legend option is used to display a contour map legend.
The Frame option is used to toggle the map frame on and off.

The Grid option is used to toggle the map grid on and off.
The Meridian Labels option is used to toggle the meridian grid labels on and off.

The Parallel Labels option is used to toggle the parallel grid labels on and off.
The Tracks option activates the Define Tracks input box for calculating and displaying Great Circle and Rhumb Line tracks on the map axes.

The Small Circles option activates the Define Small Circles input box for calculating and displaying small circles on the map axes.

The Surface Distances option activates the Surface Distance dialog box for distance, azimuth, and reckoning calculations.

## Tools Menu

The Hide option is used to hide the mouse tool buttons.
The Off option is used to turn off the current mouse tool.
The Zoom Tool option is used to toggle Panzoom (panzoom) mode on and off. It is used for zooming in on a two-dimensional map display.

The Set Limits option is used to define the zoom out limits to the current settings on the axes.

The Full View option is used to zoom out to the current axes limit settings.
The Rotate option is used to toggle Rotate 3-D (rotate3d) mode on and off. Rotate 3-D mode is used to interactively rotate the view of a three-dimensional plot.

The Origin option is used to toggle Origin (originui) mode on and off. Origin mode is used to interactively modify the map origin.

The 2D View option is used to set the default two-dimensional view (azimuth=0, elevation=90).

The Objects option activates the Object Sets dialog box, which allows for property manipulation of objects displayed on the map axes.

The Edit option activates the Guide Property Editor to manipulate properties of a plotted object. Choose from the Current Object or Last Object options, or choose the Object option to activate the Select Object dialog box.
The Show option is used to set the Visible property of mapped objects to ' on '. The All option shows all currently mapped objects. The Object option activates the Select Object dialog box.

The Hide option is used to set the Visible property of mapped objects to ' off '. Choose from the All or Map options, or choose the Object option to activate the Select Object dialog box.

The Delete option is used to clear the selected objects. The All option clears the current map, frame, and grid lines. The map definition is left in the axes definition. The Map option clears the current map, deleting objects plotted on the map but leaving the frame and grid lines displayed. The Object option activates the Select Object dialog box.

The Axes option is used to manipulate the MATLAB Cartesian axes. The Show option shows this axes, the Hide option hides this axes, and the Color option allows for custom color selection for this axes.

## Colormaps Menu

The Colormaps menu allows for manipulation of the colormap for the current figure. See the clrmenu reference page for details on the Colormaps menu options.

## Zoom Button

The Zoom button toggles Zoom mode on and off. Zoom mode is used for zooming in on a two-dimensional map display.

## Rotate Button

The Rotate button toggles Rotate 3-D mode on and off. Rotate 3-D mode is used to interactively rotate the view of a three-dimensional plot.

## Origin Button

The Origin button toggles Origin mode on and off. Origin mode is used to interactively modify the map origin.

See Also maptool tools

## Purpose

## Activation

## Command Line

## Description

```
maptrim(lat,lon)
```

maptrim(lat,lon)
maptrim(lat,lon,linespec)
maptrim(lat,lon,linespec)
maptrim(datagrid,refvec)
maptrim(datagrid,refvec)
maptrim(datagrid,refvec,
maptrim(datagrid,refvec,
PropertyName,PropertyValue,...)

```
    PropertyName,PropertyValue,...)
```

Interactively trim and convert map data from vector to matrix format
maptrim(lat, lon) displays the supplied map data in a new figure window and allows a region of the map to be selected and saved in the workspace. lat and lon must be vector map data. The output can be line, patch, or regular surface (matrix) data. If patch map output is selected, the inputs lat and lon must originally be patch map data.
maptrim(lat,lon,linespec) displays the supplied map data using the linespec string.
maptrim(datagrid, refvec) displays data grid data in a new figure window and allows a subset of this map to be selected and saved. The output is regular surface data.
maptrim(datagrid, refvec, PropertyName, PropertyValue) displays the data grid using the surface properties provided. The object Tag, EdgeColor, and UserData properties cannot be set.

## Controls



The maptrim tool displays the supplied map data in a new figure window and activates a Customize menu for that figure. The Customize menu has three menu options: Zoom On/Off, Limits, and Save As.

The Zoom On/Off menu option toggles the panzoom box on and off. The box can be moved by clicking on the new location or by dragging the box to the new location. The box size can be increased or decreased by dragging a corner of the box. Pressing the Return key or double-clicking in the center of the box zooms in.

The Limits menu option activates the Enter Map Limits dialog box, which is used to enter the latitude and longitude limits of the desired map subset. These entries are two-element vectors, enclosed in brackets. Pressing the OK button zooms in to the new limits. Pressing the Cancel button disregards the new limits and returns to the map display.


The Save As menu option is used to specify the variable names in which to save the map data subset. To save line and patch data, enter the new latitude and longitude variable names, along with the map resolution. For surface data, enter the new map and referencing vector variable names, along with the scale of the map. Latitude and longitude limits are optional.

See Also
maptriml maptrimp maptrims panzoom

Typing mapview starts an instance of the Map Viewer, a self-contained GUI for viewing geospatial data in map ( $x-y$ ) coordinates. For information on using mapview see "mapview" on page 10-363, and the Map Viewer tutorial "Tour Boston with the Map Viewer" on page 1-9.

## Purpose

 Display a regular data grid warped to a projected graticule
## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| meshm | Map $\Rightarrow$ Regular Surfaces |

meshm activates a Mesh Map Input dialog box that accepts input data to project a regular surface onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Mesh Map Input dialog box appears.

## Controls



The Map variable edit box is used to specify the workspace variable containing the data grid.

The Maplegend variable edit box is used to specify the workspace variable containing the referencing vector. Alternatively, a three-element referencing vector enclosed in brackets can be entered in place of a workspace variable.

The Graticule size variable edit box is used to specify the workspace variable containing the graticule resolution. A two-element vector of the form [latitude-points longitude-points] can be entered in place of a workspace variable. The default graticule resolution is [50 100].

The Altitude variable edit box is used to specify the workspace variable containing the altitude data. A scalar value can be entered to specify the $z$-axis plane in which the graticule mesh is plotted.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, graticule size, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the surface object to be projected, such as 'EdgeColor', [11r 100 . String entries must be enclosed in quotes. The CData property contains the data grid and therefore cannot be set by users.

Pressing the Apply button accepts the input data and projects the surface object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Mesh Map Input dialog box.
See Also ..... meshm

## Purpose

Activation

Description

Interactively display and control objects in a geographic data structure workspace

| Command Line | Maptool |
| :--- | :--- |
| mlayers(workspace) <br> mlayers(workspace, h$)$ <br> mlayers(cellaray) <br> mlayers(cellarray, h$)$ | Session $\Rightarrow$ Layers |

The mlayers tool activates a dialog box for the specified geographic data structure workspace, which enables display and manipulation of the map objects that it comprises.
mlayers(workspace) associates the geographic data structures, which in this context are also called map layers, in the workspace MAT-file with the current map axes. The geographic data structure variables are accessible only through the mlayers tool, and not through the base workspace. workspace must be a string.
mlayers (workspace, h) assigns the layers in workspace to the map axes indicated by the handle $h$.
mlayers (cellarray) associates the layers specified by cellarray with the current map axes. cellarray must be of size $n$ by 2 . Each row of cellarray represents a map layer. The first column of cellarray contains the layer structure, and the second column contains the name of the layer structure. Such a cell array can be generated from data in the current workspace with the function rootlayr. In this case, the calling sequence would be rootlayr; mlayers(ans).
mlayers(cellarray, h) assigns the layers specified by cellarray to the map axes specified by the handle $h$.

## Controls



The scrollable list box displays all of the map layers currently associated with the map axes. An asterisk next to the layer name indicates that the layer is currently visible. An h next to the layer name indicates a layer that is plotted, but currently hidden.

The Plot button plots the selected map layer. Once the selected layer is plotted, the button toggles between Hide and Show, to turn the Visible property of the plotted objects to 'off' and 'on', respectively.

The Zdata button activates the Specify Zdata dialog box, which is used to enter the workspace variable containing the ZData for the selected map layer. Pressing the List button produces a list of all current workspace variables, from which the ZData variable can be selected. This entry can also be a scalar.


The Highlight button is used to toggle the selected map layer between highlighted and normal display.

The Members button brings up a list of members of the selected map layer. Members of a layer are defined by their Tag property.

The Delete button deletes the selected map layer from the map.
The Emode button activates the Layer Erase Mode dialog box, which is used to specify the erase mode of the selected map layer.

| Layer Erase Mode |  |
| :--- | :--- |
| Define Erase Mode |  |
| C normal |  |
| O none |  |
| © xor |  |
| © background |  |
| Apply | Cancel |

The Property button activates the Define Layer Properties dialog box, which is used to specify or change properties of all objects in the selected map layer. String entries must be enclosed in single quotes.

## mlayers



The Purge button deletes the selected map layer from the mlayers tool. Selecting Yes from the Confirm Purge dialog box deletes the map layer from both the mlayers tool and the map display. Selecting Data Only from the Confirm Purge dialog box deletes the map layer from the mlayers tool, while retaining the plotted object on the map display.

## See Also

mobjects rootlayr

## Purpose

Manipulate object sets plotted on a map axes

## Activation

| Command Line | Maptool |
| :--- | :--- |
| mobjects <br> mobjects $(h)$ | Tools $\Rightarrow$ Objects |

An object set is defined as all objects with identical tags. If no tags are supplied, object sets are defined by object type.
mobjects allows manipulation of the object sets on the current map axes.
mobjects ( h ) allows manipulation of the objects set on the map axes specified by the handle $h$.

## Controls

| Object Set |  | - $\square^{\text {a }} \times$ |  |
| :---: | :---: | :---: | :---: |
| File Edit Window Help |  |  |  |
| * text <br> ${ }^{*}$ Great Circle Track <br> * Small Circle <br> * surface |  |  |  |
|  |  |  |  |
| Hide |  | Delete |  |
| Zdata |  | Emode |  |
| Highlight |  | Property |  |
| Tag |  | Update |  |
| Stacking Order |  |  |  |
|  | Top Up | Dwn | Btm |

The scrollable list box displays all of the object sets associated with the map axes. An asterisk next to an object set name indicates that the object set is currently visible. An h next to an object set name indicates an object set that is
plotted, but currently hidden. The order shown in the list indicates the stacking order of objects within the same plane.

The Hide/Show button toggles the Visible property of the selected object set to 'off' and 'on', respectively, depending on the current Visible status.

The Zdata button activates the Specify Zdata dialog box, which is used to enter the workspace variable containing the ZData. The ZData property is used to specify the plane in which the selected object set is drawn. Pressing the List button produces a list of all current workspace variables, from which the ZData variable can be selected. Alternatively, a scalar value can be entered instead of a variable.


The Highlight button highlights all objects belonging to the selected object set.
The Tag button brings up an Edit Tag dialog box, which allows the tag of all members of the selected object set to be modified.

The Delete button clears all objects belonging to the selected object set from the map. The cleared object set remains associated with the map axes.

The Emode button activates the Object Erase Mode dialog box, which is used to specify the erase mode of the selected object set.


The Property button activates the Define Object Properties dialog box, which is used to specify additional properties of all objects in the selected object set. String entries must be enclosed in single quotes.


The Update button updates the list box display with current objects sets.
The Stacking Order buttons are used to modify the drawing order of the selected object set in relation to other plotted object sets in the same plane. Objects drawn first appear at the bottom of the stack, and objects drawn last appear at the top of the stack. The Top button places the selected object set above all other object sets in its plane. The Up and Dwn buttons move the selected object set up and down one place in the stacking order, respectively. The Btm button places the selected object set below all other object sets in its plane. Note that the ZData property overrides stacking order, i.e., if an object is at the top of the stacking order for its plane, it can still be covered by an object drawn in a higher plane.

## See Also <br> mlayers

## originui

## Purpose Modify a map origin

## Activation

| Command Line | Maptool |
| :--- | :--- |
| originui <br> originui on <br> originui off | Tools $\Rightarrow$ Origin (menu) <br> Origin (button) |

## Description

## Controls

See Also
axesm setm

## Purpose

## Activation

## Description

## Controls

Pan and zoom on a 2-D map display

| Command Line | Maptool |
| :--- | :--- |
| panzoom | Tools $\Rightarrow$ Zoom Tool (menu) |
| panzoom on | Zoom (button) |
| panzoom off |  |
| panzoom setlimits |  |
| panzoom out |  |
| panzoom fullview |  |

panzoom toggles the pan and zoom tool on and off.
panzoom on activates the pan and zoom tool.
panzoom off deactivates the pan and zoom tool.
panzoom setlimits sets the zoom out limits to the current settings on the map axes.
panzoom out zooms out to the current map axes limit settings.
panzoom fullview resets the axes to their full view range and resets the pan and zoom tool with these settings.

The pan and zoom tool provides an interactive means of defining zoom limits on a two-dimensional map display. A box that can be resized and moved appears on the map display and is used to define the zoom area. The box cannot be moved beyond the current axes limits.

## Mouse Interaction

With the cursor inside the zoom box, a single-click and drag moves the box. The zoom box can be resized by dragging the corners of the box. A double-click in the center of the box zooms in to the current boundaries of the box. A single-click outside the zoom box moves the box to that location. An extend-click inside or outside of the zoom box zooms out by a factor of two. Alternate-click exits the pan and zoom tool.

## Keyboard Interaction

The following keyboard interaction is enabled if the figure containing the map axes is made the active window.

Pressing the Return key sets the axes to the current zoom box and remains in pan and zoom mode. The Enter key sets the axes to the current zoom box and exits pan and zoom mode. Pressing the Esc or Delete keys exits pan and zoom mode.

## See Also zoom

## Purpose <br> Modifying map parallels

## Activation

| Command Line | Maptool |
| :--- | :--- |
| parallelui <br> parallelui on <br> parallelui off | Tools $\Rightarrow$ Parallels (menu) |

## Description

## Controls

See Also
axesm setm

## pcolorm, surfacem, surfm

## Purpose Project a geolocated data grid onto the current map axes

## Activation

| Command Line | Maptool |
| :--- | :--- |
| pcolorm <br> surfacem <br> surfm | Map $\Rightarrow$ General Surfaces |

## Description

pcolorm, surfacem, and surfm activate a Surface Map Input dialog box for projecting general surfaces onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Surface Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data of the surface to be projected.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data of the surface to be projected.

The Map variable edit box is used to specify the workspace variable containing the data grid.

The Altitude variable edit box is used to specify the workspace variable containing the altitude data of the surface to be projected. A scalar value can be entered to indicate the plane in which to display the object.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, map, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the
 must be enclosed in single quotes.

Pressing the Apply button accepts the input data and projects the surface object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Surface Map Input dialog box.

```
See Also
pcolorm surfacem surfm
```


## property editors

## Purpose <br> Edit properties of mapped objects using display-activated property editors

## Activation

map display: alternate-click on mapped object (for Click-and-Drag Property Editor)<br>double-click on mapped object<br>(for MATLAB Guide Property Editor)<br>maptool: Tools, Edit menu item (for MATLAB Guide Property Editor)

Description Alternate-clicking on a mapped object activates a property editor, which allows modification of some basic properties of the object through simple mouse clicks and drags. The objects supported by this editor are map axes, lines, text, patches, and surfaces, and the properties supported for each object type are shown below.

Double-clicking on a mapped object activates the MATLAB Guide Property Editor for that object. The Guide Property Editor provides a complete list of the properties and values of the selected object, allowing for modifications of the object.

## Controls

## Click-and-Drag Property Editor

The Click-and-Drag Editor lists object properties and values. The object tag appears at the top of the editor. Property names and values that appear in blue are toggles. For example, clicking Frame in the axes editor toggles the value of the Frame property between 'on' and 'off'.


[^6]Property values that appear on the right side of the editor box are modified by clicking and dragging. For example, to change the MarkerColor property of a line object, click and hold the dot next to MarkerColor, and drag the cursor until the dot appears in the desired color.
line
Marker
MarkerColor
MarkerSize
Color
Linevidth
LineStyle
Hide Delete
EXIT

Click-and-Drag Editor for a line object
The Drag control in the text editor is used to reposition the text string. In drag mode, use the mouse to move the text to a new location, and click to reposition the text. The Edit control in the text editor activates a Text Edit window, which is used to modify text.


Click-and-Drag Editor for a text object
The Marker property name in the patch editor is used to toggle the marker on and off. The property value to the right of Marker can be modified by clicking and dragging until the desired marker symbol appears.

## property editors



Click-and-Drag Editor for a patch object
The Graticule control on the surface editor activates a Graticule Mesh dialog box, which is used to alter the size of the graticule.

To move the property editor around the figure window, hold down the Shift key while dragging the editor box. Alternate-clicking on the background of the property editor closes the Click-and-Drag editing session.

## Guide Property Editor

The MATLAB Guide Property Editor allows for modification of property values for all properties applicable to the selected object. The Object Browser is used to expand and collapse the hierarchy of objects, showing an object's parents and children. A plus sign (+) before an object indicates that the object can be expanded to show its children. A minus sign (-) before an object indicates an object can be collapsed to hide its children. To activate the Object Browser, check the Show Object Browser check box. The Property List shows all the property names of the selected object and their current values. To activate the Property List, check the Show Property List check box. To change a property value, use the edit boxes above the Property List. Pressing the Close button closes the Guide Property Editor and applies the property modifications to the object.


MATLAB Guide Property Editor for a surface object
See Also
propedit guide uimaptbx

## qrydata

## Purpose Interactively perform data queries

## Activation

Description A data query is used to obtain the data corresponding to a particular ( $\mathrm{x}, \mathrm{y}$ ) or (lat,lon) point on a standard or map axes.
qrydata(cellarray) activates a data query dialog box for interactive queries of the data set specified by cellarray (described below). qrydata can be used on a standard axes or a map axes. ( $\mathrm{x}, \mathrm{y}$ ) or (lat, lon) coordinates are entered in the dialog box, and the data corresponding to these coordinates is then displayed.
qrydata(titlestr, cellarray) uses the string titlestr as the title of the query dialog box.
qrydata(h, cellarray) and qrydata(h, titlestr, cellarray) associate the data queries with the axes specified by the handle $h$, which in turn allows the input coordinates to be specified by clicking on the axes.

The input cellarray is used to define the data set and the query. The first cell must contain the string used to label the data display line. The second cell must contain the type of query operation, either a pre-defined operation or a valid user-defined function name. This input must be a string. The pre-defined query operations are 'matrix', 'vector', 'mapmatrix', and 'mapvector'.

The 'matrix' query uses the MATLAB interp2 function to find the value of the matrix $Z$ at the input ( $x, y$ ) point. The format of the cellarray input for this query is: \{'label', 'matrix' $, X, Y, Z$, method $\}$. $X$ and $Y$ are matrices specifying the points at which the data $Z$ is given. The rows and columns of $X$ and $Y$ must be monotonic. method is an optional argument that specifies the
interpolation method. Possible method strings are 'nearest', 'linear ', or 'cubic '. The default is 'nearest'.

The 'vector' query uses the MATLAB interp2 function to find the value of the matrix $Z$ at the input ( $x, y$ ) point, then uses that value as an index to a data vector. The value of the data vector at that index is returned by the query. The format of cellarray for this type of query is: \{'label' , 'vector' $, X, Y, Z$, vector $\}$. $X$ and $Y$ are matrices specifying the points at which the data $Z$ is given. The rows and columns of $X$ and $Y$ must be monotonic. vector is the data vector.

The 'mapmatrix' query interpolates to find the value of the map at the input (lat,lon) point. The format of cellarray for this query is:
\{'label','mapmatrix', datagrid, refvec, method\}. datagrid and refvec are the data grid and the corresponding referencing vector. method is an optional argument that specifies the interpolation method. Possible method strings are 'nearest', 'linear', or 'cubic'. The default is 'nearest'.
The 'mapvector' query interpolates to find the value of the map at the input (lat,lon) point, then uses that value as an index to a data vector. The value of the vector at that index is returned by the query. The format of cellarray for this type of query is \{'label', 'mapvector', datagrid, refvec, vector\}. datagrid and refvec are the data grid and the corresponding referencing vector. vector is the data vector.

User-defined query operations allow for functional operations using the input $(x, y)$ or (lat, lon) coordinates. The format of cellarray for this type of query is \{'label',function, other arguments...\} where the other arguments are the remaining elements of cellarray as in the four pre-defined operations above. function is a user-created function and must refer to an M-file of the form $z=f c n\left(x, y, o t h e r \_a r g u m e n t s . ..\right)$.
qrydata(..., cellarray1, cellarray2,...) is used to input multiple cell arrays. This allows more than one data query to be performed on a given point.

## qrydata

## Controls

## Examples

## Sample data query dialog box

If an axes handle $h$ is not provided, or if the axes specified by $h$ is not a map axes, the currently selected point is labeled as Xloc and Yloc at the top of the query dialog box. If $h$ is a map axes, the current point is labeled as Lat and Lon. Displayed below the current point are the results from the queries, each labeled as specified by the 'label' input arguments.

The Get button appears if an axes handle $h$ is provided. Pressing this button activates a mouse cursor, which is used to select the desired point by clicking on the axes. Once a point is selected, the queries are performed and the results are displayed.

The Process button appears if the handle $h$ is not provided. In this case, the $(x, y)$ coordinates of the desired point are entered into the edit boxes. Pressing the Process button performs the data queries and displays the results.

Pressing the Close button closes the query dialog box.
The following example can be found in the wrlddemo query demo provided with the Mapping Toolbox. The call to qrydata creates a query dialog box that enables the user to click on the map display and retrieve the name of the country corresponding to that point.

```
load worldmtx
axesm robinson
colormap(clrmap)
meshm(datagrid,refvec)
qrydata(gca,'Data Query',{'Country:','mapvector',...
    datagrid,refvec,strvcat(nations(:).name)})
```



The next example makes use of a user-defined query to display city names for map points specified by a mouse click.

```
axesm miller
load worldlo
lat = [PPtext.lat]';
lon = [PPtext.long]';
mat = strvcat(PPtext.string);
displaym(POline)
displaym(PPpoint)
qrydata(gca,'City Data',{'City','qrytest',lat,lon,mat})
```

The following code would be contained in the M-file qrytest, created by the user.

```
% function QRYTEST returns city name for mouse click
% QRYTEST will find the closest city (min radius) from
```

```
% the mouse click, within an angle of 5 degrees.
%
latdiff=lt-lat;londiff=lg-lon;
rad = sqrt(latdiff.^2+londiff.^2);
[minrad,index]=min(rad);
if minrad > 5; index = []; end;
switch length(index)
    case 0, cityname='No city located near click';
    case 1, cityname=mat(index,:);
    end
```



Clicking the mouse over a city marker displays the name of the selected city. Clicking the mouse in an area away from any city markers displays the string 'No city located near click'.

See Also interp2 qrydemo wrlddemo

## Purpose Project a 3-D quiver plot onto the current map axes

## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| quiver3m | Map $\Rightarrow$ Quiver 3D |

quiver3m activates a Quiver3 Map Input dialog box to project a three-dimensional quiver plot onto the current map axes. The vectors ( $u, v, w$ ) are displayed at the points (latitude, longitude, altitude) on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Quiver3 Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data for the quiver plot.

## quiver3m

The Longitude variable edit box is used to specify the workspace variable containing the longitude data for the quiver plot.

The Altitude variable edit box is used to specify the workspace variable containing the altitude data for the quiver plot.
The U Component variable edit box is used to specify the workspace variable containing the $u$ vector component data.

The V Component variable edit box is used to specify the workspace variable containing the $v$ vector component data.

The W Component variable edit box is used to specify the workspace variable containing the w vector component data.
Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, altitude, $u$, $v$, and $w$ variables can be selected.

The Scale edit box is used to enter the workspace variable containing the scale factor applied to the projected vectors. The vector lengths are automatically determined to make them as long as possible without overlapping. The vector lengths are then multiplied by scale. A scale of 0.5 results in vectors half as long as they would be with the default scale of 1 . A scale of 0 suppresses automatic scaling, and the vector lengths are determined from the inputs. In this case, the vectors are plotted from (latitude, longitude, altitude) to (latitude $+u$, longitude $+v$, altitude+w). A scalar value for scale can be entered instead of a variable name.

The Linespec edit box is used to enter a line specification, such as ' $-r^{*}$ ', for the quiver plot. If a symbol is given in the linespec string, it is plotted at the beginning of the vectors. If no symbol is given in the linespec string, arrows are plotted at the end of the vectors.

The Filled Base Marker check box is used to specify a filled-in symbol at the beginning of each vector.

Pressing the Apply button accepts the input data and projects the quiver plot onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Quiver3 Map Input dialog box.

See Also quiver3m

## Purpose

Project a 2-D quiver plot onto the current map axes

## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| quiverm | Map $\Rightarrow$ Quiver 2D |

quiverm activates a Quiver Map Input dialog box to project a two-dimensional quiver plot onto the current map axes. Vectors with components ( $u, v$ ) are displayed at the points (latitude, longitude) on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Quiver Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data for the quiver plot.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data for the quiver plot.

## quiverm

The U Component variable edit box is used to specify the workspace variable containing the $u$ vector component data.

The V Component variable edit box is used to specify the workspace variable containing the v vector component data.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, $u$, and $v$ variables can be selected.

The Scale edit box is used to enter the workspace variable containing the scale factor applied to the projected vectors. The vector lengths are automatically determined to make them as long as possible without overlapping. The vector lengths are then multiplied by scale. For example, a scale value of 0.5 results in vectors half as long as they would be with the default scale of 1 . A scale of 0 suppresses automatic scaling, and the vector lengths are determined from the inputs. In this case, the vectors are plotted from (latitude, longitude) to (latitude $+u$, longitude $+v$ ). A scalar value for scale can be entered instead of a variable name.

The Linespec edit box is used to enter a line specification, such as ' $-r^{*}$ ', for the quiver plot. If a symbol is given in the linespec string, it is plotted at the beginning of the vectors. If no symbol is given in the linespec string, arrows are plotted at the end of the vectors.

The Filled Base Marker check box is used to specify a filled-in symbol at the beginning of each vector.

Pressing the Apply button accepts the input data and projects the quiver plot onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Quiver Map Input dialog box.

See Also quiverm

## Purpose

## Activation

| Command Line | Maptool |
| :--- | :--- |
| scatterm | Map $\Rightarrow$ Scatter |

## Description

Project a symbol map on the current map axes
scatterm activates a Scatter Map Input dialog box to project a symbol plot onto the current map axes. A symbol map displays symbols proportionally sized to the data.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Scatter Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude coordinates for the scatter plot.

The Longitude variable edit box is used to specify the workspace variable containing the longitude coordinates for the scatter plot.

The Marker size variable edit box is used to specify the workspace variable containing the marker weights. The markers areas proportionally sized based on these weights. The marker size can also be a scalar, which is applied to all markers.

The Marker Color Variable edit box is used to specify the workspace variable containing the marker color data. The marker color data is linearly mapped to the colors in the colormap. The marker color data can also be a vector of RGB values or a color string.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude marker size, and color variables can be selected.

The Marker Style popup menu is used to select the marker type..
The Filled check box is used to select unfilled (the default) or filled markers.
Pressing the Apply button accepts the input data and projects the scatter plot onto the current map axes.
Pressing the Cancel button disregards any input data and closes the Scatter Map Input dialog box.

See Also scatterm

## Purpose

Display small circles on a map axes

## Activation

| Command Line | Maptool |
| :--- | :--- |
| scirclui <br> scirclui $(h)$ | Display $\Rightarrow$ Small Circles |

## Description

scirclui activates the Define Small Circles dialog box for adding small circles to the current map axes.
scirclui(h) activates the Define Small Circles dialog box for adding small circles to the map axes specified by the axes handle $h$.

## Controls



Define Small Circles dialog box for one-point mode

## scirclui

The Style selection buttons are used to specify whether the circle radius is a constant great circle distance or a constant rhumb line distance.

The Mode selection buttons are used to specify whether one point or two points are to be used in defining the small circle. If one-point mode is selected, a center point, radius, and azimuth are the required inputs. If two-point mode is selected, a center point, and perimeter point on the circle are the required inputs.

The Center Point controls are used in both one-point and two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the center point of the small circle to be displayed. These values must be in degrees. To display more than one small circle, a vector of values can be entered, enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select a center point by clicking on the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Circle Point controls are used only in two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of a point on the perimeter of the small circle to be displayed. These values must be in degrees. To display more than one small circle, a vector of values can be entered, enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select a perimeter point by clicking on the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Size and Sector controls are used only in one-point mode. The Radius Units button brings up a Define Radius Units dialog box, which allows for modification of the small circle radius units and the normalizing geoid. The Rad edit box is used to enter the radius of the small circle in the proper units. The Arc edit box is used to specify the sector azimuth, measured in degrees, clockwise from due north. If the entry is omitted, a complete small circle is drawn. When entering radius and arc data for more than one small circle, vectors of values, enclosed in brackets, are entered in each edit box. Pushing the Rad or Arc button brings up an expanded edit box for that entry, which is useful for entering long vectors.

The $\mathbf{Z}$ Plane edit box is used to enter a scalar value that specifies the plane in which to display the small circles.

The Other Properties edit box is used to specify additional properties of the small circles to be projected, such as 'Color' ' 'b'. String entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and displays the small circles on the current map axes.

Pressing the Cancel button disregards any input data and closes the Define Small Circles dialog box.

## Define Radius Units Dialog Box

This dialog box, available only in one-point mode, allows for modification of the small circle radius units and the normalizing geoid.


The Radius Units pull-down menu is used to select the units of the small circle radius. The unit selected is displayed near the top of the Define Small Circles dialog box, and all latitude and longitude entries must be entered in these
units. Users must also be sure to specify the normalizing geoid in the same units. If radians are selected, it is assumed the radius entry is a multiple of the radius used to display the current map, as defined by the map geoid property.

The Normalizing Geoid edit box is used modify the radius used to normalize the small circle radius to a radian value, which is necessary for proper calculations and map display. This entry must be in the same units as the small circle radius. If the small circle radius units are in radians, then the normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define Radius Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define Small Circles dialog box.

## See Also

```
scircle1 scircle2 point
```


## Purpose

## Activation

## Description

Encode a regular surface map

## Command Line

seedm(datagrid,refvec)

Encoding is the process of filling in specific values in regions of a data grid up to specified boundaries, which are indicated by entries of 1 in the variable map. Encoding entire regions at one time allows indexed maps to be created quickly.
seedm(datagrid, refvec) displays the surface map in a new figure window and allows for seeds to be specified and the encoded map generated. The encoded map can then be saved to the workspace. map is the data grid and must consist of positive integer index values. refvec is the referencing vector of the surface.

## Controls

The Zoom On/Off menu toggles the zoom box on and off. The box can be moved by clicking on the new location or by dragging the box to the new location. The box size can be increased or decreased by dragging a corner of the box. Pressing the Return key or double-clicking in the center of the box zooms in to the box limits.

The Colormaps menu provides a variety of colormap options that can be applied to the map. See clrmenu in this guide for a description of the Colormaps menu options.

The Get button allows mouse selection of points on the map to which seeds are assigned. The number of points to be selected is entered in the \# of Seeds edit box. The value of the seed is entered in the Value edit box. This seed value is assigned to each point selected with the mouse. The Get button is pressed to begin mouse selection. After all the points have been selected, the Fill In button is pressed to perform the encoding operation. The region containing the seed point is filled in with the seed value. The Reset button is used to disregard all points selected with the mouse before the Fill In button is pressed.

Alternatively, specific map values can be globally replaced by using the From/To edit boxes. The value to be replaced is entered in the first edit box, and the new value is entered in the second edit box. Pressing the Change button replaces all instances of the From value to the To value in the map.

Note Values of 1 represent boundaries and should not be changed.

The Save button is used to save the encoded map to the workspace. A dialog box appears in which the map variable name is entered.

See Also colorm encodem getseeds maptrim

## Purpose

Show mapped objects

## Activation

## Description

## Controls

See Also showm
The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the Ok button changes the Visible property of the selected objects to ' on '. Pushing the Cancel button aborts the operation without changing any properties of the selected objects.

## Purpose Project a stem plot onto the current map axes

## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| stem 3 m | Map $\Rightarrow$ Stem |

stem3m activates a Stem Map Input dialog box for projecting a stem plot onto the current map axes. A stem plot displays data as lines extending perpendicular to the $x y$-plane on the map.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Stem Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude coordinates for the stem plot.

The Longitude variable edit box is used to specify the workspace variable containing the longitude coordinates for the stem plot.

The Stem Height variable edit box is used to specify the workspace variable containing the stem height data.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, and stem height variables can be selected.

The Other Properties edit box is used to specify additional properties of the stem lines to be projected, such as 'Color', ' $r$ '. String entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and projects the stem plot onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Stem Map Input dialog box.

## See Also <br> stem3m

## Purpose Interactively calculate distance, azimuth, and reckoning

## Activation

| Command Line | Maptool |
| :--- | :--- |
| surfdist <br> surfdist $(h)$ <br> surfdist $[[])$ | Display $\Rightarrow$ Surface $\Rightarrow$ Distances |

## Description

surfdist activates the Surface Distance dialog box for the current axes only if the axes has a proper map definition. Otherwise, the Surface Distance dialog box is activated, but is not associated with any axes.
surfdist (h) activates the Surface Distance dialog box for the axes specified by the handle $h$. The axes must be a map axes.
surfdist ([]) activates the Surface Distance dialog box and does not associate it with any axes, regardless of whether the current axes has a valid map definition.

## Controls



The Style selection buttons are used to specify whether a great circle or rhumb line is used to calculate the surface distance. When all other entries are provided, selecting a style updates the surface distance calculation.
The Mode selection buttons are used to specify whether one point or two points are to be used in defining the track distance. If one-point mode is selected, a starting point, azimuth, and range are the required inputs, and the ending point is computed. If two-point mode is selected, starting and ending points of the track are required, and the azimuth and distance along this track are then computed.

The Show Track check box is used to indicate whether the track is shown on the associated map display. The track is deleted when the Surface Distance dialog box is closed, or when the Show Track box is unchecked and the surface distance calculations are recomputed.

The Starting Point controls are used for both one-point and two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the starting point of the track. These values must be in degrees. Only one starting point can be entered. The Mouse Select button is used to select a starting point by clicking on the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Ending Point controls are enabled only for two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the ending point of the track. These values must be in degrees. Only one ending point can be entered. The Mouse Select button is used to select an ending point by clicking on the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection. During one-point mode, the Ending Point controls are disabled, but the ending point that results from the surface distance calculation is displayed.
The Direction controls are enabled only for one-point mode. The Range Units button brings up a Define Range Units dialog box which allows for modification of the range units and the normalizing geoid. The Az edit box is used to enter the azimuth, which sets the initial direction of the track from the starting point. Azimuth is measured in degrees clockwise from due north. The Rng edit box is used to specify the reckoning range of the track, in the proper units. The azimuth and reckoning range, along with the starting point, are
used to compute the ending point of the track in one-point mode. During two-point mode, the Direction controls are disabled, but the azimuth and range values resulting from the surface distance calculation are displayed.

Pressing the Close button disregards any input data, deletes any surface distance tracks that have been plotted, and closes the Surface Distance dialog box.

Pressing the Compute button accepts the input data and computes the specified distances.

## Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range units and the normalizing geoid.


The Range Units pull-down menu is used to select the units of the reckoning range. The unit selected is displayed near the top of the Surface Distance dialog box, and all latitude and longitude entries must be entered in these units. Users must also be sure to specify the normalizing geoid in the same units. If radians are selected, it is assumed the range entry is a multiple of the radius of the normalizing geoid. In this case, the normalizing geoid must be the same as the geoid used to display the current map.

The Normalizing Geoid edit box is used modify the radius used to normalize range entries to radian values, which is necessary for proper calculations and map display. This entry must be in the same units as the range units. If the range units are in radians, then the normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Surface Distance dialog box.

Purpose Display a lighted data grid warped to a projected graticule

## Activation

## Command Line

```
surflm
```


## Description

surflm activates a Surflm Map Input dialog box to project a lighted map surface onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Surflm Map Input dialog box appears.

## Controls



The Latitude variable edit box is used to specify the workspace variable containing the latitude data of the surface to be projected.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data of the surface to be projected.

The Map variable edit box is used to specify the workspace variable containing the data grid.

The Light Location edit box is used to specify the workspace variable containing the direction of the light source. This can be a three-element vector of the form [xy z] or a two-element vector of the form [azimuth elevation]. If omitted, the default is 45 degrees counterclockwise from the current view direction.

The Coefficients edit box is used to specify the workspace variable containing the relative contributions of ambient light, diffuse reflection, specular reflection, and the specular shine coefficient. This is a four-element vector of the form [ka kd ks shine]. If the entry is omitted, the default is [. 55 . 6 . 4 10].

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, map, light location, and coefficient variables can be selected.

Pressing the Apply button accepts the input data and projects the lighted surface object onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Surflm Map Input dialog box.

See Also
surflm

## Purpose Edit the tag of mapped objects

## Activation

## Command Line

tagm
tagm(h)

## Description

## Controls Select Object Dialog Box



The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for objects. Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the Ok button activates the Edit Tag dialog box. Pushing the
tagm brings up a Select Object dialog box for selecting mapped objects and changing their Tag property. Upon selecting the objects, the Edit Tag dialog box is activated, in which the new tag is entered.
tagm (h) activates the Edit Tag dialog box for the objects specified by the handle $h$.

Cancel button aborts the operation without changing any properties of the selected objects.

## Edit Tag Dialog Box



The new tag string is entered in the edit box. Pressing the Apply button changes the Tag property of all selected objected to the new tag string. Pressing the Cancel button closes the Edit Tag dialog box without changing the Tag property of the selected objects.

## See Also tagm

## Purpose Project text on the current map axes

## Activation

## Description

| Command Line | Maptool |
| :--- | :--- |
| textm | Map $\Rightarrow$ Text |

textm activates a Text Map Input dialog box, which accepts input data to project a text object onto the current map axes.

If no map axes are current, a No Map Axes dialog box appears. Choose Yes to activate the Projection Control dialog box for defining map axes properties. Upon creation of the map axes, the Text Map Input dialog box appears.

## Control



The Text variable/string edit box is used to specify the workspace variable containing the text strings to be projected. A single text string can also be entered, provided it is enclosed in single quotes. Multiple lines of text can be entered using a cell array.

The Latitude variable edit box is used to specify the workspace variable containing the latitude data for the text string(s) to be projected. If a single text string is to be plotted, a scalar latitude value can be entered.

The Longitude variable edit box is used to specify the workspace variable containing the longitude data of the text object(s) to be projected. If a single text string is to be plotted, a scalar longitude value can be entered.

The Scalar Altitude edit box is used to specify the workspace variable containing the $z$-axis altitudes of the text object(s) to be projected. If a single text string is to be plotted, a scalar altitude value can be entered.

Pressing the List button produces a list of all current workspace variables, from which the latitude, longitude, and altitude variables can be selected.

The Other Properties edit box is used to specify additional properties of the text object(s) to be projected, such as 'FontSize' , 12. String entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and projects the text object(s) onto the current map axes.

Pressing the Cancel button disregards any input data and closes the Text Map Input dialog box.

## See Also <br> textm

## Purpose Display great circles and rhumb lines on a map

## Activation

| Command Line | Maptool |
| :--- | :--- |
| trackui <br> trackui $(\mathrm{h})$ | Display $\Rightarrow$ Tracks |

Description
trackui activates the Define Tracks dialog box for adding great circle or rhumb line tracks to the current map axes.
trackui (h) activates the Define Tracks dialog box for adding great circle or rhumb line tracks to the map axes specified by the axes handle $h$.

## Controls



Define Tracks dialog box for two-point mode

The Style selection buttons are used to specify whether a great circle or rhumb line track is displayed.

The Mode selection buttons are used to specify whether one point or two points are to be used in defining the track. If one-point mode is selected, a starting point, azimuth, and range are the required inputs. If two-point mode is selected, starting and ending points are required.

The Starting Point controls are used for both one-point and two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the starting point of the track to be displayed. These values must be in degrees. To display more than one track, a vector of values can be entered, enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select a starting point by clicking on the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Ending Point controls are used only for two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the ending point of the track to be displayed. These values must be in degrees. To display more than one track, a vector of values can be entered, enclosed in brackets, in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select an ending point by clicking on the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Direction controls are used only for one-point mode. The Range Units button brings up a Define Range Units dialog box, which allows for modification of the range units and the normalizing geoid. The $\mathbf{A z}$ edit box is used to enter the azimuth, which sets the initial direction of the track from the starting point. Azimuth is measured in degrees clockwise from due north. The Rng edit box is used to specify the range of the track, in the proper units. If the range entry is omitted, a complete track is drawn. When inputting azimuth and range data for more than one track, vectors of values, enclosed in brackets, are entered in each edit box. Pushing the Az or Rng button brings up an expanded edit box for that entry, which is useful for entering long vectors.

## trackui

The $\mathbf{Z}$ Plane edit box is used to enter a scalar value that specifies the plane in which to display the tracks.

The Other Properties edit box is used to specify additional properties of the tracks to be projected, such as 'Color ' , 'b'. String entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and displays the tracks on the current map axes.

Pressing the Cancel button disregards any input data and closes the Define Tracks dialog box.

## Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range units and the normalizing geoid.


The Range Units pull-down menu is used to select the units of the track range. The unit selected is displayed near the top of the Define Tracks dialog box, and all latitude and longitude entries must be entered in these units. Users must also be sure to specify the normalizing geoid in the same units. If radians are selected, it is assumed the range entry is a multiple of the radius used to display the current map.

The Normalizing Geoid edit box is used to modify the radius used to normalize range entries to radian values, which is necessary for proper calculations and map display. This entry must be in the same units as the range units. If the range units are in radians, then the normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define Tracks dialog box.

## See Also track1 track2

Purpose Process mouse button down callbacks for mapped objects

Activation set the ButtonDownFcn property to 'uimaptbx'

Description

See Also
axesm axesmui property editors

Purpose

## Activation

## Description

## Command Line

zdatam
zdatam(h)
zdatam(str)
Adjust the $z$-plane of mapped objects
zdatam brings up a Select Object dialog box for selecting mapped objects and adjusting their ZData property. Upon selecting the objects, the Specify Zdata dialog box is activated, in which the new ZData variable is entered. Note that not all mapped objects have the ZData property (for example text objects).
zdatam (h) activates the Specify Zdata dialog box for the objects specified by the handle $h$.
zdatam(str) activates the Specify Zdata dialog box for the objects identified by str, where str is any string recognized by handlem.

## Controls Select Object Dialog Box



The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the Ok button activates another Specify Zdata dialog box. Pushing the Cancel button aborts the operation without changing any properties of the selected objects.

## Specify ZData Dialog Box



The Zdata Variable edit box is used to specify the name of the ZData variable. Pressing the List button produces a list of all current workspace variables, from which the ZData variable can be selected. A scalar value or a valid MATLAB expression can also be entered. Pressing the Apply button changes the ZData property of all selected objected to the new values. Pressing the Cancel button closes the Specify ZData dialog box without changing the ZData property of the selected objects.
See Also ..... zdatam

## zdatam

## Atlas Data

## Types of Data

The Mapping Toolbox includes a number of data sets for global and regional displays. Map data is available in both vector and matrix format, covering the world and the United States. The Mapping Toolbox also provides astronomical data for simple stellar cartography.

More detailed data is available over the Internet or on CD-ROM and can be imported to MATLAB using the data interface functions listed in "Geospatial Data Import and Access" on page 10-46.

## World Vector Data

## Coastlines

The coast MAT-file contains a set of vector shorelines intended for global displays in which political boundaries are not required. The data is stored in vectors of latitude and longitude, consisting of nearly 10,000 points. While this a considerable quantity of data, it is of very low resolution by cartographic standards.

```
load coast
whos
Name Size Bytes Class
    lat 9589x1 76712 double array
    long 9589x1 76712 double array
Grand total is 19178 elements using 153424 bytes
```

The data set is in patch format, meaning it has polygon segments that return to their starting points and can therefore be usefully displayed using patch functions. The polygon segments are separated by NaNs into about 240 faces. The data can also be displayed as lines or points.

```
axesm giso; framem; gridm
patchesm(lat,long,'FaceColor',0.75*[1 1 1])
```



The resolution for this data set makes it ideal for global-scale displays but inappropriate for significantly smaller regions, as can be seen when the region around Cape Cod in the northeastern United States is displayed. This is, incidentally, the area covered by the cape MAT-file provided with MATLAB.

```
figure
axesm('MapProjection','mercator',...
    'MapLatLimit',[41 44],'MapLonLimit',[-72 -69])
framem
gridm('MLineLocation',1,'PLineLocation',1);
mlabel('MLabelLocation',1)
plabel('PLabelLocation',1)
patchesm(lat,long,'FaceColor',.75*[[1 1 1])
```



## Low-Resolution World Atlas Data

The worldlo global atlas data contains a set of very small-scale (approximately $1: 30,000,000)$ data for use in global displays. The data is provided in the form of Mapping Toolbox geographic data structures containing national boundaries, rivers, lakes, and cities. Here is a list of the structures in the worldlo MAT-file:
load worldlo
whos
Name Size Bytes Class

| DNline | $1 \times 2$ |
| :--- | :--- |
| DNpatch | $1 \times 39$ |
| POline | $1 \times 2$ |
| POpatch | $1 \times 208$ |
| POtext | $1 \times 197$ |


| 112226 | struct array |
| ---: | :--- |
| 50092 | struct array |
| 456216 | struct array |
| 645030 | struct array |
| 131670 | struct array |


| PPpoint | $1 \times 319$ | 278154 | struct array |
| :--- | :--- | ---: | :--- |
| PPtext | $1 \times 318$ | 205628 | struct array |
| description | $4 \times 75$ | 600 | char array |
| gazette | $1 \times 513$ | 244476 | struct array |
| source | $2 \times 63$ | 252 | char array |

Grand total is 215687 elements using 2124344 bytes
The data has been classified into Drainage (DN), Political/Ocean boundaries (PO), and Populated Places (PP). The data is further separated into structures containing patches, lines, points, or text.

In addition to containing more kinds of data than coast, this data set is also more detailed. The drainage data consists of about 7,000 points, while the political lines and patches each have about 30,000 points. There are more than 200 political units in the political data and more than 300 major cities in populated places. Because of the quantity of data, complicated displays may take longer to project and render. Displays of patches require the greatest memory and computing time.

The contents of the structures can be displayed from the command line using displaym. For example, type the following:

```
axesm mollweid; framem; gridm
displaym(POline)
displaym(PPpoint)
```

Here is the result:


The map displays the coastlines, international borders, and major cities of the world. We could also label the cities with data from the PPtext structure, but at this scale, the result would be unreadable. When you restrict yourself to a smaller geographic region, more information can be shown:

```
figure
axesm('Mapprojection','eqaconic','MapParallels',[],...
    'MapLatLimit',[30 60],'MapLonLimit',[-15 45],...
    'MLabelLocation',15,'MLineLocation',15,...
    'PLabelLocation',15,'PLineLocation',15,...
    'GColor',.5*[\begin{array}{lll}{1}&{1}&{1],'GLineStyle',' -')}\end{array})
framem; gridm; mlabel; plabel
displaym(POline)
displaym(PPpoint)
h = displaym(PPtext); trimcart(h)
```

The zoomed-in region of Europe allows the names of the major cities to be read more easily:


Note Unlike vector and matrix data, text objects are not automatically trimmed when they fall outside the map frame limits. You can remove them using the trimcart function or some other method (e.g., click-on-text and deletem(gco), or use click-and-drag tools).

There are other ways to represent political data. We can display the countries as patches, label them with strings from the POtext structure, and pick random colors for the patch faces. Clear the previous line map, and redraw the patch map:

```
clma
displaym(POpatch); polcmap
h = displaym(POtext); trimcart(h); zdatam(h,1)
```

Here is the result:


Note how the separated parts of countries are filled with the same colors.
Sardinia and Sicily, for example, are shaded the same color as the boot of Italy. This is accomplished automatically because each of the components is tagged as "Italy."

Every element in a worldlo structure has a tag field. Drainage data has been tagged to distinguish between rivers and lakes. The political/ocean lines are tagged as coastlines or international boundaries, and the political patches are tagged with the names of the countries. Both of the functions displaym and mlayers use the same colors for similarly tagged objects if no otherproperty is specified in the geographic data structure.

In the following example, it is evident that the many islands of Indonesia and Canada are similarly colored, as are all parts of the United States:

```
figure
axesm mollweid; framem; gridm
displaym(POpatch)
```



There is also a corresponding set of patches for the oceans. These can be used to blank out objects in ocean areas. The data is stored separately in the oceanlo.mat file, but it can be accessed using the worldlo atlas function. The patches are in large tiles with few points along the edges, which may result in visible seams for noncylindrical projections. You can use interpm to fill in points at a sufficiently fine spacing.

```
[lat,lon] = extractm(worldlo('oceanmask'));
[lat,lon] = interpm(lat,lon,5);
axesm('bries','GAlt', -1,'MLineLocation',5,'PLineLocation',5,...
    'GLineStyle','-')
framem; gridm
```

```
    patchesm(lat,lon,'c','EdgeColor','none')
```



You can use the tags to reduce the amount of data in the display by selectively deleting data. Youdo this by displaying all the data in a structure and then using the tags to get the handles of the displayed objects you want to remove. The first European example made use of this technique, as does the next one. It shows rivers, lakes, and coastlines. International boundaries have been removed using their tags:

```
clma
axesm mollweid; framem; gridm
displaym(POline)
delete(handlem('International Boundary'))
displaym(DNline)
```

Here is the map of world coastlines and drainage:


There are a number of other ways to work with the tags associated with this data. You can view the tags in the workspace by working directly with the geographic data structure.

```
unique(strvcat(DNline.tag),'rows')
ans =
Inland shorelines
Streams,rivers,channelized rivers
```

Or you can use mlayers and mobjects to plot the structures, view the tags, and manipulate similarly tagged objects as a group. See theGUI reference pages for mlayers and mobjects for some examples.
You can also use the tags to extract data from the structures. The following commands extract the patch data for Canada and plot it with the political line data:

```
figure
axesm('MapProjection','eqaconic','MapParallels',[],...
    'MapLatLimit',[40 90],'MapLonLimit',[-150 -45],...
    'MLabelLocation',15,'MLineLocation',15,...
    'PLabelLocation',15,'PLineLocation',15,...
    'GColor',.5*[1 1 1],'GLinestyle','-',...
    'MLabelParallel','south')
framem; gridm; mlabel; plabel
displaym(POline)
```

```
[clat,clon] = extractm(POpatch,'canada');
patchesm(clat,clon,'g')
```



Note Extracting and displaying only the desired data can reduce the time and memory required to display a map.

The Mapping Toolbox automatically trims and saves data outside the current map latitude and longitude limits. If you use displaym to show a small part of the world, the rest of the world data is retained within the map axes structure. Every time the projection parameters are changed, all of the world data is restored, trimmed, and projected. This overhead can be significant for a data set as large as worldlo. It is best to finalize the projection parameters before plotting a lot of data.

Apply the extraction technique to generate a display of Cape Cod. As was shown in the earlier examples, this data contains somewhat generalized shapes for the countries and rivers. The level of detail is great enough for global and regional maps, but the distinct data points become noticeable when displayed for smaller regions. This data should be considered accurate to no better than 10 or 20 kilometers. For more accurate data, see the usahi atlas
data or the high-resolution data accessible through the external interfaces listed in "Geospatial Data Import and Access" on page 10-46.

```
    figure
    axesm('MapProjection','mercator','Frame','on',...
        'MapLatLimit',[41 44],'MapLonLimit',[-72 -69])
    gridm('MLineLocation',1,'PLineLocation',1)
    mlabel('MLabelLocation',1); plabel('PLabelLocation',1)
    h = displaym(POpatch,'united states');
    set(h,'FaceColor',.5*[\begin{array}{lll}{1}&{1}&{1}\end{array}])
```



There are some more convenient ways of working with the worldlo atlas data. The worldmap function makes it easy to create map displays. Just specify the region or country you want to map. This function handles the cartographic details like selecting a projection, setting the map limits, and setting the origin and the grid and label spacings. You can also use the worldlo interface function to load one of the atlas data structures as an argument to a function, or load just that structure into the workspace.

Make a map of Africa with filled patches, and add the locations of major cities to the display.

```
worldmap('africa','patch'); polcmap(256)
```

```
    h = displaym(worldlo('PPpoint')); setm(h,'Color','r')
```



You can also use the worldlo atlas data to look up names and locations. All the names mentioned in the POtext and PPtext structures are collected in a gazette structure, which you can query using extractm. For example, you can find the location of the city of Antananarivo on the island of Madagascar by using the following commands:

```
[lat,long,indx] = extractm(gazette,'antan');
gazette(indx)
ans =
    type: 'line'
    otherproperty: []
            tag: 'Antananarivo'
        string: 'Populated Place Name'
        altitude: []
            lat: -18.9141
            long: 47.5258
```

A much more extensive gazette feature can be found in the Digital Chart of the World (DCW), containing more than 10,000 names, compared to about 500 in the worldlo MAT-file. See "Vector Map Products" on page 10-47, for more information on the DCW and related exchange formats.

## High-Resolution World Atlas Data

The worldhi global atlas data contains a set of very large-scale (approximately $1: 1,000,000)$ data for use in regional displays. The data is provided in the form of Mapping Toolbox geographic data structures containing national boundaries, ocean names, and some cities.

You can request the outline of a particular country by providing the name. For a complete list of names, type worldhi with no arguments.

```
worldhi
WORLDLO atlas data:
Geographic Data Structures:
    POpatch - Countries as patches
    POtext - Names of water bodies as text
    PPpoint - Major cities as points
    PPtext - Major cities as text labels
Countries in the WORLDHI database:
    Afghanistan
    Agalega Island (MAU)
    Albania
    Alderney (UK)
    Algeria
    American Samoa (USA)
    Andorra
    ...
```

When you provide a country name, worldhi returns a geographic data structure containing the NaN-clipped vectors with the outline of the mainland and islands. The result also contains some additional fields over those required
by the definition of the geographic data structure. The latlim and lonlim fields contain the limits of a bounding box for the country in its entirety. The area field contains the area (in units of square kilometers) and the latitude and longitude limits the bounding box for each of the mainland and islands.

```
worldhi('Haiti')
ans =
    type: 'patch'
    otherproperty: {}
        altitude: []
            lat: [2011x1 double]
            long: [2011x1 double]
            tag: 'Haiti'
            latlim: [18.021 20.088]
            longlim: [-74.479 -71.613]
            area: [5x1 double]
            latlims: [5x2 double]
            longlims: [5x2 double]
            sname: 'Haiti'
```

You can request more than one country at a time by providing a string matrix or a cell array of strings.

```
worldhi({'Haiti','Dominican Republic'})
ans =
1x2 struct array with fields:
    type
    otherproperty
    altitude
    lat
    long
    tag
    latlim
    longlim
    area
    latlims
    longlims
```

sname
The geographic data structures can be displayed on a map axes with displaym, or extracted to vectors of latitude and longitude with extractm.

```
axesm miller
displaym(worldhi({'Haiti','Dominican Republic'}))
polcmap
```



You can also have worldhi return all country outlines present within a geographic quadrangle. Here are the outlines for parts of countries that fall within the requested latitude and longitude limits. Note that worldhi omits islands or the mainland of a country with bounding boxes that fall outside the requested limits.

```
latlim = [15 25]; lonlim = [-80 -65];
s = worldhi(latlim,lonlim);
strvcat(s.tag)
ans =
Bahamas, The
Cayman Islands (UK)
Cuba
Dominican Republic
Haiti
Jamaica
Navassa Island (USA)
```

```
Puerto Rico (USA)
Turks and Caicas Islands (UK)
Virgin Islands, U.S. (USA)
```

While you can build up your own map displays using low-level functions like axesm and displaym, the easy way to make a base map from this data is with the worldmap function. The worldhi function takes care of cartographic details like selecting a projection, setting standard parallels, and grid and label increments. Here is a base map for the same area.


The optional arguments to worldhi can be used to omit islands smaller than some threshold, or to control how names are matched. You may have noticed the political affiliations in the names of some of the islands in the previous example. Here is an example that extracts all the entries in the worldhi database showing affiliation with the United Kingdom.

```
s = worldhi('(UK)','findstr');
strvcat(s.tag)
ans =
```

```
Alderney (UK)
Bermuda (UK)
British Indian Ocean Territory (UK)
Cayman Islands (UK)
Falkland Islands [Islas Malvinas] (UK)
Gibraltar (UK)
Gough Island (UK)
Guernsey (UK)
Jersey (UK)
Montserrat (UK)
Pitcairn Islands (UK)
Saint Helena (UK)
South Georgia and the South Sandwich Islands (UK)
Tristan da Cunha Group (UK)
Turks and Caicas Islands (UK)
United Kingdom (UK)
Virgin Islands, British (UK)
```

In addition to the country outline, the worldhi database also contains some information that complements the worldlo data. The POtext structure contains a list of ocean names that you can use to annotate map displays.

```
axesm lambcyln
load coast
plotm(lat, long)
tightmap
displaym(worldhi('POtext'))
set(handlem('alltext'),'fontsize',6)
```

A Atlas Data


The worldhi database also includes a set of city location markers and text labels. The worldhi populated place structures contain cities not in worldlo's similar PPpoint and PPtext structures. Here the city markers in the worldhi data are shown in red, while the cities in worldlo are orange.

```
clmo all
h = displaym(worldhi('PPpoint'));
set(h,'color','r')
displaym(worldlo('PPpoint'))
load coast
plotm(lat, long)
```



## World Matrix Data

## Political

The Mapping Toolbox includes a set of matrix data coded with political information in the MAT-file worldmtxmed.

| load worldmtxmed |  |  |  |
| :--- | :---: | ---: | :--- |
| whos | Size | Bytes | Class |
| Name |  |  |  |
|  |  |  |  |
| cmap | $207 \times 3$ | 4968 | double array |
| description | $4 \times 71$ | 568 | char array |
| map | $720 \times 1440$ | 1036800 | uint8 array |
| maplegend | $1 \times 3$ | 24 | double array |
| names | $207 \times 1$ | 16516 | cell array |
| refvec | $1 \times 3$ | 24 | double array |
| source | $1 \times 64$ | 128 | char array |

The variable map is a regular data grid containing indices of political entities. The names cell array relates the indices in the map to the names of countries, and the variable cmap is a colormap that provides a good political display of the world.

Display the political regular data grid using the meshm function and the provided colormap:

```
axesm gortho
meshm(map,maplegend);
colormap(cmap)
tightmap
```

The map is shown in a Gall Orthographic projection, more recently made familiar as the Peters projection. This projection is equal-area, a property that is often desirable in representing competing political units.


The resolution of this data makes it suitable for global displays. Larger scale, regional maps are better made with vector data such as that in the worldlo or worldhi databases. You can create more detailed political data grids from vector data using vec2mtx, country2mtx, and other approaches described in "GUI Reference" on page 12-1.

The primary use of this data set is to determine which country contains a point known by its latitude and longitude. What country claims sovereignty over the point at $5^{\circ} \mathrm{E}$ and $13^{\circ} \mathrm{N}$ ?

```
code = ltln2val(map,maplegend,5,13)
code =
    34
names {code}
ans =
Cameroon
```

Work through this example to see how the result was obtained. The data grid contains integer country codes. Calling the function ltln2val extracted the
country code of the geographic point. The country code is an index into the names cell array, which returns the name of the country.
You can create your own data grids at higher resolutions. If the worldlo atlas data is good enough for your purposes, use country2mtx. If you have higher resolution data, use vec2mtx. Here is a data grid of Cameroon and Nigeria at a resolution of 10 cells per degree, or about 10 kilometers.

```
latlim = [0 15]; lonlim = [0 20];
[cmap,cmaplegend] = country2mtx('cameroon',10,latlim,lonlim);
[nmap,nmaplegend] = country2mtx('nigeria',10,latlim,lonlim);
newmap = zeros(size(cmap)); newmaplegend = cmaplegend;
newmap(cmap==0) = 34; % find cells in the interior
newmap(nmap==0) = 130; % use codes from nations structure
worldmap(latlim,lonlim)
meshm(newmap, newmaplegend, size(newmap))
polcmap
```



## Terrain

A low resolution set of global elevation data is provided with MATLAB in the topo MAT-file. It is a regular matrix of average elevations and depths (in meters) for a constant grid spacing of one degree by one degree.

| load topo |  |  |
| :--- | :---: | ---: |
| whos |  |  |
| Name | Size |  |
|  |  |  |
| topo | $180 \times 360$ | 518400 double array |
| topolegend | $1 \times 3$ | 24 |
| double array |  |  |
| topomap1 | $64 \times 3$ | 1536 double array |
| topomap2 | $128 \times 3$ | 3072 double array |

Grand total is 65379 elements using 523032 bytes
Here it is displayed in an equal-area Eckert IV projection as a shaded-relief surface, which allows both large and small features to be seen:

```
axesm eckert4; framem; gridm
load coast
plotm(lat, long,'k'); zdatam(handlem('line'),max(topo(:)))
meshm(topo,topolegend,size(topo),topo,'FaceColor','interp')
demcmap('inc',topo,1000)
camlight(0,80); ; material([0.7 0.8 .4]); daspectm('m',300)
hcb = colorbar('horiz')
set(get(hcb,'XLabel'),'String','Topography in m.')
```

Atlas Data


## Geoid

While the topo matrix contains the heights and depths of the Earth's crust, the geoid matrix gives the shape of its gravitational field. The geoid can be regarded as the ocean surface formed in the absence of waves, currents, tides, and land obstructions. In technical terms, it is a gravitational equipotential surface. Elsewhere, this document refers to the ellipsoidal shape of the Earth as the geoid. Although this is sufficient for cartography, the ellipsoidal approximation is not accurate enough for applications like surveying and geodesy, and more detailed models are used. The EGM96 geoid model is a widely used spherical harmonic model of the geoid complete to degree and order 360. A 1-degree grid of geoid heights is provided in the geoid.mat atlas file. You can read the full resolution version of the matrix of geoid heights with a grid spacing of 15 minutes using the egm96geoid external interface function.

```
load geoid
figure; axesm eckert4; framem; gridm
load coast
plotm(lat, long,'k')
zdatam(handlem('line'),max(geoid(:)))
meshm(geoid,geoidlegend,size(geoid),geoid,'Facecolor','interp')
```

```
light; material(0.6*[ 1 1 1])
set(gca,'dataaspectratio',[ 1 1 200])
hcb = colorbar('horiz')
set(get(hcb,'Xlabel'),'String','EGM96 geoid heights in m.')
```

Here is the result:


```
z = ltln2val(geoid,geoidlegend,-11.1,130.22,'bicubic')
z =
    53.0055
```

Interpolating the full-resolution grid gives a result that is about half a meter higher.

## United States Vector Data

## Low-Resolution Data

Vector political and coastline data for the United States is provided in a number of useful formats in the usalo MAT-file.

| load usalo <br> whos <br> Name |  |  |  |
| :--- | :---: | ---: | :--- |
|  | Size | Bytes | Class |
| conus | $1 \times 1$ | 70224 | struct array |
| description | $2 \times 59$ | 236 | char array |
| greatlakes | $1 \times 3$ | 21612 | struct array |
| gtlakelat | $1229 \times 1$ | 9832 | double array |
| gtlakelon | $1229 \times 1$ | 9832 | double array |
| source | $1 \times 45$ | 90 | char array |
| state | $1 \times 51$ | 246970 | struct array |
| stateborder | $1 \times 1$ | 38358 | struct array |
| statelat | $2345 \times 1$ | 18760 | double array |
| statelon | $2345 \times 1$ | 18760 | double array |
| uslat | $4339 \times 1$ | 34712 | double array |
| uslon | $4339 \times 1$ | 34712 | double array |

Grand total is 61684 elements using 504098 bytes
There are several types of data here. The double arrays are vectors of latitude and longitude points. The pair uslat and uslon form the outline of the coast and political borders of the continental United States. The polygon closes on itself, so it can be filled as a patch. Next, the statelat and statelon form the borders between the states for display as lines. Finally, gtlakelat and gtlakelon are patchable outlines of the Great Lakes. The functions suitable for displaying vector data of this type are plotm, linem, fillm, patchm, and patchesm.

Display the data vectors as patches and lines:

```
axesm('MapProjection','eqaconic','MapParallels',[29.5 49.5],...
    'MapLatLimit',[24 50],'MapLonLimit',[-130 -65],...
    'MLabelLocation',15,'MLineLocation',15,...
    'PLabelLocation',15,'PLineLocation',15,...
    'GColor',.5*[1 1 1],'GLineStyle','-',...
```

```
    'MLabelparallel','south')
framem; gridm; mlabel; plabel
patchm(uslat,uslon,[0 .75 0])
patchm(gtlakelat,gtlakelon,1,[0 0 .75])
plotm(statelat,statelon,'k')
```



The structure arrays are Mapping Toolbox geographic data structures and can be displayed using mlayers or displaym. The data in stateborder is identical to that in statelat and statelon. Similarly, conus contains the same outline of the continental United States as uslat and uslon but is defined to be displayed as a patch. The 50 state and District of Columbia patches are located in the state structure.

Display the state structure using displaym. Notice that only one command is needed to plot 51 different patches.

```
figure
axesm('MapProjection','eqaconic','MapParallels',[],...
    'MapLatLimit',[15 75],'MapLonLimit',[-175 -60],...
    'MLabelLocation',15,'MLineLocation',15,...
    'PLabelLocation',15,'PLineLocation',15,...
    'GColor',.5*[1 1 1],'GLineStyle','-',...
    'MLabelParallel','south')
framem; gridm; mlabel; plabel
displaym(state); polcmap
```



The states are all tagged, allowing them to be manipulated or to be extracted by name. You can see the available state names by entering the following:

```
strvcat(state.tag)
```

The state of Massachusetts can be displayed by itself:

```
displaym(state,'mass');
```



Or with its neighboring southern states, Connecticut and Rhode Island:
displaym(state, strvcat('mass', 'conn', 'rhode'));


Look at the region around Cape Cod again, to get an impression of the detail of the data:

```
figure
axesm('MapProjection','mercator','Frame','on',...
    'MapLatLimit',[41 44],'MapLonLimit',[-72 -69])
gridm('MLineLocation',1,'PLineLocation',1,...
    'GLineStyle','-')
mlabel('MLabelLocation',1)
plabel('PLabelLocation',1)
displaym(state); polcmap
```



There is an obvious compromise between the size of a data set and its accuracy and detail. This data can be displayed relatively quickly for displays of all the United States, but it is not suitable for mapping smaller regions. Note the generalized character of the coastline and the absence of small islands. More detailed and accurate data is available in the usahi MAT-file and through the Mapping Toolbox External Data Interface functions.

An easy way to display the usalo data is with the usamap function. The usamap function takes care of the cartographic details. The inset maps of the entire United States are made with the usalo data. Here are the fifty states displayed at the same scale.


## Medium Resolution State Outlines

Another more detailed set of state outlines is available in the Mapping Toolbox. The data in the usahi MAT-file is similar in format to the state structure found in usalo but contains more detailed coastlines and islands. The resolution of stateline in the usahi MAT-file is about three times greater than the corresponding state in the usalo MAT-file.

| load usahi <br> whos |  |  |  |
| :--- | ---: | ---: | :--- |
| Name | Size | Bytes | Class |
|  |  |  |  |
| ans | $1 \times 60$ | 120 | char array |
| description | $2 \times 62$ | 248 | char array |
| source | $1 \times 58$ | 116 | char array |
| stateline | $1 \times 51$ | 826456 | struct array |
| statepatch | $1 \times 51$ | 826558 | struct array |
| statetext | $1 \times 51$ | 40704 | struct array |

The listed variables are all formatted geographic data structures containing lines, patches, or text. The data in the stateline structure is the same as that in statepatch but has been defined to be displayed as lines rather than patches. The structure statetext contains the corresponding names of the states. Note that because of the higher resolution of this data, it might require more than the default memory size to display and will take longer to project and render. This difference is particularly marked for patches.

Display the map in an Equal-Area Conic projection:

```
axesm('MapProjection','eqaconic','mapparallels',[],...
    'MapLatLimit',[15 75],'MapLonLimit',[-188 -60],...
    'MLabelLocation', 15,'MLineLocation',15,...
    'PLabelLocation', 15,'PLineLocation',15,...
    'GColor',.5*[[1 1 1],'GLineStyle','-',...
    'MLabelParallel','south')
framem; gridm; mlabel; plabel
displaym(statepatch); polcmap
```

Here is the result:


At this scale, it is difficult to see the difference between this data and the much smaller usalo MAT-file. If you focus on the Cape Cod region, the higher resolution becomes more apparent:

```
figure
axesm('MapProjection','mercator','Frame','on',...
    'MapLatLimit',[41 44],'MapLonLimit',[-72 -69])
gridm('MLineLocation',1,'PLineLocation',1,'GLineStyle','-')
mlabel('MLabelLocation',1)
plabel('PLabelLocation',1)
displaym(statepatch)
h = displaym(statetext); trimcart(h)
polcmap
```

Here is the zoomed-in region of Cape Cod. The level of detail is noticeably greater than that for the data in the usalo MAT-file.


You can use usamap to quickly create base maps with this data. Just provide the state name or geographic limits. This function handles the cartographic
details like selecting a projection, setting the map limits, and setting the origin and the grid and label spacings. You can also use the usahi interface function to load one of the atlas data structures as an argument to a function, or load just that structure into the workspace.
figure
usamap florida


## United States Matrix Data

## Political

The Mapping Toolbox also provides a set of political matrix data for the continental United States, located in the usamtx MAT-file.

| load usamtx |  |  |  |
| :--- | :---: | ---: | :--- |
| whos |  |  |  |
| Name | Size | Bytes Class |  |
|  |  |  |  |
| clrmap | $54 \times 3$ | 1296 | double array |
| description | $4 \times 74$ | 592 | char array |
| map | $140 \times 370$ | 414400 | double array |
| maplegend | $1 \times 3$ | 24 double array |  |
| refvec | $1 \times 3$ | 24 double array |  |
| source | $1 \times 68$ | 136 char array |  |
| states | $54 \times 15$ | 1620 char array |  |

The data is in a regular data grid format, similar to that discussed in the "World Matrix Data" section. The variable map is at a resolution of 5 cells per degree, or roughly 20 kilometers or better. Recall that the resolution of the worldmtx data is 1 cell per degree; hence, this data set is five times finer. A colormap has been provided, along with a vector of state names, both corresponding to the political code, or index, used in the map matrix.

Display the data grid in an Albers Equal-Area Conic projection:

```
axesm('MapProjection','eqaconic','MapParallels',[],...
    'MapLatLimit',[24 52],'MapLonLimit',[-134 -60],...
    'MLabelLocation',15,'MLineLocation',15,...
    'PLabelLocation',15,'PLineLocation',15,...
    'GColor',.5*[[1 1 1],,'GLinestyle','-',...
    'MLabelParallel','south')
framem; gridm; mlabel; plabel
meshm(map,maplegend); colormap(clrmap)
```

Here is the result:


As with the world matrix data, the low resolution of this data makes it suitable for only large area displays. Vector maps are more appropriate where more detail is required. The functions itemized under "Georeferenced Images and Data Grids" on page 10-51 inlcude tools for creating higher resolution data grids from vector maps.

The primary use of this data set is to determine which state contains a particular geographic point. In what state is Alamogordo ( $32.8990^{\circ} \mathrm{N}$ and $\left.105.9570^{\circ} \mathrm{W}\right)$ ?

```
code = ltln2val(map,maplegend,32.8990,-105.9570)
code =
    34
states(code,:)
ans =
New Mexico
```

You can create your own higher resolution political data grids using vec2mtx.

## Terrain

As an example of a higher resolution digital elevation map, MATLAB provides the cape MAT-file, containing an image of elevation data for the northeastern

United States on a 30 arc-second grid (resolution of about one kilometer or better on the ground). The data can be defined as a regular data grid using the loadcape function script, which rearranges the data and provides the necessary map legend:

| loadcape <br> whos <br> Name | Size | Bytes Class |  |
| :--- | :---: | ---: | :--- |
|  |  |  |  |
| clrmap | $54 \times 3$ | 1296 | double array |
| description | $4 \times 74$ | 592 | char array |
| map | $140 \times 370$ | 414400 | double array |
| maplegend | $1 \times 3$ | 24 | double array |
| refvec | $1 \times 3$ | 24 | double array |
| source | $1 \times 68$ | 136 | char array |
| states | $54 \times 15$ | 1620 | char array |

Grand total is 53142 elements using 418092 bytes
Here the elevation data is displayed using a conformal Mercator projection, so shapes of small regions suffer little distortion, while the distortion in relative areas is scarcely noticeable for such a small region.

```
axesm('MapProjection','mercator',...
    'MapLatLimit',[41 44],'MapLonLimit',[-72 -69])
framem
gridm('MLineLocation',1,'Plinelocation',1,'GLineStyle','-')
mlabel('MLabelLocation',1)
plabel('PLabelLocation',1)
meshm(map,maplegend); demcmap(map)
```

Here is the result:


Global coverage of digital terrain and bathymetry at this resolution is provided through the Mapping Toolbox External Data Interface. A variety of freely available digital elevation maps is available over the Internet for import into MATLAB. These maps range in resolution from about 10 km to 30 meters. See "Geospatial Data Import and Access" on page 10-46 for more information on the data and import functions.

## Astronomical Data

Although the Earth may be the most commonly mapped object, the same cartographic techniques are used to map the stars and planets. As an example of such astronomical data, the Mapping Toolbox includes map data for the Earth's moon and the stars.

The moon data is low-resolution topography and albedo (reflectance) from the Clementine spacecraft. Topography, found in the moontopo.mat file, is a 1 -degree regular data grid in units of meters. Albedo is stored as a 3 -cells-per-degree integer image in the moonalb. mat file as double-precision numbers. Here is the albedo image texture mapped onto the topography, vertically exaggerated by a factor of 10 .

```
load moontopo; load moonalb
axesm('globe','geoid',almanac('moon','radius','m'))
h = meshm(moontopo,moontopolegend,size(moontopo),10*moontopo);
set(h,'CData',moonalb,'FaceColor','texturemap')
colormap(gray); view(20,20)
camlight; material dull; lighting phong
```



Star positions and magnitudes are found in the stars MAT-file.

| load stars |  |  |
| :--- | :---: | ---: |
| whos |  |  |
| Name | Size |  |
|  |  |  |
| description | $1 \times 74$ | 148 |
| glat char array |  |  |
| glong | $4652 \times 1$ | 37216 |
| double array |  |  |
| lat | $4652 \times 1$ | 37216 double array |
| long | $4652 \times 1$ | 37216 double array |
| relintensity | $4652 \times 1$ | 37216 double array |
| source | $1 \times 82$ | 37216 double array |
| vmag | $4652 \times 1$ | 164 char array |
|  |  | 37216 double array |

Grand total is 28068 elements using 223608 bytes
This is a set of more than 4500 star locations and visual magnitudes derived from the Fifth Fundamental Catalog of Stars parts I and II (FK5 and FK5e). Other star data such as mean errors, proper motions, spectral types, parallaxes, radial velocities, and cross identifications to other catalogues can be obtained from the catalog using the readfk5 interface function.

The positions of stars in equatorial coordinates are given in the vectors lat and long. These are latitudes and longitudes in degrees for the stars as seen from within the celestial sphere. The visual magnitude of each star is given in the vector vmag. Stars are typically plotted with diameters proportional to the relative intensity. The vector relintensity contains modified vmag data suitable for display with scatterm to exhibit this proportional diameter. All intensities are positive, and brighter stars have a larger relintensity number.

Display the stars of the northern sky in the Equidistant azimuthal projection. Scale the relative intensities to

```
axesm eqdazim
framem; gridm; mlabel; plabel
setm(gca,'Origin',[90 180 0],'FLatLimit',[-inf 90],...
    'MLabelLocation', -180:15:165,'MLineLocation', 15,...
    'MLineLimit',[-75 75],'MLabelParallel','equator',...
    'PLabelMeridian',180,'PLabelLocation',15:15:75,...
    'LabelRotation','on''GLineWidth',.01,...
```

```
    'GLineStyle','-')
set(handlem('alltext'),...
    'VerticalAlignment','top','HorizontalAlignment', 'center')
h = scatterm(lat,long,sqrt(relintensity)*30,'filled');
```



You may be able to identify the Big Dipper, or the constellation of Ursa Major, located at $180^{\circ} \mathrm{E}, 60^{\circ} \mathrm{N}$.

Another system used to describe the positions of heavenly bodies is galactic coordinates. This coordinate system puts the center of our galaxy at the origin and places the North Pole so that the Milky Way is aligned with the galactic equator. The positions of the stars in this coordinate system are given in the vectors glat and glong. Stars in galactic coordinates are typically plotted in a pseudocylindrical projection like the Hammer:

```
figure
axesm hammer
framem; gridm; mlabel; plabel
setm(gca,'GLineWidth',.01,'GLineStyle','-' , ...
    'MLineLocation',15,'MLabelParallel', 'equator',...
    'MLabelLocation', -120:60:180)
```

```
scatterm(glat,glong,sqrt(relintensity)*30,'filled')
```



You can also render point symbols by value using geoshow and mapshow with symbolspecs.

## Bibliography

1 Snyder, J. P., Map Projections - A Working Manual, U.S. Geological Survey Professional Paper 1395, Washington, D.C., 1987.

2 Maling, D. H., Coordinate Systems and Map Projections, 2nd Edition, Pergamon Press, New York, NY, 1992.

3 Snyder, J. P. and Voxland, P. M., An Album of Map Projections, U.S. Geological Survey Professional Paper 1453, Washington, D.C., 1994.

4 Snynder, J. P., Flattening the Earth - 2000 Years of Map Projections, University of Chicago Press, Chicago, IL, 1993.

## Antipodes

Arc-second
Aspect

## Attribute

Authalic
projection
Axes
Azimuth
Azimuthal projection

Bathymetry

Bowditch, Nathaniel

Buffer zone The locus of points that lie within a specified distance from a map feature.

| Cartography | The art or practice of making charts or maps. See map. |
| :--- | :--- |
| Categorical |  |
| geodata | Geospatial data in which raster pixel values (or vector data attributes) are <br> categorical indices, usually coded as integers. The meanings of the categories <br> are usually stored in a separate table. Examples are geocodes, landuse <br> categories, and indexed color images. The worldmtx dataset contains an <br> example of categorical data. Each entry in the raster dataset is an index into a <br> data structure containing the names of the world countries. See Numerical <br> geodata. |
| Central meridian | The meridian passing through the center of a projection, often a straight line <br> about which the projection is symmetrical. |
| Central | A projection in which the Earth is projected geometrically from the center of <br> projection <br> the Earth onto a plane or other surface. The Gnomonic and Central Cylindrical <br> projections are examples. |
| Choropleth | A map portraying regions of of homogeneous classified attribute values, <br> changing abruptly at region boundaries, and colored or shaded according to |
| their attribute values. Thematic political maps are usually choropleth maps. |  |


| Contour | All points that are at the same height above or below a reference datum; generally applied to continuous, single-valued surfaces only, such as elevation, temperature, or magnetic field strength. |
| :---: | :---: |
| Conventional aspect | See Normal aspect. |
| Correct scale | A linear scale having exactly the same value as the stated or nominal scale of the map, or a scale factor of 1.0 . Also called true scale. |
| Cylindrical projection | A projection resulting from the conceptual projection of the Earth onto a tangent or secant cylinder, which is then cut lengthwise and laid flat. When the axis of the cylinder coincides with the axis of the Earth, the meridians are straight, parallel, and equidistant, while the parallels of latitude are straight, parallel, and perpendicular to the meridians. Mathematically, the projection is often only partially geometric. |
| Data Grid | A raster dataset consisting of an array of values posted or sampled at specific geographic points. In the Mapping Toolbox, data grids can be implicit (regular) or explicit (irregular), depending on the uniformity of the grid. See Regular data grid, Geolocated data grid. |
| Datum (vertical) | A base reference level for establishing the vertical dimension of elevation for the earth's surface. A datum defines sea level and incorporates an ellipsoid; thus one can reference a coordinate system to a datum or to a specified ellipsoid, but not both at the same time. |
| Datum (horizontal) | A base measuring point (" 0.0 point") used as the origin of rectangular coordinate systems for mapping or for maintaining excavation provenience. Two examples are the North American Datum of 1927 (NAD27) and the North American Datum of 1983 (NAD83). Earth-centered coordinate systems, such as WGS84, combine horizotal and vertical datums. |
| Dead reckoning | From "deduced reckoning," the estimation of geographic position based on course, speed and time. |
| DEM (Digital Elevation Map/Model) | Elevation data in the form of a data grid, generally a regular (implicit) one. DEM also refers to the five primary types of digital elevation models produced by the U.S. Geological Survey; the Mapping Toolbox can read 30-meter and 10 -meter DEMs as well as 3 -second DEMs. |
| Departure | The arc length distance along a parallel of a point from a given meridian. |

## Glossary-3

| Developable <br> surface | A simple geometric form capable of being flattened without stretching. Many <br> map projections can be grouped by a particular developable surface: cylinder, <br> cone, or plane. |
| :--- | :--- |
| Direct aspect | See Normal aspect. |
| Distortion | A variation of the area or linear scale on a map from that indicated by the <br> stated map scale, or the variation of a shape or angle on a map from the <br> corresponding shape or angle on the Earth. |
| DMS | Degrees-minutes-seconds angle notation of the form ddd ${ }^{\circ}$ mm' ss". There are <br> 60 seconds in a minute, and 60 minutes in a degree. In the Mapping Toolbox, <br> when "dms" angles are represented by a single number, the format is <br> dddmm.ss. |
| Easting | The distance of a point eastward from the origin in the units of the coordinate <br> system for the defined projection. Paired with Northings. |
| Ellipsoid | When used to represent the Earth, a solid geometric figure formed by rotating <br> an ellipse about its minor (shorter) axis. Also called spheroid. |
| Ellipsoid vector | A vector describing a specific ellipsoid, model. The ellipsoid vector has the form: <br> ellipsvec = [semimajor -axis eccentricity] |

Ellipsoidal height Elevation of a point above a reference ellipsoid, as measured along a normal to the ellipsoid.

| Equal-area <br> projection | A projection on which the areas of all regions are shown in the same proportion <br> to their true areas. Shapes may be greatly distorted. Also called an equivalent <br> or authalic projection. |
| :--- | :--- |
| Equator | The great circle straddling a planet at a latitude of $0^{\circ}$, perpendicular to its polar <br> axis and midway along it, dividing the northern and southern hemispheres. |

Equatorial aspect An aspect of an azimuthal projection on which the center of projection or origin is some point along the Equator. For cylindrical and pseudocylindrical projections, this aspect is usually called conventional, direct, normal, or regular rather than equatorial.

| Equidistant | A projection that maintains constant scale along all great circles from one or <br> projection |
| :--- | :--- |
| two points. When the projection is centered on a pole, the parallels are spaced |  |
| in proportion to their true distances along each meridian. |  |

Equireal See Equal-area projection. projection

| Equivalent projection | See Equal-area projection. |
| :---: | :---: |
| False Easting | The value of the easting assigned to the projection origin. Easting values increase to the east. |
| False Northing | The value of the northing assigned to the projection origin. Northing values increase to the north. |
| Flat-polar projection | A cylindrical projection on which, in normal aspect, the pole is shown as a line rather than as a point. For example, the Miller projection is flat-polar |
| Frame | See Map frame. |
| Free of distortion | Having no distortion of shape, area, or linear scale. On a flat map, this condition can exist only at certain points or along certain lines. |
| Geodesic | A minimum-distance curve on a curved surface, independent of the choice of a coordinate system. On a sphere a geodesic is equivalent to a great circle arc. |
| Geolocated data grid | A data grid defined with separate latitude, longitude, and value matrices, allowing irregular sampling, non-rectangular shapes, and non-cardinal orientations. Satellite imagery swaths are often represented as geolocated data grids. See Data grid, Regular data grid |
| Geodata | Geospatial data. See Geospatial |
| Geoid | The figure of the earth less its topography, defined as an equipotential surface with respect to gravity, more or less corresponding to mean sea level. It is approximately an oblate ellipsoid, but not exactly so because local variations in gravity create minor hills and dales. Empirically determined geoids are used to define datums and to compute orbital mechanics. |
| Geometric projection | See Perspective projection. |
| Geographic coordinates | Spherical 2D coordinate tuples (latitudes, longitudes) that specify point locations for unprojected geodata. The analogous term for geodata projected to a rectangular coordinate system is Map Coordinates. |
| Geographic data structure | In the Mapping Toolbox, a MATLAB structure array with one element per vector geographic feature. It includes a Geometry or type field, at least two coordinate array fields (X and Y, Lat and Lon, or lat and long), and optional attribute fields. |

## Glossary-5

$\left.\begin{array}{ll}\text { Georeferencing } & \begin{array}{l}\text { Identifying objects and locations by name, identifier, or coordinates to describe } \\ \text { where they are located on the Earth's surface. }\end{array} \\ \text { Geospatial } & \begin{array}{l}\text { Spatial data, concepts, and techniques that specifically refer to geographic } \\ \text { space or phemonena, and not just to arbitrary coordinate systems or abstract } \\ \text { space frames. }\end{array} \\ \text { An extension of the TIFF image file format with additional tags containing } \\ \text { parameters for image georeferencing and projected map coordinate system } \\ \text { definition. }\end{array}\right\}$
$\left.\begin{array}{ll}\text { Hydrography } & \begin{array}{l}\text { The science of measurement, description, and mapping of the surface waters of } \\ \text { the Earth, especially with reference to their use in navigation. The term also } \\ \text { refers to those parts of a map collectively that represent surface waters and } \\ \text { drainage. }\end{array} \\ \text { Hydrology } & \begin{array}{l}\text { The scientific study of the waters of the Earth, especially with relation to the } \\ \text { effects of precipitation and evaporation upon the occurrence and character of } \\ \text { ground water. }\end{array} \\ \text { Hypsographic } & \begin{array}{l}\text { A graphic means of representing terrain or other scalar attributes using a } \\ \text { sequence of colors or tints indexed to elevation. }\end{array} \\ \text { tints } & \begin{array}{l}\text { The scientific study of the Earth's topologic configuration above sea level, }\end{array} \\ \text { Hypsography } & \begin{array}{l}\text { especially the measurement and mapping of land elevation. }\end{array} \\ \text { Index Map } & \begin{array}{l}\text { A small-scale map used to help locate a map containing a region or feature of } \\ \text { interest in a tiled geospatial database, map series, plat book or atlas. }\end{array} \\ \text { Indicatrix } & \begin{array}{l}\text { A circle or ellipse useful in illustrating the distortions of a given map } \\ \text { projection. Indicatrices are constructed by projecting infinitesimally small } \\ \text { circles on the Earth onto a map, and giving them visible dimensions. Their axes }\end{array} \\ \text { lie in the directions of and are proportional to the maximum and minimum }\end{array}\right\}$

## Glossary-7

| Latitude (auxiliary) | Intermediate forms of latitude that are mathematically constructed (normally by transferring latitudes first from an ellipsoid to a sphere, and then to a plane) in order to achieve desired map projection properties. Types include conformal (for constructing conformal maps), authalic (for constructing equal-area maps), and rectifying (for constructing equidistant maps). |
| :---: | :---: |
| Latitude (geocentric) | The angle at which a line connecting the surface of a sphere or reference ellipsoid to its center intersects the equatorial plane (positive if the point is north of Equator, negative if it is south). One of the two common geographic coordinates of a point on the Earth. |
| Latitude (geodetic) | The angle made by a perpendicular to a given point on the surface of a sphere or ellipsoid representing the Earth and the plane of the Equator (positive if the point is north of Equator, negative if it is south). Also called geographic latitude. One of the two common geographic coordinates of a point on the Earth. |
| Latitude of opposite sign | See Parallel of opposite sign. |
| Legs | Line segments connecting waypoints. |
| Legend | See Map legend. |
| Limiting forms | The form taken by a system of projection when the parameters of the formulas defining that projection are allowed to reach limits that cause it to be identical with another separately defined projection. |
| Logical data grid | A binary data grid consisting entirely of 1 s and 0 s . An example of a logical data grid can be created with the topo map by performing a logical test for positive elevations (topo>0). Each entry in the data grid contains a 1 if it is above sea level, or a 0 if it is at or below sea level. |
| Longitude | The angle made by the plane of a meridian passing through a given point on the Earth's surface and the plane of the (prime) meridian passing through Greenwich, England, east or west to 180 (positive if the point is east, negative if it is west). One of the two common geographic coordinates of a point on the Earth. Paired with Latitude. |
| Loxodrome | See Rhumb line. |
| Map | A diagrammatic or pictorial representation of a planet's surface or part of it, showing the geographical distributions, positions, etc., of natural or artificial |

$\left.\begin{array}{ll} & \begin{array}{l}\text { features such as roads, towns, relief, land cover, rainfall, populations, etc. } \\ \text { Maps represent geospatial data visually. }\end{array} \\ \text { Map axes } & \begin{array}{l}\text { A handle graphics axes object for which the UserData property is set to a scalar } \\ \text { structure defining a projection type, projection parameters, and setting related } \\ \text { properties such as map latitude and longitude limits. Many display functions } \\ \text { in the Mapping Toolbox require that a map axes first be defined. Others create } \\ \text { a map axes if necessary (e.g., worldmap and usamap) or assume that your data } \\ \text { are in a projected map coordinate system (mapshow and mapview). }\end{array} \\ \text { Map coordinates } & \begin{array}{l}\text { Orthogonal planar 2D coordinate tuples that specify point locations for } \\ \text { projected geodata. The analogous term for unprojected geodata is geographic } \\ \text { coordinates. Also called grid coordinates and plane coordinates. }\end{array} \\ \text { Map frame } & \begin{array}{l}\text { In the Mapping Toolbox, a projected rectangle or quadrangle enclosing a a } \\ \text { geographic data displayed on map axes. }\end{array} \\ \text { Map grid } & \begin{array}{l}\text { A symbolized network of lines, or graticule, representing parallels and } \\ \text { meridians or plane coordinates. Plane coordinate grids are almost always } \\ \text { rectangular with uniofrm spacing. Azimuthal map grids are organized as polar } \\ \text { coordinates. See Graticule. }\end{array} \\ \text { Map legend } & \begin{array}{l}\text { A vector or raster geographic dataset read into the Map Viewer, for example } \\ \text { roads, rivers, municipal boundaries, topographic grids or orthophoto images. }\end{array} \\ \text { Map layers are "stacked" from top to bottom, and may be reordered and hidden } \\ \text { by the user. }\end{array} \quad \begin{array}{l}\text { A key to symbolism used on a map, usually containing swatches of symbols } \\ \text { with descriptions, and may include notes on projection, provenance, scale, }\end{array}\right\}$

## Glossary-9

Northing

Numerical geodata

## Oblique aspect

## Orthoapsidal projection

Orthographic projection

Orthometric Height

Orthomorphic projection

| National grid <br> (U.K.) | A metric grid based on the Tranverse Mercator Projection developed by <br> Ordnance Survey in 1936 for use in Great Britain. Sometimes abbreviated <br> "OSGB36," it is the de facto standard projection for display of UK based <br> mapping. |
| :--- | :--- |
| National grid | A metric grid based on the Tranverse Mercator Projection, adopted by the |
| (U.S.) | Federal Geographic Data Committee (FGDC) in 2001 for use in the United <br> States. It is an evolving standard intended to unify georeferencing across the |
|  | U.S., but is not yet as widely used as other countries' national grids. |
| Nominal scale | The stated scale at which a map projection is constructed. Scale is never <br> completely constant across the extent of a map, although in some maps <br> (especially at large scales) it may vary by miniscule amounts. |

Normal aspect A form of a projection that provides the simplest graticule and calculations. It is the polar aspect for azimuthal projections, the aspect having a straight Equator for cylindrical and pseudocylindrical projections, and the aspect showing straight meridians for conic projections. Also called conventional, direct, or regular aspect.
A metric grid based on the Tranverse Mercator Projection developed by Ordnance Survey in 1936 for use in Great Britain. Sometimes abbreviated "OSGB36," it is the de facto standard projection for display of UK based mapping.

A metric grid based on the Tranverse Mercator Projection, adopted by the Federal Geographic Data Committee (FGDC) in 2001 for use in the United States. It is an evolving standard intended to unify georeferencing across the al grids

The stated scale at which a map projection is constructed. Scale is never completely constant across the extent of a map, although in some maps (especially at large scales) it may vary by miniscule amounts. The distance of a point northward from the origin, in the units of the coordinate system for the defined projection. Paired with Eastings.

Geospatial data in which raster pixel values (or vector data attributes) are cardinal, ratio, or ordinal numeric measurements or computed values. For example, the topo datset contains numerical geodata. Each value in its data grid is an average elevation in meters for the geographic area covered by that cell. See Categorical geodata.

An aspect of a projection on which the axis of the Earth is rotated so it is neither aligned with nor perpendicular to the conceptual axis of the map projection.

A projection on which the surface of the Earth taken as a sphere is transformed onto a solid other than the sphere and then projected orthographically and obliquely onto a plane for the map.

A specific azimuthal projection or a type of projection in which the Earth is projected geometrically onto a surface by means of parallel projection lines.
Elevation above a datum defined by a geoid representing mean sea level.

See Conformal projection.

Parallel A small circle on the surface of the Earth formed by the intersection of the surface of the reference sphere or ellipsoid with a plane parallel to the plane of the Equator. This line is identified by its latitude, which may be defined in several ways. The Equator (a great circle) is usually also treated as a parallel. See entries for Latitude.

Parallel of A parallel that is equally distant from but on the opposite side of the Equator. opposite sign

Perspective projection For example, for lat $30\left({ }^{\circ} \mathrm{N}\right.$ (or $+30^{\circ}$ ), the parallel of opposite sign is lat $30^{\circ} \mathrm{S}$ (or $-30^{\circ}$ ). Also called latitude of opposite sign.

A projection produced by projecting straight lines radiating from a selected point (or from infinity) through points on the surface of a sphere or ellipsoid and then onto a tangent or secant plane. Other perspective maps are projected onto a tangent or secant cylinder or cone by using straight lines passing through a single axis of the sphere or ellipsoid. Also called geometric projection.
Planar projection A projection resulting from the conceptual projection of the Earth onto a tangent or secant plane. Usually, a planar projection is the same as an azimuthal projection. Mathematically, the projection is often only partially geometric.
Planimetric map A map representing only the horizontal positions of features (without their elevations).
Polar aspect An aspect of a projection, especially an azimuthal one, on which the Earth is viewed from directly above a pole. This aspect is called transverse for cylindrical or pseudocylindrical projections.

Pole An extremity of a planet's axis of rotation. The North Pole is a singular point at $90^{\circ} \mathrm{N}$ for which longitude is ambiguous. The South Pole has the same characteristics and is located at $90^{\circ} \mathrm{S}$.
Polyconic A specific projection or member of a class of projections that are constructed projection

Projected coordinate system like conic projections but with different cones for each parallel. In the normal aspect, all the parallels of latitude are nonconcentric circular arcs, except for a straight Equator, and the centers of these circles lie along a central axis.

A coordinate system defined for a particular map projection and associated parameters, which normally is planar with well-defined coordinate origin, handedness, nominal scale, and units of distance. While map scale may vary at different coordinate locations, a linear projected coordinate system has constant units of distance.

## Glossary-11

| Projection | A systematic representation of a curved 3-D surface such as the Earth onto a <br> flat 2-D plane. Each map projection has specific properties that make it useful <br> for specific purposes. For a list of projections supported by the Mapping <br> Toolbox, type maps. |
| :--- | :--- |
| Projection <br> Parameters | The values of constants as applied to a map projection for a specific map; <br> examples are the values of the scale, the latitudes of the standard parallels, <br> and the central meridian. The required parameters vary with the projection. |
| Pseudoconic <br> projection | A projection that, in the normal aspect, has concentric circular arcs for <br> parallels and on which the meridians are equally spaced along the parallels, <br> like those on a conic projection, but on which meridians are curved. |

## Pseudocylindrical projection

Quadrangle
Raster geodata

## Reckoning

Referencing matrix

## Referencing vector

A projection that, in the normal aspect, has straight parallel lines for parallels and on which the meridians are (usually) equally spaced along parallels, as they are on a cylindrical projection, but on which the meridians are curved.

A region bounded by parallels north and south, and meridians east and west.
A georeferenced array or grid of values corresponding to specific geographic points, usually regularly and rectangularly sampled in either geographic or map space. Values may be continuous or categorical. In the case of georeferenced multiband images, raster geodata can take the form of 3 - and higher-dimensional arrays.

The determination of geographic position by calculation.
A 3-by-2 matrix defining the the scaling, orientation, and placement of raster map data on the globe or in planar map coordinates. The matrix specifies an affine transformation that ties (geolocates) the row and column subscripts of an image or regular data grid to 2-D map coordinates or to geographic coordinates (longitude and geodetic latitude). See Referencing vector.

A three-component vector defining the geographic placement and unit cell size for raster map data. A referencing vector has the form:

```
refvec = [cells/angleunit north-latitude west-longitude]
```

A referencing vector specifies an affine transformation with rows and columns aligned to latitude and longitude, respectively, and the same data spacing in both latitude and longitude. As such, it is more specific than a referencing matrix. Note that a referencing vector may always be transformed to a referencing matrix, but only certain referencing matrices may be transformed to referencing vectors. See Referencing matrix.
$\left.\begin{array}{ll}\text { Regional map } & \begin{array}{l}\text { A small-scale map of an area covering at least } 5 \text { or } 10 \text { degrees of latitude and } \\ \text { longitude but less than a hemisphere. }\end{array} \\ \text { Regular aspect } & \begin{array}{l}\text { See Normal aspect. }\end{array} \\ \text { Regular data grid } \\ \text { A data grid with equally spaced grid points in either latitude-longitude or map } \\ \text { coordinates, defined with a referencing matrix or vector, and limited to a } \\ \text { rectangular shape and cardinal orientation. See Data grid, Geolocated data } \\ \text { grid, Referencing matrix. }\end{array}\right]$

## Glossary-13

Skew-oblique
aspect

## Small-scale mapping

Spatial Data
Transfer
Standard (SDTS)

Spheroid
Standard parallel

State Plane

Stereographic
projection projection

## Symbolization

Small circle A circle on the surface of a sphere formed by the intersection with a plane. Parallels of latitude are small circles on the Earth taken as a sphere. In the Mapping Toolbox, great circles, including the Equator and all meridians, are treated as special, limiting cases of small circles. The Mapping Toolbox generalizes the concept of small circle with computations for two other types of curve: the locus of points on an ellipsoid at a given distance (as measured along
a geodesic) from a central point, or the locus of points on a sphere or ellipsoid curve: the locus of points on an ellipsoid at a given distance (as measured along
a geodesic) from a central point, or the locus of points on a sphere or ellipsoid at a given distance from a central point, as measured along a rhumb line.
An aspect of a projection on which the axis of the Earth is rotated, so it is neither aligned with nor perpendicular to the conceptual axis of the map projection, and tilted, so the poles are at an angle to the conceptual axis of the map projection.

Mapping at a scale smaller than about 1:1,000,000, although the limiting scale sometimes has been made as large as $1: 250,000$.

A self-documenting geospatial file formating standard adopted by the U.S. government and others. SDTS can encode locations, attributes, topological relationships, data quality, and other metadata. Note that the Mapping Toolbox can read the SDTS Raster Profile, but does not currently support SDTS vector data.

See Ellipsoid.
In the normal aspect of a projection, a parallel of latitude along which the scale is as stated for that map. There are one or two standard parallels on most cylindrical and conic map projections and one on many polar stereographic projections.

A set of commensurate coordinate systems commonly used for utility and surveying applications in the lower 48 United States. Each state contains one or more zones. Coordinates for zones elongated north-to-south use are based on Transverse Mercator projections, while zones elongated east-to-west use Lambert Conformal Conic.

A specific azimuthal projection or type of projection in which the Earth is projected geometrically onto a surface from a fixed (or moving) point on the opposite face of the Earth.

In cartography, a mapping between geospatial objects or numerical or categorical values and cartographic symbols. The choice of graphic symbols,

|  | their size, density, shape, contrast, color and pattern are principal aspects of symbolization. |
| :---: | :---: |
| Symbolspec | (Symbol specification) A cell array structure that defines symbolism characteristics for points, lines and polygons with respect to attributes and their values, or as a default symbolization irrespective of attributes. |
| Tangent cone or cylinder | A cone or cylinder that just touches the sphere or ellipsoid along a single line. This line is a parallel of latitude if the axes of the geometric figures coincide. |
| Thematic map | A map designed to portray primarily a particular subject, such as population, railroads, or croplands. |
| Tissot indicatrix | See Indicatrix. |
| Topographic map | A map that usually represents the vertical positions or elevations of features as well as their horizontal positions. |
| Transformed latitudes, longitudes, or poles | Graticule of meridians and parallels on a projection after the Earth has been turned with respect to the projection so that the Earth's axis no longer coincides with the conceptual axis of the projection. Used for oblique and transverse aspects of many projections. |
| Transverse aspect | An aspect of a map projection on which the axis of the Earth is rotated so that it is at right angles to the conceptual axis of the map projection. For azimuthal projections, this aspect is usually called equatorial rather than transverse. |
| True scale | See Correct scale. |
| Vector data set | Data representing geospatial objects as sequences of geographic or projected coordinate points which are implicitly connected if they represent linear or areal shapes. In the Mapping Toolbox, such geodata is often represented by two vectors, one with latitudes, another with longitudes. Segments can be demarcated by inserting NaN's in both vectors. Often the pair of coordinate vectors constitute field values in a geographic data structure array. |
| Viewshed | The portion of a surface that is visible from a given point on or above it; derived from the concept of a watershed. |
| Waypoints | Points through which a trip, track, or transit passes, usually corresponding to course or speed changes. |
| WGS 72 (World Geodetic System 1972) | An Earth-centered datum, used as a definition of DMA (now NIMA) DEMs. The WGS 72 datum was the result of an extensive effort extending over approximately three years to collect selected satellite, surface gravity, and |

## Glossary-15

astrogeodetic data available throughout 1972. These data were combined using a unified WGS solution (a large-scale least squares adjustment).

## WGS 84 (World Geodetic System 1984)

World file

Zenithal projection

The WGS 84 was developed as a replacement for the WGS 72 by the military mapping community as a result of new and more accurate instrumentation and a more comprehensive control network of ground stations. The newly developed satellite radar altimeter was used to deduce geoid heights from oceanic regions between $70^{\circ}$ north and south latitude. Geoid heights were also deduced from ground-based Doppler and ground-based laser satellite-tracking data, as well as surface gravity data. The ellipsoid associated with WGS 84 is GRS 80.

A small text file used to georeference different raster image formats, developed to incorporate imagery into ESRI's ArcView software.

See Azimuthal projection.

## A

accuracy of map computations 10-220
Adams, O. S. 11-33
Adams, Oscar Sherman 11-109
Airy Minimum Error Azimuthal projection 11-23
Airy, George 11-23
aitoff 11-7
Aitoff projection 11-7, 11-69
Aitoff, David 11-7
Albers Equal-Area Conic projection 11-9
Albers, Heinrich Christian 11-9
almanac 2-24
almanac 10-75
American Geographical Society 11-93
American Polyconic projection 11-105
angle strings
converting to numbers 7-4
angle units
convention for navigation functions 9-12
converting between formats 7-3
description of formats 7-2
angledim 7-4
angledim 10-81
angles
converting units $10-81,10-176,10-178,10-199$, 10-201, 10-454, 10-456
normalizing range 10-409, 10-644
annotation 10-405
antipode 7-5
antipode 10-82
Apian, Peter 11-11
apianus 11-11
Apianus II projection 11-11
areaint 7-21
areaint 10-84
areamat 7-44
areamat $10-86$
areaquad 2-26
areaquad 10-89
ASCII file
converting delimiters to NaNs 10-395
reading 10-529
aspect
defined 7-47
astronomical data A-41
auxiliary sphere
calculating radius 10-484
avhrrgoode 10-91
avhrrlambert 10-95
axes, Cartesian See Cartesian axes
axes, map See map axes
axes2ecc 2-5
axes2ecc 10-98
axesm 4-18, 4-23
axesm 10-99, 12-7
axesmui 12-7
axesscale 6-2
axesscale 10-112
azimuth
between track waypoints 10-316
calculating 10-114, 12-92
defined 2-21
finding cross fix position 10-156
in projected coordinates 6-21
azimuth 2-21
azimuth 10-114
azimuthal projection 8-9

## B

Babinet projection 11-95
Balthasart Cylindrical projection 11-13, 11-47
balthsrt 11-13

Bartholomew, John 11-69
base projection 8-17
bearing See azimuth
behrmann 11-15
Behrmann Cylindrical projection 11-9, 11-15, 11-47
Behrmann, Walter 11-15
Bienewitz 11-11
Bolshoi Sovietskii Atlas Mira 11-17
Bolshoi Sovietskii Atlas Mira projection 11-17, 11-21
bonne 11-19
Bonne projection 11-19
Bonne, Rigobert 11-19
Bordone Oval projection 11-83
Braun 11-21
braun 11-21
Braun Perspective Cylindrical projection 11-17, 11-21, 11-61
breusing 11-23
Breusing Harmonic Mean projection 11-23
Breusing, F. A. Arthur 11-23
bries 11-25
Briesemeister projection 11-25, 11-69
Briesemeister, William 11-25
bsam 11-17
bsam 11-17
BSAM projection 11-17
buffer zone
defined 7-28
bufferm 7-28
Building 7-28

## C

camposm 10-118
camtargm 10-120
camupm 10-122
cape workspace A-38
cart2grn 10-124
Cartesian axes, displaying 10-523
cassini 11-27
Cassini Cylindrical projection 11-27
Cassini de Thury, César François 11-27
Cassini projection 11-103
ccylin 11-29
Central Cylindrical projection 11-29, 11-134
Central projection 11-65
Ch'ien Lo-Chih 11-91
changem 3-36
changem 10-125
choropleth maps, example 6-9
circles
See great circles
See small circles
clabelm 10-127
clegendm 10-129
Click-and-Drag property editor 12-66
clma 10-133
clmo 10-134, 12-19
clrmenu 12-20
cmapui 6-29
coast workspace 3-5, A-3
collig 11-31
Collignon projection 11-31
Collignon, Édouard 11-31
colorbar 6-24
labeled 6-28
colorm 12-21
colormap
annotating 6-28
creating for digital elevation map 6-23
creating for political data 6-26
creating for surface contour maps 6-24

## Index-2

colormap menu in figure window 12-20
colormaps
digital elevation map 10-179, 12-28
regular matrix map $12-21$
shaded relief map 10-515
combinations 10-136
combntns 10-136
comet3m 10-138, 12-24
cometm 6-14
cometm 10-139, 12-24
Conic projection 11-51
conic projection 8-8
Conical Orthomorphic projection 11-79
contour map
adding legend 10-129
creating 10-140, 10-142
labeling 10-127
contour3m 10-140, 12-26
contourcmap 6-24
contourfm 10-147
contourm 10-142, 12-26
conversion
angle units $10-81,10-176,10-178,10-199$, 10-201, 10-454, 10-456
ASCII file delimiters 10-395
coordinate types 10-124, 10-221, 10-284
distance to string 10-190
distance units 10-177, 10-197, 10-314, 10-404, 10-457, 10-526
dms to matrix elements $10-200$
ellipsoid parameters 10-98, 10-210, 10-211, 10-234, 10-393
geographic coordinates to matrix coordinates 10-514
great circles to small circles 10-238
hms to matrix elements 10-301
matrix coordinates to geographic coordinates 10-511
matrix elements to dms 10-370
matrix elements to hms 10-371
time to string 10-559
time units $10-299,10-300,10-302,10-303$, $10-509,10-510,10-561$
coordinate system transforming 10-480
coordinate transformations 8-39
matrix data 8-42
vector data 8-39
coordinates
converting from geographic to matrix 10-514
converting from matrix to geographic 10-511
converting types $10-124,10-221,10-284$
selecting with mouse $10-306$
Cossin, Jean 11-113
country2mtx A-23, A-24
country2mtx 10-151
craster 11-33
Craster Parabolic projection 11-33
Craster, John Evelyn Edmund 11-33
cross fix positions 10-156
crossfix 10-156
current point from map axes 10-242
cylindrical projection 8-6

## D

daspectm 10-159
dcwdata 10-161
dcwdem 10-91
DCW-DEM data 10-91
dcwgaz 10-165
dcwread 10-167
dcwrhead 10-170
de l'Isle, Nicolas 11-51

Index-3
dead reckoning 9-29, 10-202
calculating positions 9-31
rules of 9-31
Deetz, Charles H. 11-33
defaultm 10-172
deg2dm 10-176
deg2dms 10-176
deg2km 2-21
deg2km 10-177
deg2nm 7-6
deg2nm 10-177
deg2rad 7-5
deg2rad 10-178
deg2sm 10-177
delaunay 6-18
demcmap 6-23
demcmap 10-179, 12-28
demdataui 5-11
depart 10-185
departure 9-5, 10-185
Die Rechteckige Plattkarte 11-53
Digital Chart of the World (DCW)
reading digital elevation data 10-91
reading files $10-167$
reading gazette $10-165$
reading headers $10-170$
reading selected data 10-161
digital elevation map, colormap 10-179
digital elevation maps
colormap for 6-23
line of sight in 5-16
reading data interactively 5-11
texture mapping color data onto 5-35
digital elevation maps (DEMs) 6-23
digital elevation maps (DEMs), defined 3-7
displaying
light objects 10-318, 12-35
lighted surfaces 10-541, 12-96
lines 10-322, 10-425, 10-427, 12-39
patches 10-228, 10-230, 10-414, 10-416, 12-30
surfaces 10-382, 10-418, 10-539, 10-544, 12-51, 12-64
text 10-287, 10-549, 12-100
displaym 3-22
displaym 10-187
dist2str 10-190
distance
converting to string 10-190
converting units 10-177, 10-197, 10-314, 10-404, 10-457, 10-526
See also surface distance
distance 2-20
distance 10-192
distance units
convention for navigation functions 9-12
converting between formats 7-6
description of formats 7-5
distdim 7-6
distdim 10-197
distortcalc 10-195
dms notation 7-2
dms2deg 7-3
dms2deg 10-199
dms2dm 10-201
dms2mat 10-200
dms2rad 7-4
dms2rad 10-199
Douglas-Peucker algorithm 7-33
dreckon 9-12, 9-31
dreckon 10-202
drift correction 9-34
driftcorr 9-35
driftvel 9-36
dted 10-206

## Index-4

## E

Earth
default geoid 2-6
ellipsoid models 2-6
Earth See almanac 10-75
eastof 10-209
ecc2flat 10-210
ecc2n 10-211
eccentricity 10-98
Eckert I projection 11-35
Eckert II projection 11-37
Eckert III projection 11-39
Eckert IV projection 11-41
Eckert V projection 11-43, 11-138
Eckert VI projection 11-45
Eckert, Max 11-35, 11-37, 11-39, 11-41, 11-43, 11-45
eckert1 11-35
eckert2 11-37
eckert3 11-39
eckert4 11-41
eckert5 11-43
eckert6 11-45
Edwards, Trystan 11-120
egm96geoid 10-212
Egyptians 11-49, 11-101, 11-115
elevation
defined 2-22
measuring 2-21
elevation map See digital elevation map
ellipse1 10-216
ellipsoid
approximating planetary geoid See almanac as a geoid model 2-3
converting parameters 2-5
models for Earth 2-6
models for planets 2-24
radius of curvature 10-458
ellipsoid parameters
conversion 10-210, 10-211, 10-234, 10-393
converting 10-98
Elliptical projection 11-95
encodem 10-219
epsm 10-220
eqa2grn 9-9
eqa2grn 10-221
eqaazim 11-77
eqaconic 11-9
eqacylin 11-47
eqdazim 11-49
eqdconic 11-51
eqdcylin 11-53
Equal-Area Cylindrical projection 11-13, 11-15, 11-47, 11-59, 11-81, 11-120
Equidistant Azimuthal projection 11-7, 11-49, 11-50, 11-51
Equidistant Conic projection 11-51
Equidistant Cylindrical projection 11-51, 11-53, 11-54, 11-57, 11-103, 11-138
Equirectangular projection 11-53, 11-54
Erastosthenes 11-103
etopo5 10-222
ETOPO5 model 10-222
Etzlaub, Erhard 11-91
Everett 11-99
external data
DCW data 10-161, 10-167
DCW gazette 10-165
DCW headers 10-170
DCW-DEM data 10-91
ETOPO5 model 10-222
Fifth Fundamental Catalog of Stars 10-463
TIGER ArcInfo files 10-555
TIGER FIPS name files 10-233

TIGER MIF files 10-551
TIGER/Line data 10-567
USGS DEM data 10-595, 10-599
USGS DEM filenames 10-601
extractm 10-226

## F

Fifth Fundamental Catalog of Stars 10-463
fill3m 10-228, 12-30
fillm 4-32, 4-33
fillm 10-230, 12-30
filtering geographic data 7-32, 9-9
filterm 7-32, 9-9
filterm 10-231
findm 3-35
findm 10-232
fipsname 10-233
fixing See navigational fixing
flat2ecc 10-234
flatearthpoly 7-26
flatplrp 11-85
flatplrq 11-87
flatplrs 11-89
Flat-Polar Quartic projection 11-87
fournier 11-55
Fournier II projection 11-55
Fournier projection 11-55, 11-56
Fournier, Georges 11-55
frame See map frame
framem 4-18, 4-20
framem 10-237

## G

Gall Isographic projection 11-53, 11-57
Gall Orthographic projection 11-47, 11-59

Gall projection 11-61
Gall Stereographic projection 11-21, 11-61
Gall, James 11-59, 11-61
Gauss-Krüger 11-124
gazette A-14
gc2sc 10-238
gcm 10-240
gcpmap 10-242
gcwaypts 9-12, 9-26
gcwaypts 10-243
gcxgc 7-19
gcxgc 10-245
gcxsc 7-19
gcxsc 10-247
general matrix map
projecting 10-418, 10-539, 10-541, 10-544, 12-64, 12-96
projecting shaded relief 10-542
general matrix maps
displaying 4-34
displaying image and surface coloring 4-38
displaying light shading 5-25
displaying shaded relief 5-29
geographic data structure
creating input mlayers 10-479
defined 3-16
displaying 3-22, 10-187
extracting data 10-226
extracting data from A-11, A-30
interacting with objects 12-53
version 13-19
version 2 3-17
geographic mean 9-2
geographic points
mean 10-376
standard deviation 10-533
standard distance 10-531

## Index-6

geographic standard deviation 9-4
geographic statistics
calculating geographic mean 9-2
calculating geographic standard deviation 9-4
equal-area coordinate system 9-9
equirectangular binning 9-7
filtering data sets 7-32, 9-9
histograms 9-7
geoid
availability for planets 2-24
converting ellipsoid parameters 2-5
defined 2-2
ellipsoid approximation 2-3
ellipsoid models for Earth 2-6
importance of 5-35
geoid matrix A-26
geoid vector 2-4
planets See almanac
geolocated grids
format 3-38
geospatial data formats
reading and writing 3-47
geostruct1 3-19
geostruct2 3-17
getm 4-6, 6-5
getm 10-265
getseeds 10-266
giso 11-57
Globe 11-63, 11-64
globe 11-63
globe projection 5-43
Gnomic projection 11-65
gnomonic 11-65
Gnomonic projection 11-65
goode 11-67
Goode Homolosine projection 11-67, 11-95
Goode, J. Paul 11-67
gortho 11-59
gradient
defined 7-47
gradientm 7-47
graphic scale 6-5
graticule
choosing resolution 4-35, 4-36
defined 3-41, 4-35
graticule mesh 10-378
great circle track
calculating from one point 10-572
calculating from two points 10-575
displaying 12-102
great circles
approximating tracks with rhumb lines 9-26
calculating points of 2-19
converting to small circles 10-238
defined 2-13
interactive 4-43
intersection 10-245
intersection with small circles 10-247
Great Soviet World Atlas 11-17
Greeks 11-101, 11-115
grepfields 10-277
grid See map grid
gridm 10-280
grn2eqa 9-9
grn2eqa 10-284
gshhs 10-285
gstereo 11-61
gtextm 10-287
gtopo30 10-288
Guide property editor 12-66

## H

hammer 11-69

Hammer projection 11-7, 11-25, 11-69
Hammer-Aitoff projection 11-69
handlem 4-48
handlem 10-292, 12-32
Hassler, Ferdinand Rudolph 11-105
hatano 11-71
Hatano Asymmetrical Equal-Area projection 11-71
Hatano, Masataka 11-71
help
getting more 1-26
hidem 4-49
hidem 10-294, 12-34
hista 10-295
histogram
equal area 10-295
equirectangular 10-297
histograms 9-7
histr 9-7
histr 10-297
hms notation 7-8, 9-36
hms2hm 10-299
hms2hr 10-300
hms2mat 10-301
hms2sec 10-300
Homolographic projection 11-95
Homolosine projection 11-67
Hondius, Jodocus 11-113
hours notation 7-8, 9-36
hr2hm 10-302
hr2hms 10-302
hr2sec 10-303
hypsometric tints 6-23

## I

imbedm 10-304
inputm 4-42, 9-27
inputm 10-306
Inset maps
controlling scale 6-2
creating 6-2
interplat 7-14, 7-17
interplon 7-14, 7-17
interpm 7-14, 7-16
interpm 10-307
interpolation
along a path 7-46
latitude and longitude 10-307
latitude given longitude 10-308
longitude given latitude 10-310
interpolation, latitude and longitude 7-13
intersection
great circles 10-245
great circles and small circles 10-247
object sets 10-156
rhumb lines 10-477
small circles 10-504
intrplat 10-308
intrplon 10-310
ismap 10-312
ismapped 10-313

## J

Jupiter See almanac 10-75

## K

Kavraisky V projection 11-73
Kavraisky VI projection 11-75
Kavraisky, V. V. 11-73, 11-75
kavrsky5 11-73
kavrsky6 11-75

## Index-8

km2deg 10-314
km2nm 10-314
km2rad 10-314
km2sm 10-314
korea workspace 4-38

## L

La Carte Parallélogrammatique 11-53
lambcyln 11-81
lambert 11-79
Lambert Azimuthal Equal Area projection 11-69
Lambert Azimuthal Equal-Area projection 11-9, 11-77
Lambert Conformal Conic projection 11-79
Lambert Equal-Area Azimuthal projection 11-23
Lambert Equal-Area Conic projection 11-9
Lambert Equal-Area Cylindrical projection 11-9, 11-47, 11-81
Lambert, Johann Heinrich 11-47, 11-77, 11-79, 11-81
latitude and longitude
finding corresponding time zone 10-562
finding for map entries 10-232
interpolation 7-13, 10-307, 10-308, 10-310
limits of regular matrix map 10-320, 12-37
See also map frame, setting limits
See also map limits
latitude, defined 2-8
lcolorbar 6-28
legs
course and distance of 9-28
defined 9-12
legs 9-12, 9-28
legs 10-316
light object 12-35
Light objects
lightmui 5-19
light objects $10-318$
manipulaing 10-319
lightm 5-32
lightm 10-318, 12-35
lightmui 10-319
limitm 3-31
limitm 10-320, 12-37
line objects $10-322,10-425,10-427,12-39$
displaying 4-27
line simplification 7-33
linem 10-322, 12-39
loadcape A-39
logical maps defined 7-42
longitude
converting between ranges $2-8$
longitude, defined 2-8
Lorgna projection 11-77
los2 5-16
loximuth 11-83
Loximuthal projection 11-83
loxodromes See rhumb lines
ltln2val 3-35
ltln2val 10-328

## M

majaxis 10-329
makemapped 6-19
makemapped 10-330
map
creating 12-26
definition 3-2
deleting 10-133
precision 10-220
map axes
accessing properties 4-6, 4-7
accessing properties default values 4-9
defining map projection 10-99, 12-7
inset maps 6-2
modifying properties 10-512
resetting to default properties 4-14
retrieving map structure 10-240
retrieving properties 10-265
setting properties 4-6, 10-99, 12-7
testing 10-312
map data
extracting from data structures 10-226
filtering 10-231
querying 12-70
See also matrix data
See also vector data
map frame
adjusting for a new projection 4-11
controlling appearance 4-20
defined 4-18
displaying 4-18, 10-237
modifying properties 10-512
resetting altitude 4-21
setting limits 4-18, 4-19
setting properties $10-99,10-237,12-7$
trimming objects A-8
trimming objects to 6-19
map grid
controlling appearance 4-23
defined 4-23
displaying 4-23, 10-280
modifying properties 10-512
resetting altitude 4-23
setting properties 10-99, 10-280, 12-7
map grid labels
displaying 10-390, 10-424
modifying properties 10-512
setting properties 10-99, 12-7
map grid labels, alternate 10-391
map layers 12-53
map legend
deprecated term 3-28
map limits
adjusting for a new projection 4-11
setting 4-20
map origin See origin
map projection
azimuthal 8-9
base 8-17
changing 10-512
choosing 8-53
computations 8-31
conic 8-8
cylindrical 8-6
defined 2-11, 8-3
defining 10-99, 12-7
developable surface 8-4
distortion 8-4, 8-24
globe 5-43
identification strings 10-350
names 10-350
polyconic 8-8
switching 4-16
table of properties 8-53
two-dimensional vs. three-dimensional 5-43
vectors 8-37
map projections
conformality 8-4
distance 8-4
equidistance 8-4
equivalence 8-5
pseudocylindrical 8-7
shape 8-4
map projectios

Index-10
area 8-5
map scale
between axes 6-2
printing 6-30
maplegend variable 3-27
mapmtx workspace 3-39
mapped objects
converting from standard objects 6-19
manipulating by name 4-47
trimming to map frame 6-19
mapprofile 7-46
maps
printing 6-30
maps $10-350$
maptool 12-41
maptrim 12-47
maptriml 7-30
maptriml 10-358
maptrimp 7-30
maptrimp 10-359
maptrims 10-361
Marinus of Tyre 11-53, 11-103
Mars See almanac 10-75
maskm 10-370
mat2dms 7-3
mat2dms 10-370
mat2hms 7-8, 9-36
mat2hms 10-371
MATLAB graphics
projecting 6-18
matrix data
displaying 10-382, 10-418, 10-539, 10-544, 12-51, 12-64
displaying as lighted 10-541, 12-96
displaying as shaded relief 10-380, 10-542
resizing 10-474
trimming 10-361, 12-47
matrix map
constructing graticule mesh 10-378
encoding regions 10-219
NaNs 10-396
ones 10-410
replacing elements $10-125,10-370$
resizing 10-474
sparse zeros 10-530
zeros 10-645
matrix maps
coloring 6-23
defined 3-7
displaying 4-34
gradient 7-47
graticules 4-35
indexed maps,creating A-24
logical maps 7-42
See also general matrix maps
See also regular matrix maps
McBryde, F. Webster 11-85, 11-87, 11-89
McBryde-Thomas Flat-Polar Parabolic projection 11-85
McBryde-Thomas Flat-Polar Quartic projection 11-87
McBryde-Thomas Flat-Polar Sinusoidal projection 11-89
mdistort 10-372
mean of geographic data 9-2
mean of geographic points 10-376
meanm 9-3
meanm 10-376
mercator 11-91
Mercator Equal-Area projection 11-113
Mercator projection 8-16, 9-13, 9-27, 11-29, 11-79, 11-91, 11-93
Mercator, Gerardus 11-51, 11-91
Mercury See almanac 10-75
meridian labels 10-390
meridian labels, alterate 10-391
MeridianLabel
use of 4-25
meridians
controlling display 4-23
defined 2-8
mesh See graticule mesh
meshgrat 3-44, 4-38
use of 4-37
meshgrat 10-378
meshlsrm 5-29
meshlsrm 10-380
meshm 10-382, 12-51
mfwdtran 10-384
miller 11-93
Miller Cylindrical projection 11-93
Miller, Osborn Maitland 11-93
minaxis 2-5
minaxis 10-386
minvtran 10-387
mlabel 10-390
mlabelzero22pi 10-391
mlayers 4-47
mlayers 12-53
MLineException use of 4-24
MLineLimit use of 4-24
mobjects 12-57
modsine 11-117
mollweid 11-95
Mollweide projection 11-67, 11-95
Mollweide, Carl B. 11-95
moon
albedo data A-41
terrain data A-41

Moon See almanac 10-75
mouse
interaction with displayed maps 4-42
mouse interactions
defining small circles 10-503
placing text 10-287
processing button down callbacks 12-106
selecting coordinates 10-306
Murdoch I Conic projection 11-97
Murdoch III Minimum Error Conic projection 11-99
Murdoch, Patrick 11-97, 11-99
murdoch1 11-97
murdoch3 11-99

## N

n2ecc 10-393
name 10-394
namem 4-48
nanclip 10-395
nanm 7-44
nanm 10-396
NaNs, matrix map 10-396
National Geographic Society 11-111
navfix 9-12, 9-18
navfix 10-397
navigation
angular conventions 9-12
calculating course and distance 9-28
calculating dead reckoning positions 9-31
calculating waypoints 9-26
connecting waypoints 9-27
distance conventions 9-12
fixing position 9-13, 9-18
retrieving time zone for longitude 9-38, 9-39
speed conventions 9-12

## Index-12

navigational fixing 9-13, 9-18, 10-397
navigational track
calculating segments between waypoints 10-569
navigational tracks
connecting waypoints 9-27
displaying 9-27
format 9-12
Neptune See almanac 10-75
neworig 8-42
neworig 10-401
newpole 8-40, 8-42
newpole 10-403
nm2deg 10-404
nm2km 10-404
nm2rad 10-404
nm2sm 10-404
Nordic projection 11-69
normal aspect 8-10
north arrows 6-7
northarrow 10-405
npi2pi 7-4
npi2pi 10-409

## 0

objects
assigning tag 10-546, 12-98
deleting 10-134, 12-19
displaying 10-524, 12-89
editing properties of 12-66
hiding 10-294, 12-34
interacting 12-57
modifying zdata 10-643, 12-107
retrieving handle 10-292, 12-32
retrieving name 10-394
testing if mapped 10-313
oblique aspect 8-11
ocean mask A-9
oceanlo workspace A-9
onem 7-43
onem 10-410
ones matrix map 10-410
Ordinary Polyconic projection 11-105
org2pol 10-411
orientation
projection
vector
origin
computing 10-403, 10-449
interactive modification 12-60
transformation 10-401
origin See orientation vector
origin vector 8-10
See also projection aspect
originui 12-60
ortho 11-101
Orthographic projection 11-63, 11-101, 11-128
Orthophanic projection 11-111

## P

panzoom 6-30
panzoom 12-61
paperscale 6-30
paperscale 10-412
parallel labels 10-424
ParallelLabel
use of 4-25
parallels
controlling display 4-23
defined 2-8
parallelui 12-63
patch drawing functions
differences between 4-33
patch objects $10-228,10-230,10-414,10-416$
displaying 4-29
patches
projecting 12-30
patchesm 4-33
patchesm 10-414, 12-30
patchm 4-33
patchm 10-416, 12-30
pcarree 11-103
pcolorm 10-418, 12-64
Peters projection 11-59
piloting See navigational fixing
plabel 10-424
planetary data 10-75
Plate Carree projection 11-103
Plate Carrée projection 11-27, 11-43, 11-51, 11-53
plot3m 4-32
plot3m 10-425, 12-39
plotm 4-27
plotm 10-427, 12-39
Pluto See almanac 10-75
polcmap 6-26
polcmap 10-429
pole transformation 10-411
polybool 7-22, 7-26
polycon 11-105
Polyconic projection 11-105
polyconic projection 8-8
polygon
boolean operations 7-22
buffer zones 7-28
displaying as line object 4-27
displaying as patch object 4-29
eliminating dateline crossing 7-26
extracting segments 7-11
intersection points 7-20
surface area 7-21
polygon surface area 10-84
polyjoin 7-11
polymerge 7-12
polysplit 7-11
polyxpoly 10-438
polyxpoly 7-20, 7-26
position
dead reckoning 10-202
reckoning 10-468
Postel projection 11-49, 11-50
Postel, Guillaume 11-49
previewmap 10-440
printing maps 6-30
project 6-19
project 10-442
projection
aspecct
data 10-384, 10-387
objects 10-442
projection See map projection
projection aspect
normal 8-10
oblique 8-11
skew-oblique 8-15
transverse 8-11
Projection of Marinus 11-53, 11-54
property editors 12-66
Click-and-Drag 12-66
Guide 12-66
Ptolemy, Claudius 11-19, 11-51
Putnins 11-33
Putnins P4 projection 11-33
Putnins P5 projection 11-107
Putnins, Reinholds V. 11-107
putnins5 11-107
putpole 10-449

## Q

qrydata 12-70
quadrangle surface area 10-89
quartic 11-109
Quartic Authalic projection 11-109
querying map data 12-70
quiver 6-20
quiver3m 10-451, 12-76
quiverm 6-14
quiverm 10-453, 12-79

## R

rad2deg 10-454
rad2dm 10-456
rad2dms 10-456
rad2km 10-457
rad2nm 10-457
rad2sm 10-457
radius of auxiliary sphere 10-484
radius of curvature 10-458
radius of planets 2-24
radius of planets See almanac
Rand McNally 11-111
range
angles 10-409, 10-644
finding cross fix position 10-156
raster data See matrix data
Raster data representation 3-35, 3-45
raster map data
defined 3-7
raster maps See matrix maps
rc2yx 10-457
rcurve 10-458
readfields 10-459
readFK5 10-463
reading ASCII files 10-529
readmtx 10-465
reckon 2-18
reckon 10-468
reckoning 10-468, 12-92
reckoning position 2-18
Rectangular projection 11-53, 11-54
reducem 10-470
reducing data See vector data
referencing matrix
defined 3-27
referencing vector
refmat variable 3-27
regular matrix map
calculating required matrix size 10-525
creating colormap 12-21
encoding 10-304
encoding regions 12-87
latitude and longitude limits 10-320, 12-37
projecting 10-382, 12-51
projecting shaded relief 10-380
retrieving values $10-328$
seeds for encoding 10-266
surface area 10-86
transforming to new coordinate system origin 10-401
trimming 10-361
regular matrix maps
accessing elements 3-35
determining limits 3-31
determining size with scaling 3-37
displaying 4-34
displaying image and surface coloring 4-38
displaying shaded relief 5-29
resizem 10-474
restack 10-476
rhumb line track
calculating from one point 10-572
calculating from two points 10-575
displaying 12-102
rhumb lines
approximating great circle tracks with 9-26
calculating points 2-19
defined 2-13
rhumb lines intersection 10-477
rhxrh 7-19
rhxrh 10-477
robinson 11-111
Robinson projection 11-111
Robinson, Arthur H. 11-111
rootlayr 10-479
rotatem 8-39
rotatem 10-480
rotatetext 10-482
rounding 10-483
roundn 10-483
rsphere 10-484
russia workspace 3-32
Ruysch, Johannes 11-51

## S

Sanson-Flamsteed projection 11-113
satbath 10-487
Saturn See almanac 10-75
scale
between axes 6-2
printing 6-30
scaleruler 6-5
scaleruler 10-489
scatterm 6-14, 9-7
scatterm 10-496, 12-81
scircle1 2-15
scircle1 10-498
scircle2 2-15
scircle2 10-501
scircleg 4-43
scircleg 10-503
scirclui 12-83
scxsc 7-19
scxsc 10-504
sec2hm 10-509
sec2hms 10-509
sec2hr 10-510
seconds notation 7-8, 9-36
seedm 12-87
semimajor axis 10-329
semiminor axis 10-386
setltln 3-33
setltln 10-511
setm 4-6, 4-18, 4-23, 6-5
setm 10-512
setpostn 3-33
setpostn 10-514
shaded relief map
constructing cdata 10-515
constructing colormap 10-515
general matrix map 10-542
regular matrix map 10-380
shaded relief maps 5-29
shaderel $10-515$
showaxes 10-523
showm 4-49
showm 10-524, 12-89
Siemon, Karl 11-83, 11-109
Simple Conic projection 11-51
Simple Cylindrical projection 11-103
simplifying data See vector data
sinusoid 11-113

## Index-16

Sinusoidal projection 11-19, 11-43, 11-67, 11-95, 11-113, 11-138
sizem 3-37, 3-38
sizem 10-525
skew-oblique aspect 8-15
slope
defined 7-47
sm2deg 10-526
sm2km 10-526
sm2nm 10-526
sm2rad 10-526
small circles
calculating 10-498, 10-501
defined 2-14
defining with mouse 10-503
displaying 12-83
intersection 10-504
intersection with great circles 10-247
smoothlong 10-527
spcread 10-529
speed units
format for navigation functions 9-12
spzerom 7-44
spzerom 10-530
Stab 11-132
Stabius, Johannes 11-132
Stab-Werner projection 11-132
standard deviation of geographic data 9-4
standard deviation of geographic points 10-533
standard distance of geographic points 10-531
standard parallels
for conic projections 4-31
stars workspace A-42
stdist 9-6
stdist 10-531
stdm 9-4
stdm 10-533
stem plot, example 6-14
stem3m 6-14
stem3m 10-535, 12-90
stereo 11-115
Stereographic projection 11-23, 11-79, 11-115
str2angle 7-4
Sun See almanac 10-75
surface area
accessing from almanac 2-24
measuring polygons 7-21
planets See almanac
polygon 10-84
quadrangle 10-89
regular matrix map 10-86
surface distance
along a parallel See departure
between track waypoints 10-316
between two points 10-192
calculating 12-92
surface objects
constructing graticule mesh 10-378
projecting 10-382, 10-418, 10-539, 10-544, 12-51, 12-64
projecting lighted 10-541, 12-96
surface objects, displaying 4-34
surfacem 10-539, 12-64
surfdist 12-92
surfim 5-25
surflm 10-541, 12-96
surflsrm 5-29
surflsrm 10-542
surfm 10-544, 12-64
Sylvanus, Bernardus 11-19
symbol plot, example 6-16

## T

tagm 10-546, 12-98
text
mouse placement 10-287
projecting 10-549, 12-100
text objects
trimming to map frame A-8
textm 10-549, 12-100
texture mapping
onto digital elevation maps 5-35
tgrline 10-567
Thales 11-65
Thomas, Paul D. 11-85, 11-87, 11-89
TIGER data
ArcInfo files 10-555
MIF files 10-551
reading FIPS name files 10-233
TIGER/Line data 10-567
tigermif 10-551
tigerp 10-555
tightmap 6-30
tightmap 10-558
time
converting to matrix elements 10-301
converting to string 10-559
converting units 10-299, 10-300, 10-302, $10-303,10-509,10-510,10-561$
time units
conventions for navigation 9-37
converting between formats 7-9, 9-37
description of formats 7-8, 9-36
time zone
determining from longitude 10-562
time zones
navigational 9-34
time2str 9-37
time2str 10-559
timedim 7-9, 9-37
timedim 10-561
timezone 9-38, 9-39
timezone 10-562
tissot 6-14, 8-24
tissot 10-564
tissot indicatrices
projecting 10-564
Tissot Modified Sinusoidal projection 11-117
Tissot, N. A. 11-117
Tobler, Waldo R. 11-83
topo workspace 3-8, A-25
topographical maps
See digital elevation maps (DEMs)
track
See great circle track
See navigational track
See rhumb line track
track 9-27
track 10-569
track waypoints
azimuth 10-316
distance 10-316
track1 2-19
track1 10-572
track2 2-19, 4-28
track2 10-575
trackg 4-43
trackg 10-577
tracks
See great circles
See rhumb lines
trackui 12-102
transformation of coordinate system 10-480
See coordinate transformation
transverse aspect 8-11
Transverse Mercator projection 11-124

## Index-18

transverse Mercator projection 8-52
trimcart 6-19
trimcart 10-578
trimming data 7-30
trisurf 6-19
trystan 11-120
Trystan Edwards Cylindrical projection 11-47, 11-120
Tunhuang star chart 11-91

## U

U.S. Army 11-124
U.S. matrix data
political A-37
terrain A-38
U.S. vector data
creating base maps A-35
low resolution A-28
medium resolution A-33
uimaptbx 12-106
units
converting See conversion
testing for valid abbreviations 10-582
testing for valid strings 10-582
unitsratio
example 7-6
unitstr 10-582
Universal Polar Stereographic (UPS) projection 8-44
Universal Polar Stereographic projection 11-122
Universal Transverse Mercator projection 11-122, 11-124
ups 11-122
UPS projection 11-122
Uranus See almanac 10-75
usahi 10-588
usahi function A-36
usahi workspace A-33
usalo 10-589
usalo workspace $3-20,4-30$, A-28
usamap A-32, A-35
usamap 10-591
usamtx workspace A-37
USGS DEM data
reading files 10-595, 10-599
returning filenames 10-601
usgs24kdem 10-595
usgsdem 10-595, 10-599
usgsdems 10-601

## UTM

ellipsoid for 8-50
zone 8-50
utm 8-44
utm 11-124
UTM projection 11-122, 11-124
utmgeoid 10-604
utmzone 10-602

## V

Van der Grinten I projection 11-126
Van der Grinten projection 11-126
Van der Grinten, Alphons J. 11-126
vec2mtx A-23, A-24
vec2mtx 10-605
vector data
calculating intersections 7-19
converting to matrix format 12-47
displaying as lines 10-322, 10-425, 10-427, 12-39
displaying as patches $10-228,10-230,10-414$, 10-416, 12-30
geographic interpolation 7-13
reducing 10-470
simplifying/reducing 7-33
trimming 10-358, 10-359
trimming data to a region 7-30
vector map data
defined 3-4
vector maps
delineation of objects in 3-14
displaying as lines 4-27
displaying as patches 4-29
vectors
projected directions 8-37
Venus See almanac 10-75
vertical exaggeration
daspectm 5-20
Vertical Perspective Azimuthal projection 11-128
vfwdtran 6-21, 8-38
vfwdtran 10-607
vgrint1 11-126
viewshed
defined 5-17
viewshed 5-17
vinvtran 10-615
vmap0data 10-618
vmap0read 10-622
vmap0rhead 10-625
volume of planets 2-24
volume of planets See almanac
von Hammer, H. H. Ernst 11-69
vperspec 11-128

## W

Wagner I projection 11-75
Wagner IV projection 11-130
Wagner, Karlheinz 11-75, 11-130
wagner4 11-130
waypoints
calculating 9-26, 10-243
connecting 9-27
defined 9-12
See also track waypoints
selecting with mouse 9-27
werner 11-132
Werner projection 11-19, 11-132
Werner, Johannes 11-132
westof 10-631
wetch 11-134
Wetch Cylindrical projection 11-134
Wetch projection 11-29
Wetch, J. 11-134
wiechel 11-136
Wiechel projection 11-136
Wiechel, H. 11-136
winkel 11-138
Winkel I projection 11-138
Winkel, Oswald 11-138
world matrix data political data A-22
terrain data A-25
world vector data
atlas data, high-resolution A-15
atlas data, low-resolution A-5
coastline data A-3
deleting data with tags A-10
displaying atlas data A-6, A-13
extracting data with tags A-11
worldhi 10-634
worldhi A-18
worldhi workspace A-15
worldlo 10-637
worldlo function A-13, A-15
worldlo workspace A-5
worldmap A-13
worldmtxmed workspace A-22
Wright projection 11-91
Wright, Edward 11-91

## Y

Young, A. E. 11-23

## Z

zdatam 10-643, 12-107
Zenithal Equal-Area projection 11-77
Zenithal Equidistant projection 11-49
Zenithal Equivalent projection 11-77
Zenithal projection 11-49, 11-50
zero22pi 7-5
zero22pi 10-644
zerom 7-43
zerom 10-645
zeros
creating matrix map 10-645
creating sparse matrix map 10-530
zooming in and out of map displays 12-61


[^0]:    figure

[^1]:    load topo
    load geoid

[^2]:    For further information, see the reference page for areamat.

[^3]:    worldmap korea

[^4]:    See Also
    fillm fill3m patchm patchesm

[^5]:    See Also
    handlem

[^6]:    Click-and-Drag Editor for a map axes

